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Abstract: The Laplace operator is a differential operator which is used to detect edges of
objects in digital images. This paper presents the properties of the most commonly used
third-order 3×3 pixels Laplace contour filters including the difference schemes used to derive
them. The authors focused on the mathematical properties of the Laplace filters. The basic
reasons of the differences of the properties were studied and indicated using their transfer
functions and modified differential equations. The relations between the transfer function for
the differential Laplace operator and its difference operators were described and presented
graphically. The impact of the corner elements of the masks on the results was discussed.
This is a theoretical work. The basic research conducted here refers to a few practical
examples which are illustrations of the derived conclusions. We are aware that unambiguous
and even categorical final statements as well as indication of areas of the results application
always require numerous experiments and frequent dissemination of the results. Therefore,
we present only a concise procedure of determination of the mathematical properties of the
Laplace contour filters matrices. In the next paper we shall present the spectral characteristic
of the fifth order filters of the Laplace type.

Keywords: transfer function, finite element method, finite difference methods, matrices
of the third-order Laplace filters, modified differential equations

1. Introduction

The Laplace filters matrices consideration from the point of view of numerical methods is
an important aspect of the discussion presented here. Each matrix is a different difference
scheme applicable to computational methods. It is a different method of solving second
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order differential equation approximately in which the ∇2 operator occurs (diffusion,
waves, Laplace and other equations) – see: Richardson (1910), Shuman (1956), Ogura
(1958), Miyakoda (1960), Prewitt (1970), Canny (1986), Perona (1998), Pitas (2000),
Jähne (2002), Strikwerda (2004), LeVeque (2007), Burger and Burge (2008, 2009a, b,
2013), Pratt (2008), Li and Chen (2009), Mallat (2009), Lynch (2010), Parker (2011),
Petrou and Petrou (2011), Gonzalez and Woods (2018). With this approach, the prop-
erties of the analyzed matrices, even seemingly alike in the process of digital images
filtering, should be taken into account during solving selected issues of the mathematical
physics. These properties include: consistency, convergence, order of accuracy of the
finite difference equation (FDE), operators of transfer functions for each filter mask and
the modified differential equation (MDE).
A modified differential equation, also called the Π-form of the first differential ap-

proximation (f.d.a.) of the scheme, is attributed to each of the discussed matrices. Using
it enables to determine the order of the accuracy of the differential scheme approximating
the ∇2 operator. Furthermore, (and this is the most important issue) it unambiguously
enables to determine whether a matrix is really a Laplace one. This problem is discussed
in Subsection 2.3 (compare equations: (52) and (60)).
A short history of the modified differential equations and the specialist terminology

used by scientists from various countries can be found in Lerat and Peyret (1973),
Warming and Hyett (1974), Peyret and Taylor (1983), Li and Yang (2011), Krawczyk et
al. (2012), Li and Yang (2013), Winnicki et al. (2019), Shokin et al. (2020).
This paper also explains the mathematical basics and the origin of a few practically

applied Laplace filters (masks or kernels) and it draws attention to some inaccuracies
(repeated in somepublications) occurring in their discrete descriptions. The consequences
of the inaccuracies are presented in a few selected images. The paper also indicates the
elements which should compulsorily be taken into account in the procedure of linear
filters matrices comparison.
Edges detection is an important issue of digital processing and analysis of images.

It includes algorithms of the first level of the analysis, often called the images initial
transformation. Valid derivation of edges, contours and vertexes simplifies location of
objects (see: Marr and Hildreth, 1980; Canny, 1986; Harris and Stephens, 1988; Perona
and Malik, 1990; Jähne, 1999, Jähne, 2002; Wang, 2007; Burger and Burge, 2009a,b;
Krawczyk et al., 2012; Hazarika et al., 2016; Susmitha et al., 2017; Gonzalez and
Woods, 2018; Reda and Kedzierski, 2020), shape recognition and distinguishing their
characteristic features. In digital images the edges are created in places of large local
changes of brightness between groups of pixels, i.e. in places of significant changes
of orientation, reflection coefficient or lighting of objects presented in the image. The
commonly applied method of determination of local discontinuities of image brightness
levels and objects borders utilizes one of the variants of Laplace contour filters. At this
phase, the tools of mathematical analysis are often used including research concerning
function flow with respect to the function itself and its first and second derivatives in
areas of large gradients of pixels brightness.
The article presents descriptions of seven selected masks of the Laplace filter used in

the processing and interpretation of digital data of various origin. This may be navigation
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data (Borawski, 2004; Burger and Burge, 2009a; Stateczny et al., 2020, 2021); signal
processing (Mallat, 2009; Waheed et al., 2020); radar, sonar and satellite (Jasinski et al.,
1999; Stateczny andNowakowski, 2006; Kurczynski et al., 2017; Fryskowska et al., 2019;
Reda and Kedzierski, 2020; Stateczny et al., 2020, 2021); geodetic and cartographic,
called remote sensing in Kupidura and Kupidura (2009) and Kupidura et al. (2010);
meteorological in Jasinski et al. (1999) – information about clouds including its shape,
size, internal structure, as well as the relationship of the location of different types of
clouds. These may also be digital images of building infrastructure elements (Burger
and Burge, 2009b; Reda and Kedzierski, 2020; Wojtkowska et al., 2021) and technical
devices, including military ones (Pokonieczny and Moscicka, 2018). A common goal
appears in each of the listed here areas of photogrammetric research: correct edge and
vertex detection of the analyzed objects.
The contextual filter is primarily a multi-element mask described by an odd order

square matrix. For this reason, the final forms of most of the used Laplace filter masks
together with their Π-forms of the first differential approximation are derived here.
There are a few programs used to process digital images which have embedded func-

tions and procedures for detecting edges and contours. These include ERDAS IMAGINE
and Matlab, the ones used by the authors.
The authors also want to highlight the history of the difference scheme for the

differential Laplace operator starting from the late 1940s. Some of the Laplace filter
masks are presented in the literature concerning the digital image processing but the
names of the scientists who derived and introduced them are in general omitted.
In Section 2 we discuss the origin of some filter masks built on the basis of the finite

difference method (FDM) and in Section 3 we discuss one mask built on the basis of
the finite element method (FEM). In Section 4 we focused on the linear combinations of
the Laplace type filter masks, including rotation of the mask. The final conclusions are
presented in Section 5.
In Part II (Winnicki et al., 2022) we shall present the spectral characteristic of the

fifth order filters of the Laplace type.

2. The difference Laplace filters

Laplace filtermasks are induced by the two-dimensional difference operator for the partial
differential equation (PDE):

A𝑢 = Δ𝑢 = ∇2𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
, (1)

where 𝑢(𝑥, 𝑦) is any scalar function. Assuming that the solution of (1) may be presented
as an individual Fourier mode:

𝑢(𝑥𝑚, 𝑦𝑛) = 𝑢𝑚𝑛 = �̂�𝑒𝑖 (𝑘𝑥𝑚+𝑙𝑦𝑛) , (2)

we obtain the transfer function for the differential Laplace equation:

∇2𝑢𝑚𝑛 = −(𝑘2 + 𝑙2)�̂�𝑒𝑖 (𝑘𝑥𝑚+𝑙𝑦𝑛) = 𝑓𝐿 (𝑘, 𝑙)𝑢𝑚𝑛 , 𝑖 =
√
−1, (3)
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where: 𝑓𝐿 (𝑘, 𝑙) = −(𝑘2 + 𝑙2) is the transfer function for the Laplace operator (Fig. 1) and
𝑘, 𝑙 – wave-numbers, 𝑘 = 2𝜋/_𝑥 , 𝑙 = 2𝜋/_𝑦 , and _𝑥 and _𝑦 – the wavelengths (compare
Jähne (2002), page 329, where 𝑓𝐿 ( �̃� , �̃�) depends on the Nyquist wave-numbers �̃� = 𝑘ℎ/𝜋
and �̃� = 𝑙ℎ/𝜋 which are the wave-numbers normalized to the maximum wave-number
that can be sampled). We can also call it the transfer function of the derivative filter (see:
Jähne, 2002).

