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DETERMINATION OF DRIVE FUNCTIONS OF SLEWING OF 
A MOBILE CRANE WHICH MINIMIZE LOAD OSCILLATIONS 

A method of determination of drive functions of slewing of a mobile crane's upper 
structure is presented in the paper. The purpose of their determination is to reduce load 
oscillations at the end of the motion. Drive functions for selected angles and durations 
of slewing have been calculated using a simple model of the crane and dynamic 
optimisation. Drive functions for intermediate angles have been determined by means 
of interpolation. Res ul ts of numerical simulations executed for the model of the crane 
are presented, taking into consideration flexibilities and damping in the cranes 
subsystems. Results obtained for drive functions determined using optimisation and 
interpolation algorithms are compared. An attempt to determine sensitivity of load 
positioning to selected operating parameters is also presented. Introduction of the 
notion of a positioning quality coefficient is proposed. 

1. Introduction 

During the slewing motion of a crane, the transferred load deflects from 
the vertical. This deflection causes load swings. Their character is similar to 
swing of a spherical pendulum. After the end of the motion, the load swings 
freely. Because there is relatively slight damping in the system, these 
oscillations can remain for a fairly long time. For efficiency and safety of 
work carried out with cranes, it is desirable to eliminate or at least 
substantially reduce these final oscillations. Improvement of safety is 
especially vital, because a considerable number of fatal accidents at building 
sites are connected with crane usage [l]. Therefore, the problem ofreduction 
of load oscillations is the main topic of many papers. The proposed methods 
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of influence on the load in order to reduce its oscillations can be divided into
three basic groups:
1. additional mechanical systems,
2. application of one of the other crane drives (besides the slewing

motion) i.e. the servo-motor changing crane radius or the drive of
the hosting winch,

3. application only the slewing motion with the time course of the drive
function appropriately calculated beforehand.
One of the solutions from the first group is presented in [2]. Balachandran

et al. propose and describe a concept which they call a mechanical filter. This
is based on the premise that, by controlling the pivot point about which the
load oscillates, one can effectively suppress crane-load oscillations.

The paper of Abdel-Rahman and Nayfeh [3] can be included in the second
group. Results demonstrating that rope-length can be changed to reduce load
oscillations are presented there. Significant reductions can be obtained via an
appropriate choice of the reeling/unreeling speed. Also Sakawa et al. [4]
propose the optimal control of a rotary installed crane which performs two
kinds of motion (slewing and hoisting) at the same time. The optimal control
which transfers a load to a desired place as fast as possible and minimizes the
oscillations of the load during the transfer as well as at the end of the motion is
calculated.

Paper [5] belongs to the third group. Kłosiński applies experience
gained during work connected with methods of load positioning in a gantry
crane. Parker et al. [6] compare different methods of determination
of the drive function of the slewing motion of a jib crane. A dynamic
programming method has been employed to obtain the hub angular
acceleration history for a variable load-line jib crane producing residual
oscillation free payload motion. It has been shown that the hub angular
acceleration could also be postulated using a bang-coast-bang shape
to achieve the desired residual oscillation free behaviour. The parameters
of this shape have been calculated using a recursive quadratic programming
numerical optimisation code.

The application of additional mechanical systems to minimize load
oscillations is associated with higher cost and more complicated structure of
the crane, and simultaneous, synchronous use of two or more drives causes
considerable problems with their control. However, methods from the third
group are relatively cheap and easy to use. The method presented in the paper
belongs to this category. It is based on the assumption that the drive function
can be calculated by means of optimisation. Because numerical efficiency has
to be ensured, this optimisation problem has been solved for a simple model
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of a crane. Nevertheless, the function is also intended to guarantee reduction 
of load oscillations at the end of the motion for a more complex model and for 
a real crane. It is an inconvenience that the method requires each time 
previous calculation of the course of the drive function for specific operating 
parameters, especially for the specific angle of slewing. In order to avoid this, 
the desired functions are calculated only for selected angles, whereas 
functions for remaining angles may be determined by means of interpolation. 
The drive functions calculated for specific angles would be permanently 
stored in the crane control system memory (forming the so-called ,,map of 
basic slewing functions"). Functions for intermediate angles would be 
determined by the control system in real time. 

