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Abstract: This study discusses how to model the noise in a Gravity Recovery and Climate
Experiment (GRACE)-Mascon derived Equivalent Water Thicknesses (EWT) time-series.
GRACE has provided unique information for monitoring variations in EWT of continents
in regional or basin scale since 2002. To analyze a GRACE EWT time-series, a standard
harmonic regression model is used, but usually assuming white noise-only stochastic model.
However, like almost all kinds of geodetic time-series, it has been shown that the GRACE
EWT time-series contains temporal correlations causing colored noise in the data. As well
known in geodetic modelling studies, neglecting these correlations leads to underestimating
the uncertainties, and so misinterpreting the significancy of the parameter estimates such as
trend rate, amplitudes of signals etc. In this study, autoregressive noise modeling, which has
some advantageous compared to the approaches and methods frequently applied in geodetic
studies, is considered for GRACE EWT time series. For this aim, three important basins,
namely the Yangtze,Murray–Darling andAmazon basins have been examined. Among some
applied autoregressive models, the ARMA(1,1) model is obtained as the best-fitting noise
model for analyzing the EWT changes in each basin. The obtained results are discussed in
terms of forecasting, significancy and consistency with GRACE-FO mission.

Keywords: GRACE Mascon, equivalent water thickness, temporal correlation, colored
noise, autoregressive models
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1. Introduction

There are two satellite systems that have been used to determine the Earth’s gravitation
by gradiometric missions: GRACE and GRACE-FO (GRACE Follow-On). Many hydro-
geodetic researches that integrate many disciplines, such as monitoring water storage
variations in basins, glacier melting, sea level changes and drought, have been carried out
thanks to this satellite system, which enables high-precision monitoring of water mass
variations (Tapley et al., 2004; Wahr et al., 2006; Cazenave and Chen, 2010; Baur, 2012;
Forsberg et al., 2017; Ran et al., 2018; Wang et al., 2020; Chen et al., 2022; Scanlon et
al., 2022).
The GRACE product, which is widely used to analyze the change in equivalent

water thickness. When modeling the trend derived from this monthly released data set,
it is necessary to define appropriate functional and stochastic models. The fact that the
structure proposed in stochastic modeling is not designed in accordance with the time-
series characteristics may result in misinterpretations over the trend of increasing or
decreasing water mass change.
There have been numerous GRACE-related studies to monitor changes in the water

mass. These studies have focused on the basins that have an important contribution to
the Earth’s water cycle (Famiglietti and Rodell, 2013; Birylo et al., 2018; Frappart and
Ramillien, 2018; Ahmed et al., 2019; Rahaman et al., 2019; Chao et al., 2021; Huang et
al., 2021; Boergens et al., 2022). The Yangtze, Murray–Darling and Amazon basins are
only a few examples of these basins. GRACE observations from the studies conducted
in these basins were compared to several hydrological models. Using GRACE, it has
been possible to monitor the change in the water mass over years, including extreme
droughts and floods. Major floods and droughts that occurred in the Yangtze basin have
been the subject of many GRACE studies as well as monitoring the equivalent water
thickness change. (Yin and Li, 2001; Ferreira et al., 2013; Huang et al., 2015; Zhou et
al. 2016; Chao and Wang, 2017; Gao et al., 2017; Sun et al., 2017; Zhang et al., 2019;
Chao et al., 2021). Moreover, changes in total water storage in the Amazon and Murray–
Darling basins, which are prone to extreme phenomena such as El Nino and La Nina, are
examined (Chen at al., 2010; Becker et al., 2011; Frappart et al., 2012; Xie et al., 2016;
Heimhuber et al., 2019; Pellet et al., 2021). In these basins, the GRACE observations
are compared with a variety of datasets, such as hydro-meteorological factors, climate
variables, hydrologic models, and different components of the water cycle (Crowley et
al., 2008; Brown and Tregoning, 2010; Fasullo et al., 2013; Schumacher et al., 2018;
Frappart et al., 2019; Chen et al., 2020). These studies generally focus on functional
modeling of the data set and compatibility of the trend in water mass change with other
hydro-climatic factors.When analyzing a time-series, not only the functional part but also
the stochastic part is to be modeled realistically (Davis et al., 2012). It is well known that
almost all kinds of geodetic time-series contain temporal correlations resulting in colored
noise in the data. These correlations should be considered while analyzing time-series
to get more realistic estimates, especially for the uncertainty of the trend rate or other
parameters studied. The GRACE time-series also contains such temporal correlations as
shown in some studies, including Williams et al. (2014), Guo et al. (2018), Loomis et al.
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(2019) and King and Watson (2020). In order to evaluate these correlations and model
the colored noise in GRACE time-series, maximum likelihood and variance component
estimation methods, which are mostly used in geodetic GPS studies, can be applied
after prescribing the “noise model” as “white noise+flicker noise”, “white noise+flicker
noise+random walk noise”, etc. These methods, however, may fail in estimating the
amplitude of each noise in the assumedmodel for a GRACE time-seriesmainly due to low
observation frequency, insufficient noise ratio and number of periods in the time-series.
As an alternative to these geodetic noise modelling methods, autoregressive models such
as AR (AutoRegressive), MA (Moving Average), ARMA (AutoRegressive–Moving-
Average), ARIMA (AutoRegressive Integrated Moving Average) etc. may provide more
flexibility in the noise definition since they need only specifying the relationships between
observations at some specific lags in the time-series such that the residuals become
stationary as a result of the analysis. This study, therefore, considers the autoregressive
noisemodelingwithARMA/ARIMAmodel inGRACEEWT time-series to have realistic
estimates for the trend in the EWT changes in selected Yangtze, Murray–Darling and
Amazon basins as a numerical example. The paper’s research aim is to investigate the
most fitting model by examining how the standard errors of the trend vary under different
models with respect to the colored noise.
This study is organized as follows: the next section briefly explains the GRACE data