Fig. 1. The transfer function 𝑓𝐿 ( �̃� , �̃�) for the differential Laplace equation. (The range of ( �̃� , �̃�) for all transfer
functions is equal to ( �̃� , �̃�) = [−1, 1] × [−1, 1]. They are symmetric)

The forms of the Laplace masks depend on the method of discretization of the differ-
ential operator (1). The methods commonly applied in practice are: the finite difference
method and the finite element method (Table 1). The finite difference discretization of
operator A (in the former method) and the approximation of the solution (in the latter)
are provided on the mesh of equidistant grid nodes.

Table 1. Areas of forest cover of the Carpathian territory of Lviv region for 2016–2018

Differential Operator
e.g. Laplacian ∇2

FDM ↓ FEM

Difference Scheme

↓

Convolution Matrix
(filter mask)

In the FEM the sought after solution 𝑢(𝑥, 𝑦) in A𝑢 is approximated by the following
series:

𝑢(𝑥, 𝑦) =
∑︁
𝑖, 𝑗

𝑢𝑖 𝑗𝜑𝑖 (𝑥)𝜓 𝑗 (𝑦), (4)

where: 𝑢𝑖 𝑗 – values of the function 𝑢(𝑥, 𝑦) in the grid nodes (𝑖, 𝑗) (for example, brightness
for digital images); 𝜑𝑖 (𝑥), 𝜓 𝑗 (𝑦) – basic functions of one variable, often called the
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Lagrange elements. As it is known, both approaches presented above lead to the finite
difference equations for the partial differential equations, in particular for the Laplace
equation (1).
In most cases these schemes are different although they approximate the same differ-

ential operator. They differ in the forms – in the case of FEM they strictly depend on the
basic functions degree and they have different characteristics. In both cases, sets of the
multi-point filters in the form of 3 × 3 pixels matrices are obtained.
The algorithm for the filter masks construction for the differential operators of the

first-, second- or higher orders is presented in Table 2. On its basis the Sobel, Prewett
and, of course, Laplace filters have been derived.
The threemost important features of the difference schemeswhichmust be considered

in the digital image processing are: the consistency, the order of their accuracy and the
convergence. We shall discuss a few FDE derived on the basis of the Laplace discrete
operator and we shall:
– check their consistency and convergence;
– estimate their order of accuracy;
– present the forms of the convolutionmatrices derived on the basis of these schemes;
– derive their modified differential equations which are equivalent to the Π-forms;
– present the transfer functions for the convolution operators in the analytical forms
and in the forms of the Taylor series expansions with respect to the wave-
numbers ( �̃� , �̃�).

The forms of the MDEs are very useful in the detailed analysis of the dispersive and
dissipative features of the difference schemes. For the elliptic partial differential equations
we always obtain their Π-forms. These forms include only the space derivatives. For the
partial differential equations of the hyperbolic and parabolic types at the first approach
(directly after expanding the difference schemes into Taylor series) one obtains the
sequence of higher order derivatives with respect to both space and time. These mixed
forms are called the Γ-forms. For isolating the terms responsible for numerical dispersion
and dissipation it is necessary to express all time derivatives as spatial ones (see: Appadu
et al., 2008; Appadu and Dauhoo, 2011; Appadu et al., 2014; Winnicki et al., 2019;
Shokin et al., 2020).

2.1. The finite difference method and the third-order Laplace filters

The discussion on the influence of the Laplace difference scheme form on the accuracy of
the various numerical solutions started in the late 1940s – in the beginning of the numer-
ical weather prediction development on the ENIAC computer by: Jule Charney, John von
Neumann, Ragnar Fjørtoft and others (see: Platzman, 1979). We have to notice that the
first proposal for the difference Laplace operator was presented already by Richardson
(1910) – see (5). Then Hidaka (1951), scientists from the Joint Numerical Weather Pre-
diction Unit (U.S. Air Force): Shuman (1956), Thompson (1955a,b), Knighting (1955),
Ogura (1958) (Johns Hopkins University) and Miyakoda (1960) (Tokyo University) de-
veloped this issue. Their solutions – at that time applied only to the analysis of the
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geostrophic vorticity and geopotential fields – are nowadays successfully used in the
theory and practice of the digital images processing.
Let us focus on the difference approximations Aℎ𝑢ℎ (𝑢ℎ – the approximated solution)

of the Laplace equation A𝑢. The first commonly used five-point FDE is based on the
“cross“ stencil (see: Richardson, 1910) and has the form:

A1𝑢ℎ =
𝑢𝑖−1, 𝑗 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖, 𝑗−1 − 4𝑢𝑖, 𝑗

ℎ2
, (5)

where: ℎ – spacial step of the regular square mesh, in this case – the distance between
pixels (because of the convolution operation, the mesh regularity is a basic rule of
constructing the masks). In presented analysis we assume that ℎ𝑥 = ℎ𝑦 = ℎ = 1 in both
directions of 𝑥 and 𝑦. The scheme (5) leads to the following very well known filter mask:

Lap1 =

0 1 0
1 −4 1
0 1 0

 . (6)

In numerical methods, the most basic property of an applicable difference scheme is
that its solutions approximate the exact solution of the partial differential equation. The
difference scheme is then called convergent. The other properties which must be satisfied
are: consistency and accuracy. In our further research we shall refer to the following
important definitions:
Definition 1. (Strikwerda, 2004) A finite difference equation Aℎ𝑢ℎ is consistent with
a partial differential equation A𝑢 if the difference (Aℎ𝑢ℎ − A𝑢) vanishes as the sizes of
the grid spacings ℎ𝑥 and ℎ𝑦 approach zero independently.
Definition 2. (Strikwerda, 2004) A finite difference equation Aℎ𝑢ℎ is convergent if its
solution 𝑢ℎ (𝑥𝑖 , 𝑦 𝑗) approaches the exact solution 𝑢(𝑥, 𝑦) of A𝑢 as the sizes of the grid
spacings ℎ𝑥 and ℎ𝑦 approach zero.
Definition 3. (Strikwerda, 2004) A finite difference equation Aℎ𝑢ℎ that is consistent with
the partial differential equation A𝑢 is said to be accurate of order 𝑝 and 𝑞 in space
if (Aℎ𝜓 − A𝜓) = 𝑂 (ℎ𝑝𝑥 ) + 𝑂 (ℎ𝑞𝑦) for any smooth function 𝜓(𝑥, 𝑦). We say that such
a difference scheme’s accuracy is of order (𝑝, 𝑞).
The MDE for (5) is presented below:

Π1 = ∇2𝑢 +
ℎ2

12

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+𝑂 (ℎ8). (7)

In (7) we have only the unmixed even-order partial derivatives. As ℎ → 0 the

equation (7) approaches ∇2𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
. So the FDE (5) is a consistent approximation

of the Laplace equation and its solution 𝑢ℎ (𝑥𝑖 , 𝑦 𝑗) converges to the exact solution 𝑢(𝑥, 𝑦).
The accuracy of the difference equation (5) is of the second order.
Applying the Euler’s formula that establishes the fundamental relationship between

the complex exponential function and the trigonometric functions we obtain the transfer
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function for (6):