The angle and the time of the slewing are not the sole operating 
parameters which should be defined in the optimisation process of the slewing 
function. Mass of the load and length of the rope between the end of the jib 
and the load are particularly important. During the construction of the ,,map of 
basic slewing functions", the knowledge of sensitivity of load positioning to 
these remaining parameters is essential. Therefore an attempt to determine 
sensitivity of load positioning to changes of nominal mass (assumed in 
optimisation) and length of the rope has been undertaken in this paper. In 
order to enable quantitative analysis of positioning quality, the introduction of 
a special coefficient has been proposed. 

2. Optimisation of drive functions 

z 

y 

X 

Fig. I. Model of crane applied in optimisation problem 
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It has been mentioned that, in order to ensure numerical efficiency,
optimisation of the slewing function was carried out for the simplified model
of the crane. A completely stiff supporting structure of the crane has been
assumed. In the result of these assumptions, a model with three degrees of
freedom has been obtained (Fig. 1). Then equations of the load can be
presented in the following form:

(1)

(2) 

(3)

where
mi, - mass of the load,
S - force in the rope GL,
LŁ - length of the rope GL.

There are four unknowns XL, YL, ZL, S in equations (1) - (3). They must be
supplemented by a constraint equation in the form:

IGLl2 = [xe - xi]2 + [ye - yi]2 + [ze - zd2 = canst (4) 

Equation (4) means that the length of rope (spherical pendulum) is constant.
Moreover, with reference to Fig. I, the following relations occur:

{

Xe = d cos If/ cos (fJ = d' cos (fJ 
Ye = d cos If/ sin (fJ = d' sin tp 
ze = d sin If/ = canst

(5)

It has been also assumed that for t E (to, T) the function ((Jw(t) can be
approximated by means of third-order spline functions (Fig. 2). As decisive
variables in the optimisation problem we consider the components of the
vector below:

X= [((Jw,1, ((Jw,z, ... ,((Jw.n,-d7 (6) 
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Fig. 2. Function (f}w(t) approximated by spline functions 

i.e. the variables of the slewing function at the selected points of the interval. 
The objective function has been defined as follows: 

(7) 

where 
rLT = rLli=T, vLT = vi.l.. r - vectors of load coordinates and velocity for 
t = T, 
rLF - vector of expected load coordinates for t = T, 
C1, C2 - coefficients (weights). 

This function means that one can expect that at the end of the slewing 
motion the load is at a particular point in space and, furthermore, its kinetic 
energy is minimal. Therefore, the precise formulation of the optimisation 
problem can be expressed in the following terms: find the minimum of 
function F presented by (7) by selection of values (f)w.1, ... ,(f)w,n,-1 that are the 
components of vector X (6). The Nelder-Meads method has been used for its 
solution. Like most optimisation methods, this is also sensitive to selection of 
initial approximation. In the present paper, it has been assumed that initial 
approximation of vector X: 

X, = [(f)w.l,O,··•,(f)w,n,-1.0]T (8) 

is obtained based upon the formulae: 

{

8({J;~max t3(- t + D 

(f)w.i,O = (f}w(t;) = 8({Jw,max 3 
T4 (t - D · t 

when 

when 

T 
t <- - 2 

T 
t > - 

2 

(9) 
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This function fulfils the following conditions:

(f)w(0) = O ipw(0) = O 

(/Jw({) =~(/Jw.max (10) 

(/Jw(T) = (/Jw.max ipw(T) = O 

where (/Jw.max is the final angle of the slewing motion.
The function chosen in this way ensures that courses of tp ; = (/Jw(t) and
ipw = ipw(t) curves are smooth.