used herein, harmonic regression model for the EWT changes, colored noise, and used
tools for autoregressivemodels. In theResults andDiscussion section, the obtained results
for the basins with ARMA/ARIMA models are discussed. The final section concludes
our study.

2. Materials and methods

The GRACE satellite system, which was operated in collaboration with NASA and DLR
(Deutsches Zentrum für Luft- und Raumfahrt), provided data from 2002 to 2017. The
system, which consists of twin satellites with a distance of 220 ± 50 kilometers between
them, is orbiting in an orbit with an altitude of around 500 kilometers and an inclination
of 89.5 degrees with respect to the equator (Tapley et al., 2004). The GRACE satellite,
its measuring principle is based on the change in distance between the twin satellites
(K-Band Ranging, KBR), accomplishes its mission in approximately 30 days. As a result
of precise monitoring of KBR changes, it is possible to observe the gravity change and the
corresponding water storage change solutions with high precision (a spatial resolution of
about 300 km). GRACE-FO was launched into orbit in 2018 as a successor to GRACE. It
has a similar design of GRACE with a distance of approximately 220 kilometers between
twin satellites and an altitude of approximately 490 kilometers (Tapley et al., 2019).
The solutions obtained from GRACE and GRACE-FO observations are presented to

users as products of different levels (Level-1 to Level-4). One of them, Level-3 Mascon
solutions is also published as monthly EWT changes for surface gridded of different
resolutions by various data centers including Center for Space Research (CSR), GSFC
and Jet Propulsion Laboratory (JPL). Mascon is essentially a gravitational field function
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derived from GRACE twin satellite observations, each of which represents mass con-
centrations distributed throughout the earth’s surface. GSFC Mascon solutions consist
of 41168 equal-area mascon cells with a 1 arc-degree (Luthcke et al., 2013; Loomis
et al, 2019). In addition to 1 arc-degree cells, basins and regions are also represented
in mascon solutions. These solutions are generated using different background models.
For instance, the Glacial Isostatic Adjustment (GIA) correction performed by ICE-6G D
(Peltier et al., 2015) and the C20 and C30 coefficient replacements made by Loomis et al.
(2020). As a static background field GGM05C is used (Ries et al., 2016) and atmosphere
and ocean de-aliasing effect removed by Dobslaw et al. (2017).
Themost recent mascon solutions provided by theGSFC are released in version RL06

v1.0 comprising monthly EWT changes for the period April 2002 to October 2021 (163
months for GRACE period of 2002-2017). Background models, details and all data sets
are available at the Goddard Earth Science Research GRACE Mascon Current Products
webpages (https://earth.gsfc.nasa.gov/geo/data/grace-mascons). EWT, which is based on
monthly gravity field solutions, is a geopotential function that has a trend and a periodic
component. The functional model used in modeling EWT change is given by:

𝑦(𝑡 𝑗) = 𝑎 + 𝑏𝑡 𝑗 +
𝑚∑︁
𝑖=1

{
𝑐𝑖 cos(𝜔𝑖𝑡 𝑗) + 𝑠𝑖 sin(𝜔𝑖𝑡 𝑗)

}
, (1)

where 𝑦(𝑡 𝑗) corresponds to the EWT changes, 𝑎 denotes the shift, 𝑏 stands for the annual
trend, 𝑐 and 𝑠 are the cosine and sine amplitudes of the corresponding sinus signal,
respectively, 𝑚 is the number of the periodic signals and 𝜔 is the sinusoidal signal’s
angular frequency. It is defined as 2𝜋/𝑇𝑖 with respect to the period 𝑇 . Here, the period
𝑇𝑖 corresponds to annual and semiannual signals. This model is known as the harmonic
regression approach. The annual change in water storage can be estimated using the
least-square adjustment.
When modeling the stochastic component of a time-series, it is necessary to investi-

gate temporal correlations in order to obtain realistic standard errors. If these correlations
are neglected, estimated time-series parameters, particularly their standard errors (un-
certainties), may be underestimated. For this reason, trying to figure out if there are any
temporal correlations and how to properly weight the observations is the most essential
part of stochastic modelling. Various methods are used to investigate the temporal corre-
lations. The analysis of the spectral density function (PSD) is one of them. Time-series
spectral analysis is described as the examination of the PSD in the frequency domain
(Chatfield, 2003; Brockwell and Davis, 2016). It should be emphasized that white noise
is not the only noise type in the dataset. A time-series may also include noise types with
different spectral indices, like colored noise or power law noise.
The power spectrum of this noise is equal to the power law described by (Welch,

1967; Mandelbrot and Van Ness, 1968):

PSD( 𝑓 ) = 𝑃0

(
𝑓

𝑓0

) ^
. (2)

The spectral index is denoted by ^; the normalization constants are represented by 𝑃0
and 𝑓0. According to the spectral index value, ^ = 0 was defined as white noise (WN);

https://earth.gsfc.nasa.gov/geo/data/grace-mascons
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^ = −1 as flicker noise (FN); and ^ = −2 as randomwalk noise (RWN). Besides of integer
noise types, those with a range of −3 < ^ < −1 is referred to as fractional Brownian
motion, while those with a range of−1 < ^ < 1 is referred to as fractional Gaussian noise.
When periodograms are made by plotting decibel values against the natural logarithm of
frequency, the slope of the line corresponds to the noise’s spectral index, and the noise
type can be specified in the spectrum. This is called a “log–log graph”.
Autoregressive models are used to handle the colored noise existing in time-series.

A linear combination of estimators is used to estimate the variable of interest in the
regression model. In an autoregression model, the variable of interest is forecasted using
a linear combination of prior values. The term autoregression implies that the variable
is being regression against itself. As a result, a 𝑝-order autoregressive model can be
stated as AR(𝑝). In a regression model, if the prior forecast errors are employed, this
model implies a 𝑞-order moving average model defined as MA(𝑞). The case in which the
value of any period of a time-series is described as a combination of a certain number
of prior observation values plus error terms is denoted as an Autoregressive Moving
Average ARMA(𝑝, 𝑞). Here, 𝑝 and 𝑞 symbolize the order of the autoregressive and
moving average parts, respectively. Thus, the characteristics of autoregressive andmoving
average models are integrated into a single model. By combining the autoregression, first
order differentiation, and moving average models, an ARIMA (Autoregressive Integrated
Moving Average) is formed. In the ARIMA(𝑝, 𝑑, 𝑞) model, 𝑑 specifies the first degree
of differentiation. All of the parameters 𝑝, 𝑑, and 𝑞 are non-negative integers. The
autocorrelation function (ACF) and partial autocorrelation function (PACF) plots have
been used to determine the 𝑝 and 𝑞 orders in the models. The use of an ARMA model
can be used when neither the autocorrelations nor the partial autocorrelations are cut off
by a few lags.
The information criteria are also important for deciding which ARMA/ARIMA

