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Nonlinearity of incomplete Boolean functions:
prioritizing spectra calculation

Piotr PORWIK

In this paper, a class of linear Boolean functions is analyzed. The Boolean function can be
represented as disjoint cubes or in the form of a truth vector. The primary purpose of this analysis
is to decide whether an incompletely defined function can be extended to a complete linear form.
A simple algorithm for generating all states of this function has been proposed if the Boolean
function can have a full representation. The algorithm is beneficial for large functions. The
proposed approach can be applied to completely and incompletely defined Boolean functions.
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1. Introduction

Incompletely defined Boolean functions are widely used because such forms
are flexible and convenient in many practical applications [2,3]. A proper defini-
tion of the Boolean function requires the knowledge to which class the Boolean
function belongs. The next question is how to find the extension of a given
partially defined Boolean function and realize the function in affine or linear
form. For an incompletely defined Boolean function, evaluating whether the
function can be realized as linear can be difficult, especially for larger func-
tions. These difficulties can be overcome. Spectral methods provide an efficient
representation of Boolean functions, allowing one to discover properties that
cannot be observed in their original domain. One of such method is the Fast
Walsh-Hadamard Transform (FWHT) [15]. The Walsh transform is straightfor-
ward and uses a butterfly algorithm, similar to the well-known Fourier transform.
Unfortunately, the main drawback of spectral techniques is the high computa-
tional cost for large Boolean functions. The FWHT, as well as the fast Möbius
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transform, have exponential complexity, increasing rapidly with the number of
variables of the Boolean function [5,17]. The aforementioned methods allow the
analysis of functions of up to 40 variables due to rapidly increasing memory
occupancy. Calculating the coefficients of the Walsh-Hadamard spectrum can be
implemented directly from a reduced representation of the Boolean function –
arrays of disjoint cubes. If the Boolean function is fully defined, then its linear
forms can also be recognized by known transformations, such as the Reed-Muller
or Möbius form. Unfortunately, the mentioned methods are useless when the
function is only partially defined [11]. When the function is incomplete, it is
essential to design an efficient method to construct the completely specified form
if possible.
In addition to spectral techniques, approaches based on multivariate poly-

nomials can be applied to measure nonlinearity of Boolean functions [4, 5], as
well. Another approach offers quantum computations with oracle [17]. Quantum
algorithms can also identify completely as well as incompletely defined linear
Boolean functions using a query to the oracle. This approach uses the property that
Boolean linear and affine functions are always balanced – the truth table of a func-
tion contains an equal number of 0’s and 1’s. In such cases, quantum algorithms
based on the Bernstain-Vazirani or Deutsch-Jozsa idea are employed [16, 17].
Bernstein-Vazirani’s algorithm (the one-query algorithm) can identify the linear
Boolean function using a single query to the oracle. The complexity of the prob-
lem is measured by the number of oracle queries required to discover the exact
form of the function. Classical computations would require 𝑂 (𝑛) oracle calls;
however, it can be solved using a single query to the oracle using Bernstein-
Vazirani’s quantum algorithm. Unfortunately, the direct use of this algorithm
does not allow the detection of an affine function [17]. If a function is partially
determined, the quantum technique allows the identification of a particular class
of incompletely specified Boolean affine functions with a success probability of
at least 2/3. The probability of success depends on the number of don’t cares in
a given function [17].
In the approach proposed in this paper, identifying a linear or affine Boolean

function is always possible. Moreover, in the case of an incompletely specified
function, it can be verified that the function has an expansion to a linear (affine)
form. These possibilities are advantages of the presented method. The suggested
in the paper spectral analysis overwhelms the limitations of other ways.