3. Determination of drive functions for selected angles of slewing 

Numerical simulations have been performed for technical data of a typical
crane with lifting capacity up to 30 Mg. Mass of the load me was equal to 3000
kg, crane radius d about 8.6 m, length LL about 10 m.

Optimisation of the drive function has been executed for different
numbers of decisive variables (6). Finally, in the presented examples,
the four-element vector of decisive variables has been employed. This
number of decisive variables ensures sufficient numerical efficiency and
simultaneously gives good precision of load positioning. The average time of
optimisation did not exceed 2 minutes on a PC computer with the Intel®
Pentium® IV 1.8 GHz processor. Values of coefficients C1 and C2 have been
determined during numerical simulations. The main criterion of this
determination was the best quality of positioning of the load at the end of the
slewing motion. Optimal drive functions for two cases of motion have been
determined:
I. 90° slewing over a period of 15 s,
II. 60° slewing over a period of 12 s.

The following figures present: time courses of the input angle of the upper
structure slewing (/Jw(!) (Figs. 3, 4); slewing speed ipw(t) (Figs. 5, 6);
projections of trajectories of the load Lon the plane of the ground (Figs. 7, 8)
and time courses of kinetic energy of the load (Figs. 9, 10) for initial
approximation of drive functions (9) and optimal drive functions. In cases
shown in Figs. 7 and 8 the origin of the coordinate system is not in the axis of
rotation of the upper structure (like in Fig. 1) but in the mass centre of the
chassis (Fig. 11 ). This point is at the distance of 2.6 m along axis X. The time
of observation of load motion was 30 s.
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Fig. 3. Time course of input angle of slewing for case I 
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Fig. 4. Time course of input angle of slewing for case II 
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Fig. 6. Slewing speed for case II
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Fig. 7. Projection of load trajectories on the plane of the ground - case I 
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Fig. 8. Projection of load trajectories on the plane of the ground - case II 
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4. Load positioning for the model taking into account flexibilities 
of the system 

In order to examrne the efficiency of application of optimal drive 
functions in quasi-real conditions, numerical simulations using another 
model that takes into account flexibility of the crane's supported structure and 
damping in selected subsystems (Fig. 11) have been performed. The model is 
intended for dynamic analysis with the following inputs: 

L 

Fig. 11. Model of a mobile crane 

slewing of a crane's upper structure (angle (f)), 
- lifting and lowering of a load by means of a hoisting winch (an­ 
gle a), 
- changing the length of a servo-motor which changes crane radius (angle If/). 
The model is presented in detail in [7], [8], [9]. The equations of motion 
of the crane have been derived from the Lagrange equations of the 
second order. After determining all necessary components of the Lagrange 
equations (energies, functions of energy dissipation for all subsystems of the 
crane and their differentials), the following system of equations of motion is 
obtained: 
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A·ii=F (11)

which can be rewritten in the form:

[ 

A q A wqp O O I qJ ~q]A wpq A wpp o o . p = FP

o o Ab o a F8 

o o o AL .. L
'-v-' '-v-'

ti FA

(12)

where
q = [Xo1,Yo1,Zo1,lpx1,<py1,lpz1,'P,l/ff, 
[Xo1, Yo1, Zo1,'Px1,'Py1,'Pz1f - vector of coordinates of the chassis,
p = [p,, ... ,pmf - vector of coordinates of the jib,
m- number of modes taken into consideration in modal analysis, in the plane

of lifting and in the plane perpendicular to it respectively,
QL - coordinates of the load.

Equations (12) form a system of ordinary non-linear differential second­
order equations for variable t with a changeable number of degrees of
freedom, because phases of load lifting from the ground are taken into
account. Before the equations are solved, static deflections should be
determined, since these constitute initial conditions for motion of the system.
The fourth order Runge-Kutta method has been used to solve the system of
differential equations (12).