𝑓1(𝑘, 𝑙) = −4 sin2
𝑘ℎ

2
− 4 sin2 𝑙ℎ

2
. (8)

With the Nyquist wave-numbers introduced, the transfer function 𝑓𝐿 ( �̃� , �̃�) takes the form:
𝑓𝐿 ( �̃� , �̃�) = −𝜋2( �̃�2 + �̃�2) and the transfer function (8) takes the form:

𝑓1( �̃� , �̃�) = −4 sin2
𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
. (9)

In the following analysis we shall apply only the Nyquist notation.
The Taylor expansion of (8) for the wave-numbers �̃� and �̃� up to the eighth order

yields the approximation:

𝑓1𝑇 ( �̃� , �̃�) = −𝜋2
(
�̃�2 + �̃�2

)
+ 𝜋

4

12

(
�̃�4 + �̃�4

)
− 𝜋6

260

(
�̃�6 + �̃�6

)
+ 𝜋8

20160

(
�̃�6 + �̃�6

)
+𝑂

(
�̃�10, �̃�10

)
. (10)

Figure 2a is a graphical presentation of the transfer function (9) for the difference

scheme (5) and Figure 2b for the relation
𝑓1( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(see also Fig. 12 – blue solid line).

(a) (b)

Fig. 2. The transfer function 𝑓1 ( �̃� , �̃�) for the mask (6) (a) and the graph of
𝑓1 ( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(b)

Knighting (1955) and Ogura (1958) proposed another difference scheme for the
discretization of the Laplace operator (1):

A2𝑢ℎ =
4(𝑢𝑖−1, 𝑗 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1 + 𝑢𝑖, 𝑗+1) − 12𝑢𝑖, 𝑗

2ℎ2

−
𝑢𝑖−1, 𝑗+1 + 𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1 + 𝑢𝑖+1, 𝑗+1

2ℎ2
, (11)
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which also leads to the filter mask of the Laplace type:

Lap2 =
1
2


−1 4 −1
4 −12 4
−1 4 −1

 . (12)

The MDE for the difference scheme (11) has the form:

Π2 = ∇2𝑢 +
ℎ2

12

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
− ℎ

2

2
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+ ℎ

4

24

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
− ℎ6

288
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8) (13)

and the transfer functions for (12) are as follows (see Fig. 3a):

𝑓2( �̃� , �̃�) = −8 sin2
𝜋�̃�

2
sin2

𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
, (14)

𝑓2𝑇 ( �̃� , �̃�) = −𝜋2
(
�̃�2 + �̃�2

)
+ 𝜋

4

12

(
�̃�4 + �̃�4

)
− 𝜋6

260

(
�̃�6 + �̃�6

)
+ 𝜋8

20160

(
�̃�6 + �̃�6

)
− 𝜋

4

2
�̃�2 �̃�2 + 𝜋

6

24

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
− 𝜋8

288
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)
, (15)

(wemarked in red all the terms of themodified differential equations and transfer functions
in Taylor expansion which coefficients have incorrect signs – it is, of course, the feature
of the FDEs and, consequently, of the filter masks and their MDEs).

(a) (b)

Fig. 3. The transfer function 𝑓2 ( �̃� , �̃�) for the mask (12) (a) and the graph of 𝑓2 ( �̃� ,̃𝑙)
𝑓𝐿 ( �̃� ,̃𝑙)

(b)

The first line of (13) is equal to the Π1-form (7) and the first line of the expanded
transfer function (15) is equal to (10) for the standard filter mask (6). The mixed partial
derivatives in (13) and the products of the �̃� and �̃� (the second line of (15)) are the
consequence of the non zero elements that appeared in the corners of matrix (12).
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The sum −ℎ
2

2
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+ ℎ

4

24

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
− ℎ6

288
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
in (13) describes the

effects of anti-dissipation Peyret and Taylor (1983, page 51) and Winnicki et al. (2019),
Shokin et al. (2020) also called backward diffusion. It follows the exponential growth of
the amplitude of the elementary solution and presents the amplification features of this

scheme. For medium values of the Nyquist wave-numbers the relation
𝑓2( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

exceeds 1

– see: Figure 3b, Figure 12 – red dot-dashed line and Figure 14a. In our opinion this
feature of the mask (12) introduces the noise into analyzed image which one can see on
the several slanting edges in Figure 10d(3) and Figure 10d(8). Despite these features the
FDE (11) is consistent and convergent as ℎ→ 0 and its accuracy is of the second order.
The accuracy of the next difference scheme for the Laplace operator (1) (see:

Miyakoda (1960)):

A3𝑢ℎ =
4(𝑢𝑖−1, 𝑗 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1 + 𝑢𝑖, 𝑗+1) − 20𝑢𝑖, 𝑗

2ℎ2

+
𝑢𝑖−1, 𝑗+1 + 𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1 + 𝑢𝑖+1, 𝑗+1

2ℎ2
(16)

is of the fourth order (see also: LeVeque (2007), Li and Chen (2009) and Strikwerda
(2004, pages 328, 331)). It leads to the forth-order filter mask of the Laplace type:

Lap3 =
1
6


1 4 1
4 −20 4
1 4 1

 . (17)

The MDE for the difference scheme (16) has the form:

Π3 = ∇2𝑢 +
1
12
∇2(∇2𝑢) − ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
− ℎ

4

72

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

864
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (18)

In (18) we can also find the mixed even-order partial derivatives. However, the sum:
𝜕4𝑢

𝜕𝑥4
+ 2 𝜕4𝑢

𝜕2𝑥𝜕2𝑦
+ 𝜕

4𝑢

𝜕𝑦4
is equal to the bi-Laplacian which has no amplification features

and the mixed derivatives of the sixth and eighth orders have only dissipative features.
The transfer function for (17) has the form (see Fig. 4a):

𝑓3( �̃� , �̃�) =
8
3
sin2

𝜋�̃�

2
sin2

𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
(19)

and its Taylor expansion contains the products of the wave-numbers �̃� and �̃�:

𝑓3𝑇 ( �̃� , �̃�) = −𝜋2
(
�̃�2 + �̃�2

)
− 𝜋6

360

(
�̃�6 + �̃�6

)
+ 𝜋8

20160

(
�̃�6 + �̃�6

)
+ 𝜋

4

12

(
�̃�4 + 2�̃�2 �̃�2 + �̃�4

)
− −𝜋

6

72

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

864
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)
. (20)
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(a) (b)

Fig. 4. The transfer function 𝑓3 ( �̃� , �̃�) for the mask (17) (a) and the graph of
𝑓3 ( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(b)

The first line of (20) is also the same as in the expanded transfer function (9) for the
standard filter mask (6). The products of the �̃� and �̃� Nyquist wave-numbers (the second
line of (20)) have the same origin as (15). The FDE (16) is also consistent and convergent.

The relation
𝑓3( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

is presented in Figure 3b and Figure 14c.