2. Boolean function

Let F2 be a Galois Field having the addition (modulo 2) operator ⊕. Such a
field is convenient for the processing of logic signals. The symbol + will be used
to denote the addition over integers and the domain of an 𝑛-variable Boolean
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function is denoted by the vector space (F𝑛
2, ⊕). Let B𝑛 be the vector space

of dimension 𝑛 over the field F𝑛
2. A Boolean function 𝑓 , of 𝑛 variables is the

mapping 𝑓 : F𝑛
2 → F2 or, in other words, 𝑓 : B𝑛 → B1. A Boolean function

𝑓 (𝑥𝑛−1, . . . , 𝑥1, 𝑥0) can also be interpreted as the output column of the truth table
of 𝑓 , i.e. a vectors of binary elements F𝑛

2 = {p1, . . . , p2𝑛}. This domain is a set of
2𝑛 binary vectors having elements: (0, 0, . . . , 0), (0, 0, . . . , 1), . . . , (1, 1, . . . , 1),
say in lexicographic order. Thus, the Boolean function is a set of ordered pairs
in which the first element is a binary input vector and the second element is
a constant, either 0 or 1. If the order of p𝑖 ∈ F𝑛

2 is fixed, then 𝑓 is uniquely
identified.
If the domain D of the Boolean function 𝑓 is B𝑛 then 𝑓 is a completely

specified. However if D  B𝑛 then 𝑓 is incompletely defined. If some values of
the function 𝑓 belong to the set B𝑛\D then 𝑓 is also incompletely defined. The
points where a value for 𝑓 is not assigned will be denoted as don’t care. The
binary vectors for which the function is undefined will be marked as 𝐷𝐶 cubes
and the power of the set 𝐷𝐶 will be marked as 𝑐𝑎𝑟𝑑 (𝐷𝐶) = 𝑑. The undefined
values of this Boolean function will be denoted by the symbol “–”. Hence, the
mapping 𝑓 : B𝑛 → B1 ∪ {−} is an 𝑛-variable incompletely specified function.

Definition 1 Let the number of arguments of the Boolean function 𝑓𝑘 be denoted
by 𝑛. The Boolean function 𝑓𝑘 (𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥1) is called affine if 𝑓𝑘 can be
represented in the form 𝑓𝑘 (𝑥) = 𝑎𝑛𝑥𝑛 ⊕ 𝑎𝑛−1𝑥𝑛−1 ⊕ . . . ⊕ 𝑎1𝑥1 ⊕ 𝑐, where 𝑎 𝑗 , 𝑐 ∈

{0, 1}, and 𝑘 = 𝑐 +
𝑛∑︁
𝑖=1

𝑎𝑖2𝑖. In particular, if 𝑐 = 0 then 𝑓𝑘 is a linear Boolean

function, so functions 𝑓𝑘 are either linear Boolean functions or their compliments.

Definition 2 Boolean function 𝑓 is not fully defined if # { 𝑓 (𝑥) = “–”} ­ 1 and
is weakly defined, when # { 𝑓 (𝑥) = “–”} ­ 2𝑛−1, where symbol # denotes the
cardinality of set, and symbol “−” denotes undefined place in the truth vector of
𝑓 , so 𝑓 : 𝑓 𝑛 → 𝑦 ∈ {0, 1,−}.

There are various Boolean forms such as linear, bent, majority, balanced,
threshold, and many others [6, 13]. The linearity (or nonlinearity) of binary
functions is widely utilized in cryptography, data encryption, the development
and analysis of ciphers, the generation of error-correcting codes, Reed-Muller
forms, and many other domains [5, 6, 16, 17].
In some cases, a linear function is desirable. In others, it is not. For example,

linear structures are highly desirable in optimizing digital circuits, while nonlinear
functions are employed in encryption. So knowing the class of the function seems
to be necessary.
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3. The Walsh-Hadamard transform

In many cases, particular properties of the original problem can be more
conveniently interpreted when transferred isomorphically from the original space
to another one. The best example is the well-known Fourier Transform. Spectral
or Fourier analysis is widely used in mathematics, and engineering [14, 15]. The
theory of Fourier analysis is complex and sometimes complicated, althoughmany
algorithms are derived from it. In this paper, the more convenient discrete Walsh-
Hadamard transform will be used. In practice, it is a discrete Fourier transform in
the Walsh basis, and the Walsh functions are ordered according to the Hadamard
rules [1, 15]. Given this approach, matrix notation offers a simple way to define
such discrete functions.
DiscreteWalsh functions of order 𝑛, denoted as𝑤𝑎𝑙 (𝑤, 𝑡),𝑤, 𝑡 = 0, . . . , 2𝑛−1

are defined as the rows of the 2𝑛 × 2𝑛 Hadamard matrix [15]:

H𝑛 =

𝑛⊗
𝑖=1

H1 = H1 ⊗ H𝑛−1 = H1 ⊗ . . . ⊗ H1︸            ︷︷            ︸
𝑛-times

, (1)

where H0 = [1], H1 =
[
1 1
1 −1

]
, and ⊗ denotes the Kronecker product.