model is appropriate for the time-series. There are three forms of information criteria:
the Akaike’s Information Criterion (AIC), the corrected Akaike’s Information Criterion
(AICc), and the Bayesian Information Criterion (BIC). The model that has the least
information criterion is accepted as the best model for the time-series studied It does
not matter which information criterion is used as a reference when determining the most
appropriate model for a given data set. However, the AICc is generally the preferred
information criterion for small sample models. MATLAB’s aicbic function was used
to perform the calculations in this study (Box et al., 2015; Brockwell and Davis, 2016;
Hyndman and Athanasopoulos, 2018).
Within the scope of the given information, a regression analysis was performed

using autoregressive models in the program written in MATLAB. The GSFC Mascon
time-series of the Yangtze, Murray, and Amazon basins, which are important basins for
monitoring changes in water storage, were analyzed by applying different autoregressive
models, and the best-fitted model was determined. Future EWT changes were forecasted
based on the best-fitting model of GRACE-only data and compared with those from
the GRACE-FO observations. The obtained results are discussed in the section that
follows.
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3. Results and discussion

Selected basins are located in different parts of the Earth. The Yangtze Basin is in the
southern part of China. The Yangtze River is one of the longest rivers in the world. GSFC
Mascon Basin solution contains 142 mascon cells to represent the Yangtze Basin area.
The Murray–Darling Basin, located in the southeastern Australia, includes the Murray
and Darling rivers. Hydrological data sets demonstrate that the Murray–Darling basin
is particularly sensitive to extreme hydrological events such as floods and droughts.
The Murray–Darling Basin is represented by 78 mascon cells in the GSFC Mascon
Basin solutions. The Amazon Basin is located in a strategic location in South America.
Groundwater storage is critical in the ecological cycles of the Amazon basin, which
contains the world’s largest drainage basin. It has an impact on the rainforest ecosystems
as well as climate variability. Extreme climate events have occurred in the Amazon Basin
that have been associated with El Nino and La Nina effects. There are 484 mascon cells
for the Amazon Basin in GSFC Mascon Basin solutions. The above-mentioned basins
are represented in Figure 1. When the basins are considered geographically, it is apparent
that they are located in different climatic regions. Because of this, they are the focus of
events that are important to different parts of the hydrological cycle, such as precipitation,
droughts, or groundwater storage.

Fig. 1. Locations of the studied basins. The dark green parts correspond to lands, whereas the gray areas
correspond to polar regions. The Yangtze, Murray–Darling and Amazon basins are also shown in light green

The EWT changes of three basins are given in Figure 2. Each one has different
behavior in terms of EWT changes for the GRACE period. Since 2010, the Murray–
Darling basin time-series has owned significant changes. This increase in EWT has been
correlated to the strong precipitation events caused by La-Nina during 2010 and 2011.
Floods in 2009 and 2010, which occurred as a result of hydro-climatic factors, increased
the EWT in the Amazon and Yangtze basins, respectively.
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Fig. 2. GRACE EWT changes of three basins

Solutions from the GSFCMascon Basin were only considered for the GRACE period.
Firstly, analyses have been performed having assumed that the time-series includes only
white noise, i.e., no temporal correlation. The harmonic regression approach given in
Eq. (1) is used as a functional model to obtain the parameters with the least-square
adjustment. PSD analysis was performed using the residuals obtained from the regression
analysis. The negative slope of the log–log PSD graphs in Figure 3 shows the existence
of colored noise, such as flicker or a random walk.

Fig. 3. Log–log graphs of the basins: (a) Yangtze, (b) Murray–Darling and (c) Amazon

Several autoregressive moving average models were used to analyze the basins after
identifying that the fractional Brownian motion existed as a colored noise similar to
flicker noise. We applied the ARMA(0,0), ARIMA(0,1,0), ARMA(1,0) and ARMA(1,1)
models to the three basins solutions, which correspond to white noise only, random walk
noise, and power-law noise. Table 1 summarizes the trend estimates and standard errors
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associated with these models. Standard errors of white noise-only model (ARMA(0,0))
are generally 2–20 times lower than for the other autoregressive models, as seen in
Table 1. This does not mean, however, that the ARMA(0,0) model properly explains
the stochasticity of the time-series. This implies that a model considering correct noise
type in the time-series provides realistic results. These more realistic results are critical
in assessing the significance of the trend. According to the results of the ARMA(0,0)
model, the trend values for all three basins are significant and underestimated. However,
it is clear that the values are overestimated and there is no significant water mass change
in the ARIMA(0,1,0). The standard errors estimated by the ARMA(1,0) and ARMA(1,1)
models are approximately three times greater than that obtained by the ARMA(0,0)
model. In this case, the Amazon basin trend is interpreted as insignificant.

