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Abstract
Meeting quality characteristics of products and processes is an important issue for customer
satisfaction and business competitiveness. It is necessary to integrate new techniques and
tools that improve and complement traditional process variables analysis. This paper pro-
poses a new methodological approach to analyze process quality control variables using Fuzzy
Cognitive Maps. Application of the methodology in the production process of carbonated
beverages allowed identifying process variables with the greatest influence on finished prod-
uct quality. The process variables with the greatest impact on carbon dioxide content in the
beverage were the beverage temperature in the filler, the carbo-cooler pressure, and the filler
pressure.
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Introduction

Production Management of goods or services in-
volves a series of control and planning actions to en-
sure compliance with the operating conditions of the
process that influence the finished product quality.
Regardless of the complexity of the production sys-
tem, it is necessary to identify the variables and fac-
tors that determine the product quality and the oper-
ation levels that guarantee uniformity and compliance
with the design specifications or those agreed with the
client.

Quality control still plays an important function in
the quality assurance of products and processes, re-
gardless of technological advances in production sys-
tems. Moreover, quality control models can fail when
they do not consider uncertainty and interrelation-
ships between process variables. This can lead to fin-
ished product quality issues such as frequent product
recalls due to failures in the quality function in pro-
duction or some other stage of the product life cycle
(Flynn & Zhao, 2015).
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Traditionally, the analysis of process quality con-
trol variables is carried out by applying tools and
techniques of industrial statistics, such as descriptive
analysis, control charts, and process capability stud-
ies (Montgomery, 2019). The frequent changes and
technological developments in computing tools create
the need for incorporating new approaches to control
products and processes.

Fuzzy Cognitive Maps (FCMs) are soft computing
tools that have proven their adequate performance
to analyze the interrelationships between variables in
processes. FCMs are a combination of fuzzy logic and
neural networks, which are graphical representations
used to illustrate causal reasoning with a structure
that allows backward or forward progress and per-
forming direct and inverse correlation analysis be-
tween related events (Dickerson & Kosko, 1994).

FCMs have been applied in areas such as medicine,
administration, and automotive production, among
others. The FCMs applications have proven to be ef-
fective as a tool for control, analysis, and decision-
making (Papageorgiou, 2014). However, there is still
little evidence of the FCMs application in the analysis
of process quality control variables.

Despite some contributions to FCM applications in
process analysis, there is a lack of research in the area.
Therefore, this paper works on the lack of quality
control methodologies using advanced modeling tech-
niques that overcome the traditional descriptive sta-
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tistical techniques. More modeling methodologies are
needed to explain the behavior of the process variables
and to predict future states.

Based on the above and aimed to propose new
approaches that facilitate the process analysis to
meet quality requirements and contribute to decision-
making in process management, this paper develops
a methodology for analyzing the process quality con-
trol variables using FCMs. The proposed methodol-
ogy was applied in a carbonated beverage production
process and allowed the identification of variables with
the greatest influence on the finished product quality.

This work differs from previous ones in that it pro-
poses a new approach to analyze process quality con-
trol variables, integrating soft computing tools. The
integration of quality control and soft computing has
not been widely studied and constitutes a research
avenue.

The article is organized as follows: next section de-
scribes general aspects of the FCMs and the beverage
carbonation process. Then, the steps of the method-
ology are shown and subsequently the results are de-
tailed. Lastly, the conclusions are presented.

Literature review

This section shows the theoretical foundations of
FCMs and some previous works where they have been
applied for process analysis. Then, a general descrip-
tion of the beverage carbonation process is given.

Conceptualization of Fuzzy Cognitive Maps

FCMs are soft computing tools used to model and
simulate systems in different study areas. The ap-
proach of FCMs is symbolic and allows modeling the
behavior of any complex system in terms of inter-
related concepts. Each concept represents an event,
variable, or characteristic of the system (Kosko, 1986).
The models represented using FCMs are easily un-
derstandable as they resemble the structure of hu-
man thought and constitute a tool for decision-making
(Bourgani et al., 2013).