The results presented below have been obtained for inputs in the
following forms of drive functions: the initial approximation (in accordance
with (9)) and the optimal function. Both cases of the motion mentioned above,
i.e. slewing by 90° (case I) and by 60° (case Il) have been considered. In Figs.
12 and 13 projections of final parts of load trajectories on the plane of the
ground are presented. Figs. 14 and 15 show time courses of kinetic energy of
the load for slewing I and II respectively. By analysing the graphs, one can
deduce that after optimisation, for the model taking into account flexibility of
the supported structure, the load is not motionless at the end of the slewing,
but it oscillates. However, the amplitude of these oscillations is small and in
both cases it does not exceed several centimetres.
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5. Interpolation of the drive function for intermediate angles of slewing 

In this section, the method and results of interpolation of the drive 
function for 90° slewing are presented. A linear interpolation algorithm has 
been used. The optimal functions for slewing by 90° and 60° (section 3) have 
been taken as initial (basic) functions. Because slewing by 90° was realized 
over a period of 15 sand slewing by 60° over a period of 12 s, it was assumed 
that the time of slewing by 75° is equal to 13.5 s. Next, transitional angles of 
slewing corresponding to elements of the vector of decisive variables (6) were 
determined. For slewing by 75°, they were calculated as the arithmetic mean 
of decisive variables of basic functions (90° and 60°). The results obtained for 
the interpolated function were compared with those obtained for the optimal 
drive function determined according to the method presented in section 2. The 
simulations were carried out for the model, taking into account flexibility of 
the supported structure presented in section 4. The following figures show: 
comparison of drive functions of slewing for 75° obtained using interpolation 
and optimisation algorithms (Fig. 16); difference between these functions 
(Fig. 17); projections of the complete load trajectories on the plane of the 
ground and of their final part, respectively, for input in the form of initial 
approximation (9), optimal function and interpolated function (Figs. 18 and 
19); comparison of time courses of kinetic energy of the load (Fig. 20). 
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Fig. 16. Comparison of time courses of drive functions for 75° slewing 
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6. Sensitivity of load positioning 

When determining the optimal drive function of slewing, in addition to
the angle of slewing, the time of the motion and the starting angle of the jib,
one also has to define: mass of the load and height of load suspended, i.e.
length of the rope between the end of the jib and the load. The results of
calculations showing sensitivity of load positioning at the end of the motion to
changes of mass of the load and length of the rope are presented bellow. The
increases (5, 10, 20%) and the decreases (10, 25, 50, 75 %) of the mass ofload
and the increases (10, 25, 50 cm) and the decreases (10, 25, 50, 75 cm) of the
length of rope in comparison to the nominal data (assumed in the optimisation
task) have been analysed. Efficiency of load positioning can be easily
estimated upon the basis of projections of load trajectories. However this
estimation has mainly qualitative character. Thus, a quantitative coefficient
describing the quality of final load positioning can be introduced. In this
paper, the following definition of a quality positioning coefficient is
proposed:

(13) 

where
x, = lxL - X~Flmax 

Yo= IYL - Y~Flmax 
xL,YL - coordinates x, y of the load,
x~F,Y~F - expected load coordinates for t = T, 
lxL - x~Flmax, IYL - Y~Flmax -maximal absolute value of the difference between
coordinates after the end of slewing.

Load coordinates x~F,Y~Fexpected at the time t = Thave been determined
for static load of the crane for the specific final angle of slewing and the mass
of the load. The coefficient PE, for motions analysed in section 2 (simplified
model, optimal drive functions), is equal to 0.14 cm. When flexibilities of the
system are taken into consideration, the coefficient increases to 4.37 cm for
slewing by 60° and to 4.42 cm for 90°.