Table 1. Statistics from autoregressive models. Unit in cm/yr

Basin Yangtze Murray–Darling Amazon

Model Trend Standard
error Trend Standard

error Trend Standard
error

ARMA(0,0) 0.37 0.04 0.53 0.08 0.20 0.09

ARMA(1,0) 0.36 0.08 0.54 0.23 0.12 0.47

ARIMA(0,1,0) 0.05 1.98 0.33 1.58 0.18 1.82

ARMA(1,1) 0.36 0.07 0.53 0.22 0.14 0.37

The first step toward determining the best appropriate model is to compare the values
of the information criteria listed in Table 2. The model with the minimum value is
considered as the one that best fits the noise characteristics. When compared to other
models in this study, the ARMA(1,1) model has the minimum information criterion.
Following that, autocorrelation and partial autocorrelation plots (ACF and PCF) are also
used to check the validity of the model chosen based on the information criterion, as well.
These plots for Amazon basin are given in Figure 4 as an example for ARMA(1,1). As
seen in Figure 4, the existing correlations at different lags of the time-series (left panel)
becomes insignificant (those between blue lines) after applyingARMA(1,1) (right panel).

Table 2. Information criteria of autoregressive models for basins

AICc values

Model Yangtze Murray–Darling Amazon

ARMA(0,0) 840.47 968.59 1137.31

ARMA(1,0) 744.39 702.58 766.61

ARIMA(0,1,0) 777.39 712.10 770.63

ARMA(1,1) 741.44 704.61 734.58
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In other words, the ARMA(1,1) model provides a sufficient regression model for the
parameter estimates such that the output residuals become uncorrelated. This superiority
of ARMA(1,1) is valid also for the Yangtze and Murray–Darling basins. Therefore, the
ARMA(1,1) model is accepted as the best model for the basins herein.

Fig. 4. ACF and PACF plots for the Amazon basin: (a) and (b) show the ARMA(0,0) model whereas
(c) and (d) show ARMA(1,1) model

The harmonic regression model also yields shift and seasonal signal amplitudes, in
addition to trend and standard error. Table 3 summarizes these parameters derived from
ARMA(1,1), which was chosen as the best-fit model for the basins, and ARMA(0,0),
which corresponds to the WN-only model solutions. When the results in Table 3 are
analyzed, it can be observed that the parameters do not change quite as much as the trend
and their standard error. Although the parameters defining the shift and seasonal signals
do not vary, selecting the most appropriate model is important for time series analysis,
as the trend significance changes. Because the model selection tells you about the whole
time series and is important for predicting how the signal will move in the future, it is
important to think about the model selection carefully.
Regression analysis with a proper autoregressive model gives a chance also for

forecasting the changes in future within a properly defined confidence interval since the
parameters and their standard errors in the regression model are unbiasedly estimated.
In order to check how our ARMA(1,1) model for the basins works well, the future
EWT changes (between 2017 and mid of 2021) are forecasted with their 95% confidence
intervals and compared with those from GRACE-FO data which starts from the mid
of 2018. Correlation coefficients between GRACE-FO observations and ARMA(1,1)
model predictions were calculated. Using MATLAB’s corrcoef tool, Pearson correlation
coefficient (PCC) were determined to be 0.61, 0.97, and 0.33 for the Yangtze, Murray–
Darling andAmazon basins, respectively. The forecast results associatedwith theYangtze
and Amazon basins shown in Figure 5a and Figure 5c are compatible with those from
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Table 3. Parameters from autoregressive models

Yangtze basin

Model Shift
Annual amplitude Semi-annual amplitude

cosine sine cosine sine

ARMA(0,0) −1.32 ± 0.38
4.37 (cm) 0.88 (cm)

−1.98 ± 0.26 3.89 ± 0.29 −0.84 ± 0.27 −0.25 ± 0.27

ARMA(1,1) −1.32 ± 0.67
4.34 (cm) 0.86 (cm)