Ogura (1958) and Thompson (1955a) derived another difference scheme of the accu-
racy of the second order (see also Burger and Burge (2008) and Jähne (2002, page 329)
– but without the coefficient: 1/4):

Lap4 =
1
4


1 2 1
2 −12 2
1 2 1

 . (21)

It is induced by the difference scheme of the accuracy of the second order:

A4𝑢ℎ =
2(𝑢𝑖−1, 𝑗 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1 + 𝑢𝑖, 𝑗+1) − 12𝑢𝑖, 𝑗

4ℎ2

+
𝑢𝑖−1, 𝑗+1 + 𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1 + 𝑢𝑖+1, 𝑗+1

4ℎ2
. (22)

Its MDE is as follows:

Π4 = ∇2𝑢 +
ℎ4

12

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+ ℎ

2

4
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− ℎ

4

48

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

576
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (23)

Both forms of the transfer functions for (21) are presented below:

𝑓4( �̃� , �̃�) = 4 sin2
𝜋�̃�

2
sin2

𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
(24)
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(see Fig. 5a) and

𝑓4𝑇 ( �̃� , �̃�) = −𝜋2
(
�̃�2 + �̃�2

)
+ 𝜋

4

12
( �̃�4 + �̃�4) − 𝜋6

360

(
�̃�6 + �̃�6

)
+ 𝜋8

20160

(
�̃�6 + �̃�6

)
+ 𝜋

4

4
�̃�2 �̃�2 − 𝜋

6

48

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

576
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)
. (25)

The relation
𝑓4( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

is presented in Figure 5b and Figure 14d.

(a) (b)

Fig. 5. The transfer function 𝑓4 ( �̃� , �̃�) for the mask (17) (a) and the graph of
𝑓4 ( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(b)

Jähne (2002) derived the filter mask (21) as a combination of the 1-D smoothing
binomial filter B2 =

1
4
[
1 2 1

]
and the identity matrix I. Jähne (2002) also gave the

form of the transfer function (page 554):

𝑓4𝐽 ( �̃� , �̃�) = 4 cos2
𝜋�̃�

2
cos2

𝜋�̃�

2
− 4. (26)

(a) (b)

Fig. 6. The transfer function 𝑓5 ( �̃� , �̃�) for the mask (27) (a) and the graph of
𝑓5 ( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(b)
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Of course, the transfer function (24) is equivalent to (26). The difference scheme (22)
is consistent and convergent.
The following five-point “diagonal” or “square” stencil is an alternative to the filter

mask (6) based on the “cross” stencil:

Lap5 =
1
2


1 0 1
0 −4 0
1 0 1

 =
1
2


0 1 0
1 −4 1
0 1 0


]45◦

. (27)

The mask (27) is obtained by rotating the mask (6) by 45◦ to the left or to the right. It
is used in numerical weather prediction in the analysis of the semi-geostrophic adaptation
process. It is derived on the basis of the FDE:

A5𝑢ℎ =
𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1 + 𝑢𝑖−1, 𝑗+1 + 𝑢𝑖+1, 𝑗+1 − 4𝑢𝑖, 𝑗

(
√
2ℎ)2

. (28)

Its MDE is as follows:

Π5 = ∇2𝑢 +
ℎ4

12

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+ ℎ

2

2
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− ℎ

4

24

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

288
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (29)

The forms of the transfer functions for (27) are presented below (see also Fig. 5a):

𝑓5( �̃� , �̃�) = 8 sin2
𝜋�̃�

2
sin2

𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
, (30)

𝑓5𝑇 ( �̃� , �̃�) = −𝜋2
(
�̃�2 + �̃�2

)
+ 𝜋

4

12

(
�̃�4 + �̃�4

)
− 𝜋6

360

(
�̃�6 + �̃�6

)
+ 𝜋8

20160

(
�̃�6 + �̃�6

)
+ 𝜋

4

2
�̃�2 �̃�2 − 𝜋

6

24

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

288
�̃�4 �̃�4 +𝑂 ( �̃�10, �̃�10). (31)

The sum underlined in (31) is opposite to the sum underlined in (15). The FDE (28)
is consistent and convergent. Its order of accuracy is 2. Let us note that for large Nyquist

wave-numbers the relation of
𝑓5( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

is equal to zero (see Fig. 5b and Fig. 12 – dark

green solid line and Fig. 14e).

3. The FEM and the third-order Laplace filters

In another method of constructing the difference schemes for the partial differential
equations, called the Galerkin method, we approximate the sought after solution 𝑢(𝑥, 𝑦)
instead of the differential operator A. Its particular case is the finite element method.
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Let us consider the Poisson equation in the fixed domain Ω:

A𝑢 = Δ𝑢 = −
2∑︁

𝑘=1

𝜕2𝑢

𝜕𝑥2
𝑘

= 𝑓 (𝑥1, 𝑥2), (32)

where: 𝑥1 = 𝑥 and 𝑥2 = 𝑦; 𝑢(𝑥, 𝑦), 𝑓 (𝑥, 𝑦) are given functions on Ω = R × R =

[0, 1] × [0, 1] domain. If 𝑓 (𝑥, 𝑦) = 0, equation (32) becomes the Laplace equation. In our
problem the boundary conditions for (32) are unimportant (see: Strang and Fix (2008),
Le Dret and Lucquin (2016) and below).
According to the finite element method technique one can assume that on a fixed

domain Ω the solution 𝑢ℎ (𝑥, 𝑦) of (32) may be written as the series:

𝑢ℎ (𝑥, 𝑦) =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑢𝑖, 𝑗\𝑖, 𝑗 (𝑥, 𝑦) =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑢𝑖, 𝑗𝜑𝑖 (𝑥)𝜓 𝑗 (𝑦), (33)

where: \𝑖, 𝑗 (𝑥, 𝑦) = 𝜑𝑖 (𝑥)𝜓 𝑗 (𝑦) – the bilinear function with separated variables. The
coefficients 𝑢𝑖, 𝑗 are the primary unknowns once the basis has been selected. The basis
functions 𝜑𝑖 (𝑥) and 𝜓 𝑗 (𝑥) are called the shape or trial functions. They can be linear,
quadratic or cubic functions. It is important to notice that the compact support of each
shape function is small, i.e. it is given by a few elements.
In 2-dimensional cases the variational formulation of (32) for the solution 𝑢(𝑥, 𝑦) ∈

𝐻10 (𝐻
1
0 – Sobolev space) leads for ∀b (𝑥, 𝑦) ∈ 𝐻

1
0 to the equation:∫

Ω

A𝑢b dΩ = −
∫
Ω

Δ𝑢b dΩ =

∫
Ω

𝑓 b dΩ, (34)

where: b (𝑥, 𝑦) – so called test function. Applying the Green formula for integrating by
parts to (34) we obtain:∫

Ω

2∑︁
𝑖=1

𝐷𝑖𝑢𝐷𝑖b dΩ −
∫
𝜕Ω

𝜕𝑢

𝜕𝑛
b dΓ =

∫
Ω

𝑓 b dΩ, (35)

where: 𝐷1 =
𝜕

𝜕𝑥
, 𝐷2 =

𝜕

𝜕𝑦
and

𝜕𝑢

𝜕𝑛
= ∇𝑢 · n =

2∑︁
𝑖=1

𝜕𝑢

𝜕𝑥𝑖
𝑛𝑖 denotes the normal derivative

of 𝑢 on 𝜕Ω.
The expression:

𝑎(𝑢, b) =
∫
Ω

2∑︁
𝑖=1

𝐷𝑖𝑢𝐷𝑖b dΩ, (36)

is called the bilinear form on 𝐻10 × 𝐻
1
0 and 𝑎(., .) is an inner product. The bilinear

form (36) leads to the discrete approximation for the Laplace operator.
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In linear cases, the shape functions 𝜑𝑖 (𝑥) and 𝜓 𝑗 (𝑥) are called chapeau functions or
hat functions and they have the forms of the Lagrange linear polynomials:

𝜑𝑖 (𝑥) =


𝑥 − 𝑥𝑖−1

ℎ
, 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖

𝑥𝑖+1 − 𝑥
ℎ

, 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1
0 otherwise

, 𝜓 𝑗 (𝑥) =


𝑦 − 𝑦 𝑗−1

ℎ
, 𝑦 𝑗−1 ≤ 𝑦 ≤ 𝑦 𝑗

𝑦 𝑗+1 − 𝑦
ℎ

, 𝑦 𝑗 ≤ 𝑦 ≤ 𝑦 𝑗+1
0 otherwise

. (37)

The equations (37) describe the piecewise linear approximating functions with small
support. It means that the functions vanish outside some compact subset of Ω – see
Figure 7.