FCMs are neural network maps with interpretive
features consisting of a set of concepts or nodes
(neurons) and the causal relationships between them
(Fig. 1) (Pelta & Cruz, 2018). The activation value of
these relationships determines the interdependences
strength and their impact on the network (model).
The strength of the interrelationship between two
nodes, Ci and Cj , is quantified by a numerical weight
wij ∈ [−1,+1] and is denoted by a causal weighted
edge.

Fig. 1. A basic model of an FCM (own work)

Three kinds of causal relationships reflect the type
of influence of one node on another in an FCM. If
wij > 0, then Ci produces an increase in Cj with the
absolute intensity of the weight |wij |. If wij < 0, then
Ci produces a decrease in Cj with the corresponding
absolute value of the intensity. If wij = 0, then there
is no causal relationship between Ci and Cj .

Evaluating the FCM model validity to represent
the studied system is carried out through an infer-
ence process. The parameters related to the inference
process are the inference rule, the transfer function,
and the detection criterion given by Kosko’s activa-
tion rule (Pelta & Cruz, 2018):

A
(k+1)
i = f

Aki + N∑
j=1

Akj · wji

 , j 6= k (1)

where A(k+1)
i is a state vector representing the value

of concept Ci at time k+1, Aki is the value of concept
Ci at the previous time k, Akj is the value of Cj at
time k, wji is the value of the cause-effect relationship
between Ci and Cj , and f(·) refers to a monotonically
non-decreasing and non-linear function used to set the
activation value of each node in the interval [0, 1]:

f (Ai) =
1

1 + e−λ(Ai−h)
(2)

where λ is the sigmoid slope and h denotes the dis-
placement. In some models, these parameters are
closely related to the model convergence, making the
predictions more reliable due to the model fit with the
real system (Pelta & Cruz, 2018).

After the inference process, a FCM model can have
three different behaviors: (i) The state vector may set-
tle to some stationary vector reaching a fixed attractor
point, (ii) The state vector may settle periodically to
the same value, or (iii) The value of the state vec-
tor may change chaotically, which is called a chaotic
attractor.
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The ideal convergence behavior or the criterion for
completion of the inference process depends on the
type of system under analysis. For process and prod-
uct improvement decisions, the model will be able to
predict the future steady-state of the system. This is
achieved when a fixed attractor point is used as the
stopping criterion.

Applications of FCMs in process analysis

This section contains some previous studies related
to the topic of interest of the paper, where FCMs are
applied in process analysis. Yu and Hu (2010) devel-
oped an integrated framework for evaluating multi-
ple production plants using FCMs and the TOPSIS
(Technique for Order of Preference by Similarity to
Ideal Solution) strategy, considering the variables pro-
ductivity, production quantity, production cost, and
inventory quantity. Mls et al. (2017) applied FCMs
for planning complex processes with uncertain and in-
complete information, using evolutionary algorithms
to improve production optimization results.

FCMs have been used to analyze plant and hu-
man operator efficiency, achieving a tool that facili-
tates managing resources and simultaneously, increas-
ing the safety and reliability of the human operator
(Kahraman & Yavuz, 2010). Also, integrated decision-
making tools have been developed using FCMs for
dynamic risk assessment in complex systems, consid-
ering the interdependence of risk factors (Jamshidi et
al., 2018).

Hawer, Braun and Reinhart (2016) developed
a FCM to select the appropriate combination of en-
ablers that facilitate change in highly competitive
production environments, allowing decision-makers to
develop a cost-effective and dynamic factory design
in the early planning stages. Vidal et al. (2015) ap-
plied a methodology to predict technological evolu-
tions in green products using FCMs, to establish and
quantify the relationship between eco-design strate-
gies and technological evolution trends. This method-
ology identified the most ecological trends of design
and development, so it could be useful for the predic-
tion of technological forecasts in industries.

Konti and Damigos (2018) developed a collabora-
tive FCM to determine the factors affecting biofuel
production, considering factors such as a collection of
organic material, financing of plants for processing or-
ganic material, and recycling policies. The most influ-
ential factor was the political factor since it directly
influenced the other factors, which allowed them to
focus their decision-making on the subject.