The knowledge about sensitivity of load positioning is vital for construc­
tion of the ,,map of basic slewing functions". If sensitivity of load positioning
for a selected parameter is low, the slewing of the crane can be executed for
a certain range of this parameter by means of only one drive function and the
positioning quality can be satisfactory. Results presented below have been
obtained for the model taking into account flexibility of the supported
structure.
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6.1. Sensitivity of load positioning for basic angles of slewing 

The sensitivity of load positioning for basic slewing functions, i.e. 
slewing by 90° (case I) and by 60° (case II) was investigated in the first place. 
The following figures present a comparison of projections of final parts of 
load trajectories on the plane of the ground for nominal parameters and an 
appropriately changing mass of the load and length of the rope. Figures 21, 23, 
25, 27 are related to slewing for case I and Figures 22, 24, 26, 28 with case II. 
Figs. 21 and 23 were obtained for increased and Figs. 22 and 24 for decreased 
mass of the load. Similarly Figs. 25 and 26 were obtained for increased and 
Figs. 27 and 28 for decreased length of the rope. Moreover, the comparison of 
PE coefficient values for the cases analysed is presented in Table 1. 

Table 1. 
Comparison of PE coefficient values for basic slewing functions 90° and 60° 

Value of PE coefficient [cm] 
Slew 

nom. 1.05m !.Im l.2m 0.9m 0.75m O.Sm 0.25m +IO +25 +50 -10 -25 -50 -75 

90° 4.42 4.66 4.90 5 38 3.94 3.25 2.18 1.05 5.97 8.35 12.5 2.91 0.78 2.97 6.26 

60° 4.37 4.59 4.8! 5.27 3.9! 3.17 2.19 1.07 5.74 7.77 I I.I 3.00 0.95 2.78 6.45 
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Fig. 21. Trajectories of load for increased mass - I case of motion 
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Fig. 23. Trajectories of load for decreased mass - I case of motion
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Fig. 24. Trajectories of load for decreased mass - II case of motion 
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Fig. 25. Trajectories of load for increased length of the rope - I case of motion 
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Fig. 26. Trajectories of load for increased length of the rope - II case of motion
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Fig. 27. Trajectories of load for decreased length of the rope - I case of motion
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Fig. 28. Trajectories of load for decreased length of the rope - II case of motion 

6.2. Sensitivity of load positioning for the intermediate angle 

In this section, the sensitivity of load positioning at the end of the motion 
to changing mass of the load and length of the rope is compared. However, 
slewing of the upper structure by 75° is here discussed. The input of slewing 
has been performed by using the optimal function and the function 
determined by means of the interpolation algorithm in accordance with 
section 5. The arrangement of figures is analogous to the arrangement in 
section 6.1. Figures 29, 31, 33, 35 were obtained for the optimal drive function 
and Figures 30, 32, 34, 36 for the interpolated one. The comparison of PE 
coefficient values for the cases analysed is presented in Table 2. 

Table 2. 
Comparison of PE coefficient values for the intermediate angle of slewing - 75° 

Fune- Value of PE coefficient [cm] 
tion nom. 1.05m I.Im 1.2m 0.9m 0.75m O.Sm 0.25m +IO +25 +50 -10 -25 -50 -75 

optm. 4.59 4.77 5.05 5.51 4.08 3.39 2.23 1.12 6.09 8.37 12.2 3.10 0.95 2.98 6.57 

inter. 11.7 11.7 11.9 12.1 11.4 11.2 10.9 10.7 12.4 13.9 16.8 I I.I 10.7 li.I 13.0 
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Fig. 29. Trajectories of load for increased mass - optimal drive function
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Fig. 30. Trajectories of load for increased mass - interpolated drive function
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Fig. 31. Trajectories of load for decreased mass - optimal drive function 
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Fig. 32. Trajectories of load for decreased mass - interpolated drive function 
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Fig. 33. Trajectories of load for increased length of the rope - optimal drive function
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Fig. 34. Trajectories of load for increased length of the rope - interpolated drive function
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Fig. 35. Trajectories of load for decreased length of the rope - optimal drive function 
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After analysing the results for optimal functions presented in sections 6.1
and 6.2, the following conclusions can be formulated:
• the sensitivity of load positioning to changes of mass in the range ±20 % is

relatively low,
• the decrease of mass of the load causes reduction of load oscillations

at the end of the motion - the greater the reduction, the greater
the decrease of mass is,