Fig. 7. The hat functions with support [𝑥𝑖−1, 𝑥𝑖+1]

Let us assume that the test functions {b𝑖, 𝑗 (𝑥, 𝑦)} also have separated variables and,
similarly to trial functions, they have compact support onΩ. It means that these functions
are bounded on Ω and vanish outside it. If we additionally accept that b𝑖, 𝑗 (𝑥, 𝑦) =

𝜑𝑖 (𝑥)𝜓 𝑗 (𝑦) then {\𝑖, 𝑗 (𝑥, 𝑦)} = {b𝑖, 𝑗 (𝑥, 𝑦)} – the trial functions and the test functions
are equal. The choice of {\𝑖, 𝑗 (𝑥, 𝑦)} and {b𝑖, 𝑗 (𝑥, 𝑦)} with compact support leads to the
finite element methods (it is the fundamental assumption of the FEM; see: Lynch (2010)
and Strang and Fix (2008)).
We can now pose the problem to find in 2-dimensional space of functions 𝑢ℎ ∈ 𝑆ℎ

such one that:
𝑎(𝑢ℎ, \) = ( 𝑓 , \), ∀\ ∈ 𝑆ℎ , 𝑆ℎ ⊂ 𝐻10 . (38)

The interpolation error of our problem is defined below.
Theorem 1. Let 𝑢ℎ (𝑥, 𝑦) and 𝑢(𝑥, 𝑦) be the solutions of (38) and (36). Then𝑢ℎ − 𝑢 ≤ 𝐶ℎ2‖𝑢‖2, (39)

where: 𝐶– positive constant.
If we introduce the partitions of the domain Ω = [0, 1] × [0, 1]:

0 = 𝑥0 < · · · 𝑥𝑖−1 < 𝑥𝑖 < 𝑥𝑖+1 < · · · < 𝑥𝑀 = 1,
0 = 𝑦0 < · · · 𝑦 𝑗−1 < 𝑦 𝑗 < 𝑦 𝑗+1 < · · · < 𝑦𝑁 = 1,

(40)
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then the projection of (35) on subset [𝑥𝑖−1, 𝑥𝑖+1] × [𝑦 𝑗−1, 𝑦 𝑗+1] of Ω takes the form (for
𝑓 (𝑥, 𝑦) = 0):∬

Ω

(𝑢𝑥𝑥 + 𝑢𝑦𝑦)b (𝑥, 𝑦) d𝑥 d𝑦 = −
∬
Ω

(
𝜕𝑢

𝜕𝑥

𝜕b

𝜕𝑥
+ 𝜕𝑢
𝜕𝑦

𝜕b

𝜕𝑦

)
d𝑥 d𝑦

= −
∬
Ω

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑢𝑖, 𝑗

𝜕\𝑖, 𝑗

𝜕𝑥

𝜕b𝑘,𝑙

𝜕𝑥
d𝑥 d𝑦 −

∬
Ω

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑢𝑖, 𝑗

𝜕\𝑖, 𝑗

𝜕𝑦

𝜕b𝑘,𝑙

𝜕𝑦
d𝑥 d𝑦

= −
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑢𝑖, 𝑗

∬
Ω

(
𝜕\𝑖, 𝑗

𝜕𝑥

𝜕b𝑘,𝑙

𝜕𝑥
+
𝜕\𝑖, 𝑗

𝜕𝑦

𝜕b𝑘,𝑙

𝜕𝑦

)
d𝑥 d𝑦 = −

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑢𝑖, 𝑗𝐾𝑖, 𝑗 , (41)

where:

K = −
𝑥𝑖+1∫

𝑥𝑖−1

𝑦 𝑗+1∫
𝑦 𝑗−1

(
𝜕\𝑖, 𝑗

𝜕𝑥

𝜕b𝑘,𝑙

𝜕𝑥
+
𝜕\𝑖, 𝑗

𝜕𝑦

𝜕b𝑘,𝑙

𝜕𝑦

)
d𝑥 d𝑦 0 < 𝑖, 𝑘 < 𝑀

0 < 𝑗, 𝑙 < 𝑁
, (42)

is known as the stiffness matrix.
The boundary conditions:∫

𝜕Ω

𝜕𝑢ℎ

𝜕𝑛
b (𝑥, 𝑦) d𝑠 =

𝑦 𝑗+1∫
𝑦 𝑗−1

b (𝑥, 𝑦) 𝜕𝑢
ℎ

𝜕𝑥

����𝑥𝑖+1
𝑥𝑖−1

d𝑦 +
𝑥𝑖+1∫

𝑥𝑖−1

b (𝑥, 𝑦) 𝜕𝑢
ℎ

𝜕𝑦

����𝑦 𝑗+1

𝑦 𝑗−1

d𝑥 (43)

are omitted because for every 𝑖 and 𝑗 the function b𝑖, 𝑗 (𝑥, 𝑦) vanishes at the endpoints
of the subset of Ω (see: (37)). Let us derive a few elements of matrix K. For example,
𝐾𝑖−1, 𝑗−1 has the value:

𝐾𝑖−1, 𝑗−1 = −
𝑥𝑖+1∫

𝑥𝑖−1

𝑦 𝑗+1∫
𝑦 𝑗−1

©«

𝜕\𝑖−1 𝑗−1
𝜕𝑥︷       ︸︸       ︷

𝜕𝜑𝑖−1
𝜕𝑥

𝜓 𝑗−1

𝜕b𝑖 𝑗

𝜕𝑥︷ ︸︸ ︷
𝜕𝜑𝑖

𝜕𝑥
𝜓 𝑗 +

𝜕\𝑖−1 𝑗−1
𝜕𝑦︷       ︸︸       ︷

𝜕𝜓 𝑗−1

𝜕𝑦
𝜑𝑖−1

𝜕b𝑖 𝑗

𝜕𝑦︷ ︸︸ ︷
𝜕𝜓 𝑗

𝜕𝑦
𝜑𝑖

ª®®®®®®®¬
d𝑥 d𝑦

= − 1
ℎ3

𝑦 𝑗∫
𝑦 𝑗−1

(𝑦 𝑗 − 𝑦) (𝑦 − 𝑦 𝑗−1) d𝑦 −
1
ℎ3

𝑥𝑖∫
𝑥𝑖−1

(𝑥𝑖 − 𝑥) (𝑥 − 𝑥𝑖−1) d𝑥 =
1
3
. (44)

The elements of K in the remaining corners have the same value. We obtain similar
values for the nodes on the cross (for: (𝑖±1, 𝑗) and (𝑖, 𝑗±1). For 𝑖 = 𝑗 the central
element 𝐾𝑖, 𝑗 is equal to (we integrate only over a closed interval [𝑦 𝑗−1, 𝑦 𝑗] because of
the symmetry):

𝐾𝑖 𝑗 = −4
𝑦 𝑗∫

𝑦 𝑗−1

©«
𝑥𝑖∫

𝑥𝑖−1

𝜕𝜑𝑖

𝜕𝑥

𝜕𝜑𝑖

𝜕𝑥
d𝑥 +

𝑥𝑖+1∫
𝑥𝑖

𝜕𝜑𝑖

𝜕𝑥

𝜕𝜑𝑖

𝜕𝑥
d𝑥ª®¬𝜓 𝑗𝜓 𝑗 d𝑦 = −

8
3
. (45)
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As the result we obtain the difference scheme built on the basis of the FEM with
linear Lagrange polynomials:

A6𝑢ℎ =
𝑢𝑖−1, 𝑗 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1 + 𝑢𝑖, 𝑗+1 − 8𝑢𝑖, 𝑗

3ℎ2

+
𝑢𝑖−1, 𝑗+1 + 𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1 + 𝑢𝑖+1, 𝑗+1

3ℎ2
(46)

and 3 × 3 pixels mask of the contour Laplace filter:

K = Lap6 =
1
3


1 1 1
1 −8 1
1 1 1

 . (47)

The mask (47) is also presented e.g. in Burger and Burge (2008, page 132), Lynch
(2010, page 234), GonzalezandWoods (2018, page 161). Pratt (2007) and Prewitt (1970)
present this filter with incorrect coefficient equal to −1/8. None of the mentioned authors
published its derivation.
The MDE for (46) is given below:

Π6 = ∇2𝑢 +
ℎ4

12

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+ ℎ

2

3
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− ℎ

4

36

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

432
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (48)

The transfer function for (47) has the form (see Fig. 8a):

𝑓6( �̃� , �̃�) =
16
3
sin2

𝜋�̃�

2
sin2

𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
. (49)

(a) (b)

Fig. 8. The transfer function 𝑓6 ( �̃� , �̃�) for the mask (47) (a) and the graph of
𝑓6 ( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(b)
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It is similar to the classical Mexican hat filter. Its Taylor expansion also contains the
products of the wave-numbers �̃� and �̃�:

𝑓6𝑇 ( �̃� , �̃�) = −𝜋2
(
�̃�2 + �̃�2

)
+ 𝜋

4

12

(
�̃�4 + �̃�4

)
− 𝜋6

360

(
�̃�6 + �̃�6

)
+ 𝜋8

20160

(
�̃�6 + �̃�6

)
+ 𝜋

4

3
�̃�2 �̃�2 − 𝜋

6

36

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

432
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)
. (50)

The relation
𝑓6( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

is presented in Figure 8b and Figure 14f. See also Figure 12 –

magenta solid line.
The difference scheme (46) is consistent and convergent and its accuracy is of the

second order (see Theorem 1).

4. The linear combinations of the Laplace type filter masks

Some authors (see for example: Pratt (2007, page 503), Prewitt (1970, page 126) and
Borawski (2004), Tadeusiewicz and Korohoda (1997)) present another filter mask:

FM =


1 −2 1
−2 4 −2
1 −2 1

 (51)

and they state that it is also a filter mask of the Laplace type (Pratt (2007) and Prewitt
(1970) present it with a coefficient equal to 1/4). However, after detailed analysis it occurs
that this mask does not induce any Laplace difference operator despite its symmetry and
the sum of all elements (51) being equal to zero, so typical for it. The origin of this
mask is quite interesting. Repeating the transformation presented above we come to the
conclusion that the mask (51) is induced by the mixed fourth-order derivatives – one of
the terms of the biharmonic equation:

ΠFM = ℎ4
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+𝑂 (ℎ6) (52)

and not by the standard Laplace differential operator:

A𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
.

The equivalent of the transfer function is presented below:

𝑓FM( �̃� , �̃�) = 16 sin2
𝜋�̃�

2
sin2

𝜋�̃�

2
. (53)
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Both graphs in Figure 9a and Figure 9b confirm that the mask (51) is the best for
corners detection. Let us also notice that the filter mask (51) can also be obtained by the
following subtraction:

3
2
(
Lap3 − Lap2

)
=
1
4


1 4 1
4 −20 4
1 4 1

 −
3
4


−1 4 −1
4 −12 4
−1 4 −1

 =

1 −2 1
−2 4 −2
1 −2 1

 . (54)

(a) (b)

Fig. 9. The transfer function 𝑓FM ( �̃� , �̃�) for the mask (51) (a) and the graph of
𝑓FM ( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(b)

The FDE for the right-hand side of (54) has the form:

4𝑢𝑖, 𝑗 − 2(𝑢𝑖−1, 𝑗 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1 + 𝑢𝑖, 𝑗+1)
ℎ2

+
𝑢𝑖−1, 𝑗+1 + 𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1 + 𝑢𝑖+1, 𝑗+1

ℎ2
= 𝑂 (ℎ4). (55)

The mask (51) is also the result of the product of the 1-D second-order Laplace
difference filters: 

1
−2
1


[
1 −2 1

]
=


1 −2 1
−2 4 −2
1 −2 1

 . (56)

The mask (51) could be an alternative to the Harris corner detector method for digital
image processing applied to figures with horizontal and vertical edges (see: Burger and
Burge (2008) and Harris and Stephens (1988)). A few plane figures: square, triangle,
pentagon, parallelogram, star, square with rounded corners (squircle), cross and rhombus
are presented in Figure 10a. The same plane figures after filtering by means of the
mask (51) are presented in Figure 10b.
Themain premise of theHarris corner detector is that the corner points exist where the

gradient of the image, described by any function 𝐼 (𝑥, 𝑦), is strong at least in two directions.
In general, the directions do not have to be perpendicular. To locate these strong gradients
Harris and Stephens (1988) proposed to compute the first partial derivatives of the image

function:
𝜕𝐼

𝜕𝑥
and

𝜕𝐼

𝜕𝑦
. The process of automatic corners detecting is nontrivial, therefore
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the Harris procedure is rather complicated. It is precisely described in Burger and Burge
(2008) (see also the Java source code there).
Note that in Figure 10b all horizontal and vertical edges were removed from the

figures by the mask (51): all edges in the square (Fig. 10b(1)), the bases of the triangle
(Fig. 10b(2)), pentagon (Fig. 10b(3)) and parallelogram (Fig. 10b(4)), here also the upper
edge). The mask (51) also removed wide fragments of the horizontal and vertical edges
of the squircle (Fig. 10b(6)). The star (Fig. 10b(5)) and the rhombus (Fig. 10b(8)) are not
changed because their edges are neither horizontal nor vertical.
The most interesting plane figure is the cross (Fig. 10b(7)) where filtering its image

reduced all perpendicular (horizontal and vertical) line-like structures to the corner pixels.

(a) Input plane figures

(b) Filter mask FM

(c) Filter mask Lap1

(d) Filter mask Lap2

Fig. 10. The differences in filtering of the plane geometrical figures (a) by means of the masks:
(51) (b); (6) (c) and (12) (d)

In our analysis we come to the conclusion that the filter mask FM described by (51) is
not isotropic (see: Perona and Malik (1990), Scharr (2000), Scharr andWeickert (2000)).
The isotropic mask is described in Kamgar-Parsi et al. (1999) and the multiscale edge
detection in lapped transform domain in Hazarika et al. (2016). It strongly depends on
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the edges orientation. If the edges are neither horizontal nor vertical the filter mask (51)
is “blind” to the edges (see for example the triangle, pentagon, parallelogram, star and
rhombus). Therefore, the mask (51) must not be called a filter mask of the Laplace
type (the Laplace kernels highlight the edges). As it was already earlier mentioned, the
mask (12) introduces noise into the analyzed image which one can see on the several
slanting edges in Figure 10d3 and Figure 10d(8). The filter mask (6) introduces no noise
(Fig. 10c).
Let us carry out a numerical test. Fig. 11a presents a field of any function 𝐼 (𝑥, 𝑦)

determined by the script peaks.m in which one can appoint strong gradient, weak gradient
and gradient-less areas of the function 𝐼 (𝑥, 𝑦). Let us filter this field by the oldest Laplace
mask Lap1 (Fig. 11b) and then by the mask FM (Fig. 11c). The natural feature of the
filter masks of the Laplace type is that they generally highlight regions of rapid changes
of the function 𝐼 (𝑥, 𝑦) values. The gradients of these changes are clearly seen as the
isolines of the vertical projections of the tested and filtered fields of peaks.m on the
horizontal plane in Figure 11a and Figure 11b. The Laplace filters sharpen the gradients