Peter, Antigoni and Vasileios (2015) modeled
a wine production process by applying FCMs to de-
termine the most influenced variables on the quantity
and quality of the product. Harvest time, vineyard
pruning, climate, and the amount of rainfall in the re-
gion were identified as relevant variables. FCMs have
also been applied to model labor productivity, making
it possible to control aspects such as absenteeism and
low individual performance (Ahn et al, 2015).

Christova, Groumpos, and Stylios (2003) imple-
mented FCMs to control the production plan of
polyethylene terephthalate (PET), facilitating the ex-
ecution of production under conditions of high un-
certainty with unmeasured variables and undefined
states. By modeling the process with FCMs, more
uniformity was achieved in the follow-up and compli-
ance with the production plan and schedule. Similarly,
quality management in supply chains has been mod-
eled using FCMs, identifying the percentage of the
variable of rejects, returns, and defective products as
those with the greatest impact on overall performance
(Cogollo & Correa, 2018).

Yousefi and Tosarkani (2022) developed a method-
ology based on FCMs to identify and evaluate the
main enablers of blockchain technology related to
supply chain sustainability. It enabled significant im-
provement in supply chain performance, increasing
traceability and transparency and helping managers
to make the best decision in purchasing raw materials.

Rezaee et al. (2021) developed an intelligent strat-
egy map applying FCM with a hybrid learning algo-
rithm to establish key investment objectives in organi-
zational projects. Alibage (2020) developed an FCM-
based simulation model for safety intervention in the
offshore oil industry. The model identified work de-
sign, communication, and human relations as the key
factors for safety improvement.

Zanon et al. (2021) proposed a decision-making
model based on gray FCM and fuzzy inference sys-
tems to analyze the causal relationship between or-
ganizational culture and supply chain efficiency. The
model quantified the relationship between elements
of cultural profile and firm performance through sce-
nario simulation. Al-Gunaid et al. (2021) applied an
FCM methodology to improve forecasting and mea-
sure factors affecting wheat crop yield. This made it
possible to identify the factors to control and propose
improvement strategies.

Bevilacqua et al. (2020) applied FCMs to analyze
the domino effect in supply chains, obtaining informa-
tion that allowed defining supply chain design strate-
gies and developing a negotiation process guide to re-
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duce sudden market change levels and improve miti-
gation measures. Yuan et al. (2020) developed a model
based on FCM and kernel methods for time series fore-
casting. The experiments proved the outstanding per-
formance of the combination of such methodologies,
increasing the accuracy of the algorithms and the pre-
diction speed.

The above works show that it is possible to apply
FCMs for analyzing variables that influence the fin-
ished product quality in production process. Although
the previous studies are not applied in specific cases in
the quality control area, they are an important refer-
ence to this methodology, such as the variables treat-
ment, the appropriate configuration of the FCM, and
the analysis of simulation results.

Carbonated beverages process

Some basic concepts about carbonated beverages
and its production process are mentioned in this sec-
tion. Carbonated beverages are nonalcoholic, nonfer-
mented beverages made by dissolving carbon dioxide
(CO2) in the water ready for direct human consump-
tion, with or without the addition of natural or ar-
tificial sweeteners or both, fruit juices, fruit concen-
trates, and additives permitted by legislation (ICON-
TEC, 2020).

One of the main ingredients and the one in charge
of giving the beverage main characteristic is CO2,
which is a colorless, slightly toxic, and odorless gas
with a sour taste. It is a component of the air, al-
though it is found in a very low percentage, formed
by combustion and biological processes such as the
decomposition of organic material, fermentation, and
digestion (Berenguer & Bernal, 2000).

In the carbonation process, CO2 is added to the
beverage by using an equipment called carbo-cooler,
applying CO2 under pressure to the liquid, which
must be kept at low temperatures (approximately
2◦C) (Islas et al., 2015). CO2 absorption is done
through an operation known as gaseous absorption,
where the gaseous mixture meets a liquid so that
it absorbs one or more gas components (Eweis &
Stiban, 2017).