−1.98 ± 0.42 3.86 ± 0.44 −0.83 ± 0.30 −0.23 ± 0.26

Murray–Darling basin

Model Shift
Annual amplitude Semi-annual amplitude

cosine sine cosine sine

ARMA(0,0) −0.56 ± 0.71
2.09 (cm) 0.46 (cm)

−1.28 ± 0.37 1.66 ± 0.35 −0.29 ± 0.34 −0.35 ± 0.36

ARMA(1,1) −0.67 ± 2.16
2.08 (cm) 0.44 (cm)

−1.29 ± 0.36 1.63 ± 0.41 −0.33 ± 0.19 −0.29 ± 0.20

Amazon basin

Model Shift
Annual amplitude Semi-annual amplitude

cosine sine cosine sine

ARMA(0,0) −1.38 ± 1.09
20.32 (cm) 0.99 (cm)

20.02 ± 0.60 3.45 ± 0.56 −0.38 ± 0.57 0.92 ± 0.55

ARMA(1,1) −0.96 ± 3.40
20.31 (cm) 1.06 (cm)

20.00 ± 0.56 3.53 ± 0.54 −0.40 ± 0.25 0.98 ± 0.25

GRACE-FO. Most importantly, the estimated confidence interval from the ARMA(1,1)
model for the Yangtze basin also covers the irregular variations of the EWT changes in the
GRACE-FO data. This implies how the ARMA(1,1) model provides proper parameter
estimates with realistic standard errors. On the other hand, the forecast does not work
for Murray–Darling basin as efficient as the other basins even though the lower part of
the confidence region shows the similar behavior of the GRACE-FO ones as seen in
Figure 5b.
It is worth noting that this mismatch is due to the missing functional model for the

Murray–Darling basin which is under the abnormal climatic effects such as La-Nina and
El-Nino events. Therefore, we applied three ARIMA models to this basin. The obtained
trend results and the AICc values from thesemodels are given in Table 4. The best result is
obtained with the ARIMA(1,1,1). However, the trend estimates (nearly 0.33 cm/yr) are all
insignificant. On the other hand, the prediction confidence interval of the ARIMA(1,1,1)
coincides with the GRACE-FO signal. This shows that the ARIMA(1,1,1) yields more
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Fig. 5. Forecasts with 95% confidence level derived from the ARMA(1,1) model for the basins: (a) Yangtze,
(b) Murray–Darling, and (c) Amazon

reliable result for this basin than the ARMA(1,1), see Figure 6. However, it is worth
mentioning that this basin needs further investigation due to the different hydrological
signals existing in the GRACE/GRACE-FO time-series.

Table 4. Statistics from autoregressive models for Murray–Darling basin

Model Trend (cm/yr) Standard error (cm/yr) AICc

ARIMA(1,1,0) 0.32 1.53 714.02

ARIMA(0,1,1) 0.32 1.45 713.63

ARIMA(1,1,1) 0.33 0.77 707.63

Fig. 6. Forecasts with 95% confidence level derived from the ARIMA(1,1,1) model
for the Murray–Darling basin
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4. Conclusions

This study examines how to model the noise in a GRACE-Mascon derived EWT time-
series using autoregressive models. For this aim, the Yangtze, Murray–Darling, and
Amazon basins are considered. First, it is shown that the GRACE time-series contains
temporal correlations causing colored noise in the data.According to the numerical results
on the basins, it has been obtained that the ARMA(1,1) model is the best-fitting noise
model. This model corresponds to power-low noise, which is a part of Brownian motion,
similar to flicker noise. The ARMA(1,1) model yields about four times bigger standard
errors than the ARMA(0,0) model which actually corresponds to the standard regression
analysis without weighting applied mostly in practice. It means that the standard analysis
causes underestimate in the uncertainty of the parameters fromGRACEEWT-time series.
The convenience of the estimates from ARMA(1,1) model is tested by comparing the
forecasted EWT changes with those from GRACE-FO data which is not involved in
the autoregression. The results for the Yangtze and Amazon basins are very promising
for modeling the noise in GRACE time-series whereas the Murray–Darling basin needs
further modelling including the floods and droughts in the region. Accordingly, the
ARMA models improve the reliability of the estimates in the GRACE time-series. Our
autoregression model will be improved in future studies such that it also consists of
basin-related physical components in addition to the others in the standard regression
model for GRACE time-series.
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