• the increase of length of the rope by 10 cm causes slight increase of load
oscillations. However, when the rope is lengthened by 50 cm then the
amplitude of load oscillations at the end of the is about 3 times greater,

• the decrease of length of the rope by 10, 25 and 50 cm causes decrease of
final load oscillations. The lowest amplitude of oscillations was obtained
for length reduction by 25 cm (for all three angles of slewing),

• when length of the rope is reduced by 75 cm then load oscillations are
greater than for the nominal length.
Unfortunately, when input of slewing is performed by means of the

interpolated drive function, the results obtained are worse. In this case, the
amplitude of load oscillation at the end of the motion for nominal parameters
is nearly 3 times greater in comparison to the optimal drive function. The
deterioration in load positioning quality is confirmed by an increase in the PE 
coefficient value. During slewing by 75° the coefficient is equal to 4.59 cm for
the optimal drive function and to 11.67 cm for the interpolated one. Some
differences between both inputs can be also seen when sensitivity of
positioning is investigated. Above all, decrease of the amplitude of
oscillations for decreased mass of the load and, within a certain range,
decreased length of the rope is much smaller for the interpolated function than
for the optimal one.

6.3. Sensitivity investigation for the intermediate angle and the 
re-determined drive function 

As a result of considerations formulated in the previous section the
slewing function for 75° was calculated once again. Linear interpolation was
used again. However, the basic functions determined previously for 90° and
60° were replaced by functions determined for 80° and 70°. Next, the
simulations investigating sensitivity of load positioning to considered
parameters were repeated. The same changes of nominal mass of the load and
length of the rope were analysed. The following figures (Figs. 37, 38, 39 and
40) show results of calculations. PE coefficient values obtained are presented
in Table 3. Additionally, values of the PE coefficient obtained for the optimal
drive function are also quoted in the table in order to facilitate comparison.
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Fig. 37. Trajectories of load for increased mass - second new interpolated drive function 
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Fig. 38. Trajectories of load for decreased mass - second new interpolated drive function 
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Fig. 39. Trajectories of load for increased length of the rope - new interpolated drive function
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Fig. 40. Trajectories of load for decreased length of the rope - new interpolated drive function
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Table 3. 
Comparison of PE coefficient values for the intermediate angle of slewing - 75° and the new 

interpolated function 

Fune- Value of PE coefficient [cm] 
tion nom. 1.05m I.Im 1.2m 0.9m 0.75m O.Sm 0.25m +IO +25 +50 -10 -25 -50 -75 

optm. 4.59 4.77 5.05 5.51 4.08 3.39 2.23 1.12 6.09 8.37 12.2 3.10 0.95 2.98 6.57 

inter. 5.35 5.53 5.80 6.25 4.89 4.18 3.11 2.19 6.83 9.10 13.0 3.90 1.96 2.76 6.20 

7. Final remarks 

Results presented in section 3 show the efficiency of the method of 
determining slewing drive functions based on an optimisation algorithm. For 
both I and II motions, the load was nearly motionless at the end of slewing. It 
is proved by Figs. 7 and 8 showing projections of load trajectories, Figs. 9 and 
1 O showing courses of kinetic energy of the load as well as by the value of the 
PE coefficient that is equal to 0.14 cm. The amplitude of load oscillations at 
the end of the motion was reduced from about 1 m for case I and from 1. 7 
m for case II to O.Om. 