Due to the above, beverage carbonation is a process
that requires strict control of the variables that affect
the main quality characteristic of the final product:
the CO2 content in the beverage. Thus, the develop-
ment of a modeling methodology using FCMs con-
tributes to the generation of knowledge in this area
and becomes a fundamental contribution to the mod-
eling of process quality by applying advanced compu-
tational techniques.

Materials and methods

The methodology used to analyze process quality
control variables using fuzzy cognitive maps consists
of five steps (Fig. 2). In the first stage, the model vari-
ables are defined, considering the process and output
variables frequently monitored as part of the statisti-
cal quality control program. In the second stage, data
on the behavior of the process variables are collected
and a correlation analysis is carried out to determine
the causal relationship weights. The obtained correla-
tion matrix becomes the adjacency matrices as FCM
model inputs.

Fig. 2. The research methodology (own work)

In the third step, the fuzzy cognitive map of the car-
bonation process is elaborated. The model variables
are grouped as a map and are linked using weighted
arcs with the values of the adjacency matrix. In the
fourth step, the actual dynamic behavior of the model
is assessed by performing the inference process, ap-
plying (1) and (2). Finally, in the fifth step, the con-
vergence analysis of the FCM is performed, by sorting
the process variables that affect the response variable,
according to the final value of its vectors.

Results

The following sections present the results after
applying the methodology for analyzing the qual-
ity control variables of the carbonation process. The
methodology was applied in a beverage company from
Medellin (Colombia), whose name is omitted due to
confidentiality commitments.

Definition of the process variables

Table 1 shows the variables of the carbonation pro-
cess that influence the quality of the finished product.
The variables are coded from C1 to C8 and the respec-
tive measurement units are shown.
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Table 1
Carbonation process variables (own work)

ID Variable Measurement Unit

C1 CO2 flow rate Cubic feet per minute

C2 Carbo-cooler pressure Pounds per square inch

C3 Refrigerant suction pressure Pounds per square inch

C4 Beverage temperature in the
carbo-cooler Degrees Celsius

C5 Filler pressure Pounds per square inch

C6 Beverage temperature in the
filler Degrees Celsius

C7 Filler speed Bottles per minute

C8 Volume of CO2 in the bever-
age Volumes

Correlation and adjacency matrix analysis

For determining the values of the interrelationships
between the model variables, data on the behavior of
the process variables were collected through random
sampling in a process capability study. Then, a multi-
ple correlations analysis was carried out by consider-
ing the results of the variables measurement, obtain-
ing the adjacency matrix shown in Table 2.

Table 2
Adjacency matrix (own work)

C1 C2 C3 C4 C5 C6 C7 C8

C1 0 1 0 –0.76 0.98 0.90 –0.15 1

C2 0 0 0 –0.74 0.99 0.88 0 1

C3 0.20 –0.50 0 1 0 1 0.90 0.9

C4 –1 1 0 0 –0.70 1 –0.50 1

C5 0 1 0 0.70 0 0.9 –0.10 0.10

C6 0 0 0 0 0.8 –0.20 1

C7 1 1 1 1 0 –1 0 0.10

C8 0 0 0 0 0 0 0 0

Elaboration of the process FCM

Figure 3 shows the Fuzzy Cognitive Map (FCM)
developed, representing the variables and weights of
the interrelationships between them, based on the ad-
jacency matrix (Table 2).

Table 3 shows the centrality values of the process
variables represented in the FCM of Figure 3, which
corresponds to the sum of the values of the incom-
ing and outgoing arcs at each node (model variables).
Centrality is a value that describes the significance of
each node in the FCM. It is a measure of the strength

Fig. 3. The process FCM (own work)

of the model to represent the system under study and
allows the identification of the process variables (ordi-
nary) with the greatest impact on the response vari-
able (receiver).