In this notation,𝑤 identifies the index of theWalsh function, while 𝑡 indicates a
discrete point within the function’s determination interval. The Hadamard matrix
comprises discrete Walsh functions ordered in the Hadamard order.
A Boolean function 𝑓 , represented by the binary truth-vector 𝚫 𝑓 =

[𝑦0, . . . , 𝑦2𝑛−1]𝑇 , can be transformed from the Boolean domain {0, 1} into the
spectral domain. If the values of the truth vector of the Boolean function 𝑓 are
encoded using the mapping {0, 1} → {1,−1}, then instead of 𝚫 𝑓 , we denote such
a vector as Y 𝑓 . For a given vector Y 𝑓 , the inner product 𝑠𝑖 =

〈
Y 𝑓 , 𝑤𝑎𝑙 (𝑖, 𝑛)

〉
gives the correlation between the Boolean function 𝑓 and the appropriate 𝑖-th
Walsh function, where 𝑖, 𝑛 = 0, . . . , 2𝑛−1. It means that a complete forward
Walsh-Hadamard Transform is defined as:

s 𝑓 = Y 𝑓 H𝑛 (2)

and

𝑠𝑖 =

2𝑛−1∑︁
𝑛=0

𝑦𝑖 𝑤𝑎𝑙 (𝑖, 𝑛), 𝑖 = 0, . . . , 2𝑛−1 . (3)

Variables 𝑛 of a fully defined Boolean function 𝑓 can be equivalently represented
by a complete set of spectral coefficients. It follows from the fact that spectral
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coefficients are specifically associated with input variables of the function 𝑓 :

𝑓 (𝑥𝑛−1, . . . , 𝑥1, 𝑥0) =
1
2𝑛+1

[
2𝑛 − 𝑠0 − 𝑠1 · (−1)𝑥0 − 𝑠2 · (−1)𝑥1

− 𝑠3 · (−1)𝑥0⊕𝑥1 . . . − 𝑠2𝑛−1 · (−1)𝑥0⊕𝑥1,...,⊕𝑥𝑛−1
]
. (4)

Spectral coefficients can be applied in the process of function recognition. The 𝑠0
coefficient is directly related to the number of minterms of Boolean function, then
𝑠0 = 2𝑛−2𝑎 [8]. The number of minterms having the value of 1 will be denoted
by 𝑎. The Walsh-Hadamard Transform can also be organized as a “fast” form
(FWHT), similarly, as well-known, the FFT (Fast Fourier Transform) [10, 15].
Computational complexity and space complexity are the same as in FFT:𝑂 (𝑛2𝑛),
and 𝑂 (2𝑛), respectively [1].
Instead of the classical representation of a Boolean function by truth vector, a

function can be represented more compactly using disjoint cubes [7–9]. This rep-
resentation is advantageous for large Boolean functions. Representing functions
as cubes, however, requires a different method of Walsh spectrum calculating.

4. Disjoint cubes of Boolean function

Definition 3 The true (false) set of the Boolean function 𝑓 is denoted by 𝑇 𝑓 (𝐹 𝑓 ).
All the true vectors of 𝑓 are denoted as 𝑇 𝑓 =

{
𝑥 ∈ {0, 1}𝑛 : 𝑓 (𝑥) = 1

}
– it is the

set of ON cubes. All the false vectors of 𝑓 are denoted as 𝐹 𝑓 = {𝑥 ∈ {0, 1}𝑛 :
𝑓 (𝑥) = 0} − it is the set of OFF cubes.