Flexibilities of the supported structure of the crane, taken into account in 
section 4, had slight consequences on the quality of load positioning at the end 
of the motion. In both cases of slewing, the amplitude of final oscillations for 
the optimal drive function did not exceed a few centimetres. 

In section 5, the slewing function for the intermediate angle was 
determined using simple linear interpolation. This function is slightly 
different from the optimal function (Figs. 16 and 17). Load positioning at the 
end of the motion (Figs. 18 - 20) is also satisfactory. 

Detailed conclusions related to the investigation of sensitivity of load 
positioning at the end of the motion and the input in the form of the optimal 
drive function are formulated in section 6.2. 

In order to investigate sensitivity of positioning when the interpolated 
function is used as input, slewing by 75° has been assumed. The optimal 
functions for 60° and 90° were applied to determine this function. During 
simulations, it was proved that in this case of input, the behaviour for load was 
less propitious than for the optimal drive function. That is why the drive 
function was determined once again. The optimal functions for slewing by 
70° and 80° were taken as basic functions. This new drive function caused 
significant improvement in quality of load positioning. The value of the PE 
coefficient for nominal mass of the load and length of the rope decreased from 
11.67 cm (for basic slewing by 60° and 90°) to 5.35 cm (for basic slewing by 
70° and 80°), while the PF coefficient value for the optimal drive function is 
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equal to 4.59 cm. Sensitivity of load positioning for the new interpolated drive
function is similar to sensitivity for the optimal function.

In this paper, a coefficient of load positioning quality PE is proposed. It is
an attempt to quantitative evaluation positioning quality which allows for an
easy comparison of the efficiency of different drive functions. It may be
especially useful in constructing the ,,map of basic slewing functions". By
determining the boundary admissible value of the coefficient, one can simply
calculate ranges of change of mass of the load or change of length of the rope
for which satisfactory positioning quality can be obtained using only one
drive function.

The most important conclusions about the ,,map of basic slewing
functions" are:
1. By knowing drive slewing functions for selected angles one can, using

linear interpolation, determine the drive functions for intermediate angles
that ensure satisfactory quality of positioning.

2. By changing the interval between basic points of the map (by determining
basic functions for a smaller increment of slewing angles), quality of load
positioning at the end of the motion can be considerably improved.
Sensitivity of optimal and interpolated functions is then also similar.

3. The drive function may be determined only for maximal mass of the load
admissible in a given crane radius. Quality of load positioning for smaller
masses is better.

4. One drive function can be used for nominal and also for slightly shorter
lengths of the rope.

5. The proposed coefficient PE reflects well the quality of load positioning
and it can be useful constructing the ,,map of basic functions".
The method presented is helpful especially in controlling cranes that

execute certain recurrent operations, for instance those cranes working in
reloading railway terminals.

Manuscript received by Editorial Board, January 25.03, 2003
final version, 15.09, 2003.
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Dobór funkcji napędowych obrotu żurawia samojezdnego minimalizujących
wahania ładunku

Streszczenie

W pracy przedstawiono metodę doboru funkcji napędowych obrotu nadwozia żurawia
samojezdnego. Celem doboru było ograniczenie końcowych wahań ładunku. Przy zastosowaniu
prostego modelu żurawia wyznaczono, na drodze optymalizacji, funkcje napędowe dla wybranych
kątów i czasów obrotu nadwozia. Funkcje napędowe dla kątów pośrednich określono na drodze
interpolacji. Zamieszczono wyniki symulacji numerycznych przeprowadzonych dla modelu
żurawia uwzględniającego podatność układu nośnego i tłumienie w wybranych podukładach.
Porównano wyniki uzyskane dla funkcji napędowych określonych przy wykorzystaniu algorytmów
optymalizacji i interpolacji. Przedstawiono także próbę określenia wrażliwości pozycjonowania
ładunku na wybrane parametry eksploatacyjne. Zaproponowano wprowadzenie pojęcia wskaźnika
jakości pozycjonowania.