Table 3
Centrality of the process FCM (own work)

ID Entries
(a)

Outputs
(b)

Centrality
(c) = a+ b

Type

C1 2.2 4.8 7.0 Ordinary

C2 4.5 3.6 8.1 Ordinary

C3 1 4.5 5.5 Ordinary

C4 4.2 5.2 9.4 Ordinary

C5 3.7 2.8 6.5 Ordinary

C6 5.7 2 7.7 Ordinary

C7 1.9 5.1 7.0 Ordinary

C8 5.1 0 5.1 Receiver

It is highlighted that the main variables of the pro-
cess FCM (Fig. 3) are the beverage temperature in the
carbo-cooler, the carbo-cooler pressure, and the bev-
erage temperature in the filler. However, it is neces-
sary to state that centrality is a static measure of the
model construction to evaluate its congruence with
the system, based on the data collected from the pro-
cess. The identification and sorting of the process vari-
ables that really influence the quality of the product,
are obtained after the inference process and conver-
gence analysis, where the dynamic component of the
interaction between the variables is incorporated.
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Inference process

The inference process was developed by performing
WHAT- IF simulations and Kosko’s activation rule
with own memory of (1), with the results visualized
in Figure 4. It is noted that the variables converge
rapidly to a steady-state, which is desired for the type
of process under analysis. Due to the characteristics
of the modeled process, the detection criterion was es-
tablished at a fixed point or value, since this facilitates
decision-making for product quality control.

Fig. 4. Results of the inference process (own work)

Convergence analysis

Table 4 shows the values of the concepts (pro-
cess variables) in the last step of the simulation and
their descending sequence, which allows identifying
the variables that most influence the process and the
quality characteristic of the product (volume of CO2

in the beverage). According to these results, it is noted
that the final state vectors of the process variables
converge to values above the significance threshold,
which indicates that they all have an impact on the
response variable, however, it is possible to identify
three clearly distinct ranges of influence.

Table 4
Final sorting of the process variables (own work)

Order Variable Value

1 C8: Volume of CO2 in the beverage 0.9952

2 C6: Beverage temperature in the filler 0.9865

3 C2: Carbo-cooler pressure 0.9743

4 C5: Filler pressure 0.9387

5 C4: Beverage temperature in the carbo-cooler 0.8506

6 C3: Refrigerant suction pressure 0.8089

7 C1: CO2 flow rate 0.6433

8 C7: Filler speed 0.6339

In the first range are the variables that affect the
response variable, these yielded the highest values:
the beverage temperature in the filler (0.9865), the
carbo-cooler pressure (0.9743), and the filler pressure
(0.9367). This is consistent with the principles and
theoretical references of the carbonation process (Is-
las et al., 2015).

Then, in the second range, two variables with high
average influence are identified: the beverage temper-
ature in the carbo-cooler (0.8506) and the refrigerant
suction pressure (0.8089). Finally, there are variables
with moderate influence: CO2 flow rate (0.6433) and
the filler speed (0.6339).

Conclusions

The rapid changes and developments in computa-
tional tools for modeling and simulation are a perma-
nent challenge for quality management and control.
Thus, the development of advanced analytical models
is a growing research area. Because of the new de-
mands of the global market for efficient production
systems with high-quality levels, soft computing tools
are perceived as one of the novel approaches to re-
spond to the modeling of complex and highly uncer-
tain processes.

This paper developed a methodology for analyz-
ing process quality control variables based on Fuzzy
Cognitive Maps, which demonstrated adequate per-
formance through the application in a beverage car-
bonation process. From data obtained through sam-
pling in a process capability study, it was found that
the most influential variables to guarantee adequate
CO2 levels in the beverage were the beverage temper-
ature in the filler, the carbo-cooler pressure, and the
filler pressure.

The developed methodology constitutes a new ap-
proach to research process quality control, comple-
menting the traditional studies that analyze indexes
that reflect the degree of compliance with the tar-
get specifications. This methodology allows identify-
ing the factors and variables that contribute to the
variability and quantify their interrelationships, as
a fundamental input for improved decision making.

This paper is a product of ongoing research whose
main objective is to apply advanced modeling meth-
ods in the quality control of products and processes.
The following phases will focus on developing a model
that considers multiple stages of the production chain,
the incorporation of statistical engineering techniques,
and new learning algorithms.
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