(a) (b)

(c)

Fig. 11. Tested field (a), the tested field after filtering by means of the mask (6) (b) and the tested field after
filtering by means of the mask (51) (c)
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but, unfortunately, they usually reduce the maxima and the minima of the magnitudes
of any fluctuation (compare the ranges of the color bars in Fig. 11a and Fig. 11b). In
general, the shape of the tested field is conserved.
Let us also note that the filter mask (51) cut all the fluctuations in the analyzed fields

(Fig. 11c). The equivalent 𝑓FM( �̃� , �̃�) (53) of the transfer function is equal 0 in the range
of ( �̃� , �̃�) = [−0.9, 0.9] × [−0.9, 0.9] (see Fig. 9a). The magnitude of the remaining
fluctuations is less than |0.12| while the maximum of the magnitude of the test field in
Figure 11a is approximately equal to |8.12|. So, in our opinion the presented example is
the best proof that the mask (51) is not of the Laplace type. The sum of all elements of this
filter is equal to zero, however, it is the feature of all kernels applied to corners detection.

Table 2. Masks of the third-order filters and their first differential approximations (f.d.a.)

Masks
The shortened-forms of the the f.d.a – MDE:

∇2𝑢
0
=
ℎ2

12

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)

0 1 0
1 −4 1
0 1 0

 ∇2𝑢
1
= ∇2𝑢 + ∇2𝑢

0
+𝑂 (ℎ8)

1
2


−1 4 −1
4 −12 4
−1 4 −1


∇2𝑢

2
= ∇2𝑢 + ∇2𝑢

0

− ℎ
2

2
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+ ℎ
4

24

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
− ℎ6

288
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)

1
6


1 4 1
4 −20 4
1 4 1


∇2𝑢

3
= ∇2𝑢 + ∇2𝑢

0
+ 1
12
∇2 (∇2𝑢) − ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
− ℎ

4

72

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

864
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)

1
4


1 2 1
2 −12 2
1 2 1


∇2𝑢

4
= ∇2𝑢 + ∇2𝑢

0
+ ℎ
2

4
𝜕4𝑢

𝜕𝑥2𝜕𝑦2

− ℎ
4

48

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

576
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)

1
2


1 0 1
0 −4 0
1 0 1


∇2𝑢

5
= ∇2𝑢 + ∇2𝑢

0

+ ℎ
2

2
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− − ℎ

4

24

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

288
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)

1
3


1 1 1
1 −8 1
1 1 1


∇2𝑢

6
= ∇2𝑢 + ∇2𝑢

0
+ ℎ
2

3
𝜕4𝑢

𝜕𝑥2𝜕𝑦2

− ℎ4

36

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

432
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)

1
3


−2 1 −2
1 4 1
−2 1 −2


∇2𝑢

7
= ∇2𝑢 + ∇2𝑢

0
+ 2ℎ

2

3
𝜕4𝑢

𝜕𝑥2𝜕𝑦2

− ℎ4

18

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

216
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)
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Table 3. Transfer functions in Taylor series expansions

Operators
Transfer functions:

𝑓0 ( �̃� , �̃�) = −𝜋2
(
�̃�2 + �̃�2

)
+ 𝜋

4

12

(
�̃�4 + �̃�4

)
− 𝜋6

360

(
�̃�6 + �̃�6

)
+ 𝜋8

20160

(
�̃�6 + �̃�6

)
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
𝑓𝐿 = −𝜋2

(
�̃�2 + �̃�2

)

0 1 0
1 −4 1
0 1 0

 𝑓1𝑇 ( �̃� , �̃�) = 𝑓0 ( �̃� , �̃�) +𝑂
(
�̃�10, �̃�10

)

1
2


−1 4 −1
4 −12 4

−1 4 −1

 𝑓2𝑇 ( �̃� , �̃�) = 𝑓0 ( �̃� , �̃�)−
𝜋4

2
�̃�2 �̃�2 + 𝜋

6

24

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
− 𝜋8

288
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)

1
6


1 4 1
4 −20 4
1 4 1

 𝑓3𝑇 ( �̃� , �̃�) = 𝑓0 ( �̃� , �̃�) +
𝜋4

6
�̃�2 �̃�2 − 𝜋

6

72

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

864
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)
1
4


1 2 1
2 −12 2
1 2 1

 𝑓4𝑇 ( �̃� , �̃�) = 𝑓0 ( �̃� , �̃�) +
𝜋4

4
�̃�2 �̃�2 − 𝜋

6

48

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

576
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)

1
2


1 0 1

0 −4 0

1 0 1

 𝑓5𝑇 ( �̃� , �̃�) = 𝑓0 ( �̃� , �̃�)+
𝜋4

2
�̃�2 �̃�2 − 𝜋

6

24

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

288
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)

1
3


1 1 1
1 −8 1
1 1 1

 𝑓6𝑇 ( �̃� , �̃�) = 𝑓0 ( �̃� , �̃�) +
𝜋4

3
�̃�2 �̃�2 − 𝜋

6

36

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

432
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)
1
3


−2 1 −2
1 4 1
−2 1 −2

 𝑓7𝑇 ( �̃� , �̃�) = 𝑓0 ( �̃� , �̃�) +
2𝜋4

3
�̃�2 �̃�2 − 𝜋

6

18

(
�̃�4 �̃�2 + �̃�2 �̃�4

)
+ 𝜋8

216
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)

4.1. The rotation of the filter masks

Let us apply the very popular proceedings in the digital images processing – the rotation
of the filter mask (see also: Scharrand and Weickert (2000), Weickert and Scharr (2002))
– and let us rotate the mask (56) by 45◦ (the same result is both for counterclockwise and
clockwise rotation).

−2 1 −2
1 4 1
−2 1 −2


←−−−
]45◦


1 −2 1
−2 −4 −2
1 −2 1


−−−−−−→
] − 45◦


−2 1 −2
1 4 1
−2 1 −2

 . (57)
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This yields the following mask:

F̃M±45◦ =

−2 1 −2
1 4 1
−2 1 −2

 , (58)

for which the transfer function has the form:

𝑓F̃M±45◦
( �̃� , �̃�) = −32 sin2 𝜋�̃�

2
sin2

𝜋�̃�

2
+ 12 sin2 𝜋�̃�

2
+ 12 sin2 𝜋�̃�

2
. (59)

Expanding (58) into its Π−form (the difference scheme is at this stage omitted) one
obtains the shortened incorrect MDE:

Πincor = −3
(
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2

)
− ℎ

2

4

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− 2ℎ2 𝜕4𝑢

𝜕𝑥2𝜕𝑦2
. (60)

It means that the correct kernel form for the filter which should be equivalent of the
Laplace difference operator should be equal to:

Lap7 = −
1
3

F̃M±45◦ = −
1
3


−2 1 −2
1 4 1
−2 1 −2

 =
1
3


2 −1 2
−1 −4 −1
2 −1 2

 . (61)

The filter mask Lap7 of the Laplace type is another proposal for the digital image
processing. Its derivation on the basis of the modified differential equation has not been
published so far. Pratt (2007) analyzed this mask with the coefficient: −1/8.

Fig. 12. The graphs of the functions
𝑓𝑝 ( �̃� , �̃� = const)
𝑓𝐿 ( �̃� , �̃� = const)

for �̃� = 0.05, �̃� = 0.15, �̃� = 0.75, �̃� = 1.0, 𝑝 = 1 ± 7
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Below we present the transfer function 𝑓7( �̃� , �̃�) (Fig. 13), the FDE for the right-
hand side of (61) and the correct form of the modified differential equation 𝚷7 for the
mask (61):

𝑓7( �̃� , �̃�) =
32
3
sin2

𝜋�̃�

2
sin2

𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
− 4 sin2 𝜋�̃�

2
, (62)

𝑓7𝑇 ( �̃� , �̃�) = −𝜋2
(
�̃�2 + �̃�2

)
+ 𝜋

4

12
( �̃�4 + �̃�4) − 𝜋6

360

(
�̃�6 + �̃�6

)
+ 𝜋8

20160

(
�̃�6 + �̃�6

)
+ 2𝜋

4

3
�̃�2 �̃�2 − 𝜋

6

18
( �̃�4 �̃�2 + �̃�2 �̃�4) + 𝜋8

216
�̃�4 �̃�4 +𝑂

(
�̃�10, �̃�10

)
, (63)

– the finite difference equation:

A7𝑢 =
2(𝑢𝑖−1, 𝑗+1 + 𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1 + 𝑢𝑖+1, 𝑗+1)

3ℎ2

−
𝑢𝑖−1, 𝑗 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1 + 𝑢𝑖, 𝑗+1 + 4𝑢𝑖, 𝑗

3ℎ2
, (64)

– the correct form of the modified differential equation:

Π7 = ∇2𝑢 +
ℎ4

12

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+2ℎ

2

3
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− ℎ

4

18

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

216
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (65)

The difference scheme (65) is consistent and convergent and its accuracy is of the
second order.

(a) (b)

Fig. 13. The transfer function 𝑓7 ( �̃� , �̃�) for the mask (61) (a) and the graph of
𝑓7 ( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(b)
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5. The final conclusions

We discussed the features of seven filter masks of the third order for the Laplace dif-

ferential operator A𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
. Six of them were derived on the basis of the finite

difference method and one on the basis of the finite element method with approximation
of the solution 𝑢(𝑥, 𝑦) by means of bi-linear Lagrange elements. The MDEs and the
transfer functions for each of them were also presented here (see: Table 2 and Table 3).
We also discussed the features of the mask (51) which is not induced by the Laplace
operator.

Conclusions

1. All the presented masks satisfy the standard condition and the necessary condition
for the Laplace difference operator: the sums of all elements of the filter masks
Lap1÷Lap7 and also of the FM mask are equal to zero (see Jähne et al. (1999)).
We also observe that halves of the sums of the absolute values of all elements of
the masks: Lap1 and Lap3÷Lap7 are equal to the absolute values of their central

elements:
1
2

∑︁
𝑖=1÷3
𝑗=1÷3

��𝑎𝑖, 𝑗 �� = ��𝑎2,2��. It is not the necessary condition (see below) but
it can be treated as the sufficient condition. We can also find that for the mask
Lap2 half of this sum is equal to 16 and it is much greater than

��𝑎2,2�� (see: (12)).
This last observation is confirmed by the graphs of the transfer function 𝑓2( �̃� , �̃�) –
see Figure 12 (red dot-dashed line) and (13) or (15) (see also Fig. 14a). It could
mean that application of the Knighting (1955) and Ogura (1958) proposition to the
medium values of ( �̃� , �̃�) is rather limited.

2. The coefficients in the truncation error − ℎ
4

72

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

864
𝜕8𝑢

𝜕𝑥4𝜕𝑦4

of the MDE (18) (see mask (17)) are the smallest (see: Table 2). It could lead
to the statement that this filter mask of the accuracy of the fourth order is the
best. Unfortunately, the graphs of the function 𝑓3( �̃� , �̃�) (Fig. 12 – brown solid
line and Fig. 14b) do not confirm it. In the set of the filters of the third order
the spectral features of the Laplace filter mask (17) are not the best in the range
of ( �̃� , �̃�) = [−1, 1] × [−1, 1]. They are worse in comparison with the transfer
function 𝑓1( �̃� , �̃�). However, from the other point of view, the transfer function
𝑓3( �̃� , �̃�) is characterized by the highest regularity as a function of the Nyquist
wave-numbers, especially for ( �̃� , �̃�) → ±1 (smooth graph, one maximum, no
minimum and inflection points).

3. Continuing this discussion one should notice that the term −4 sin2 𝜋�̃�
2
− 4 sin2 𝜋�̃�

2
Richardson (1910) mask appears in all expressions which describe the transfer
functions for the filter masks of the Laplace type: Lap1÷Lap7. So, one can assume
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(a) (b)

(c) (d)

(e) (f)

Fig. 14. The influence of the filter masks corner elements
𝑓𝑝 ( �̃� , �̃�) − 𝑓1 ( �̃� , �̃�)

𝑓𝐿 ( �̃� , �̃�)
(𝑝 = 2÷7) on the conformity of

their transfer functions to the transfer function 𝑓𝐿 ( �̃� , �̃�) for: 𝑓2 ( �̃� , �̃�) (a), 𝑓3 ( �̃� , �̃�) (b), 𝑓4 ( �̃� , �̃�) (c), 𝑓5 ( �̃� , �̃�) (d),
𝑓6 ( �̃� , �̃�) (e) and 𝑓7 ( �̃� , �̃�) (f)

that the remaining terms in the transfer functions for Lap2÷Lap7 come from the
corner elements of the matrices. The graphs of the influence of the corner elements
on their conformity to the exact function:

𝑓𝑝 ( �̃� , �̃�) − 𝑓1( �̃� , �̃�)
𝑓𝐿 ( �̃� , �̃�)

(𝑝 = 2÷7) (66)

are presented in Figure 14. The important role of the corner elements in the transfer
functions features is double adversewith respect to the standardmask (6). If they are
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negative, the values of (66) are positive and the transfer function (14) (Knighting
(1955) and Ogura (1958)) amplifies certain features of the Laplace filter mask
(see: Lap2). In the opposite case, if the corner elements are positive, the values
of (66) are negative and the other masks have strongly dissipative features. It can
be interpreted as numerical diffusion that damps the other features of the filter
masks. The influence of the corner elements on the results is the smallest for the
filter masks of the accuracy of the fourth order (see Fig. 14b).

4. We also come to the conclusion that the filter mask FM (51) is not isotropic. It
strongly depends on the edges orientation. If the edges are neither horizontal nor
vertical the filter mask (51) is “blind” – it does not introduce any changes (see for
example the triangle in Fig. 10b2).

5. In many monographs and papers examples may be found that for data that are
neither smooth nor continuous the finite element method is much better than the
finite difference method. We cannot confirm it in this paper. The coefficients in
the transfer function (50) for Lap6 and at the mixed derivatives in the modified
differential equation (48) are greater than these in Lap3 or Lap4. It means that the
spectral characteristics of the mask Lap6 are worse.

The final difference approximations and the Taylor series expansions of the transfer
functions for the analyzed filter masks of the Laplace type are collected in Table 2 and
Table 3.
Finally, analyzing Figure 14 we come to the conclusion that the spectral features of

the Knighting (1955) and Ogura (1958) mask (12) is the worst (graph (a)). In numerical
methods, a difference scheme characterized by backward diffusion is said to be an anti-
dissipative one and, in general, it amplifies non-physical solutions (see: Winnicki et
al. (2019)). Figure 3b, Figure 12 (red dot-dashed line) and Figure 14a confirm this
observation.
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