For large Boolean functions, even a fast transform is not helpful due to the
complexity of the problem. For such functions, representation employing disjoint
cubes is more efficient. Based on previous considerations, the following subset is
additionally introduced:

DC = {𝑥 ∈ {0, 1}𝑛 : 𝑓 (𝑥) = “–”} , (5)

where the sign “–” is the don’t care (DC) element. Elements of the subsets ON
and DC can be combined into cubes. The remaining values form the OFF cubes.
Cubes should be disjoint – it means that cubes intersection is prohibited [9].
An example of disjoint cubes of ON and DC type is shown in Karnaugh’s map
in Fig. 1. The OFF cube is not necessary. Therefore, it is not selected.
Based on a method described informally in [8], let 𝑘 be the number of disjoint

cubes of the type ON. Let 𝑤 be the number of disjoint cubes of the DC type. Let
symbol 𝑝 denote the number of “–” type elements in the cube.
The cube’s index for which the spectrum is determined is denoted by 𝑗 .

Spectral coefficients of the function 𝑓 form the vector s 𝑓 = [𝑠0, . . . , 𝑠2𝑛−1].
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Figure 1: The Karnaugh map of the Boolean function 𝑦 = 𝑓 (𝑥3, 𝑥2, 𝑥1), where disjoint
ON andDC cubes are indicated. TheOFF cube was not selected. Optimal cube selection
(left) and non optimal (right)

Spectrum will be determined separately for the DC and ON cubes only:

𝑠𝑂𝑁
0( 𝑗) = 2

𝑛 − 2𝑝+1, 𝑠𝐷𝐶
0( 𝑗) = 2

𝑛−1 − 2𝑝, (6)

𝑠𝑂𝑁
1( 𝑗) =

{
(−1)1+𝑥1 · (2𝑝+1) for 𝑥1 ≠ “–”,
0 otherwise;

(7)

𝑠𝐷𝐶
1( 𝑗) =

{
(−1)1+𝑥1 · 2𝑝 for 𝑥1 ≠ “–”,
0 otherwise;

(8)

𝑠𝑂𝑁
2( 𝑗) =

{
(−1)1+𝑥2 · (2𝑝+1) for 𝑥2 ≠ “–”,
0 otherwise;

(9)

𝑠𝐷𝐶
2( 𝑗) =

{
(−1)1+𝑥2 · 2𝑝 for 𝑥2 ≠ “–”,
0 otherwise;

(10)

𝑠𝑂𝑁
12( 𝑗) =

{
(−1) (1+𝑥1+𝑥2) · (2𝑝+1) if 𝑥1 ≠ “–” ∧ 𝑥2 ≠ “–”,
0 otherwise;

(11)

𝑠𝐷𝐶
12( 𝑗) =

{
(−1) (1+𝑥1+𝑥2) · 2𝑝 if 𝑥1 ≠ “–” ∧ 𝑥2 ≠ “–”,
0 otherwise;

(12)

. . . (13)

𝑠𝑂𝑁
123...𝑛( 𝑗) =

{
(−1)1+

∑𝑛
𝑚=1 𝑥𝑚 · (2𝑝+1) for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ≠ “–”,

0 otherwise;
(14)

𝑠𝐷𝐶
123...𝑛( 𝑗) =

{
(−1)1+

∑𝑛
𝑚=1 𝑥𝑚 · 2𝑝 for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ≠ “–”,

0 otherwise,
(15)

where 𝑥𝑖 ∈ {0, 1,−}. The individual elements of the spectrum s 𝑓 = [𝑠0, . . . , 𝑠2𝑛−1]
are determined as follows. Zero coefficient:

𝑠0 =
©­«
𝑤+𝑘∑︁
𝑗=1

𝑠0( 𝑗)
ª®¬ − (𝑘 − 1) · 2𝑛 − 𝑤 · 2𝑛−1, (16)
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and another coefficient:

𝑠𝑖 =
©­«
𝑤+𝑘∑︁
𝑗=1

𝑠𝑖 ( 𝑗)
ª®¬ . (17)

The above calculations can be performed separately or in parallel. Table 1 shows
the steps for calculating the spectrum for a function represented by disjoint cubes.

Table 1: Spectrum of the Boolean function represented by disjoint cubes

𝑥3 𝑥2 𝑥1
cube
type 𝑠0 𝑗 𝑠1 𝑗 𝑠2 𝑗 𝑠12 𝑗 𝑠3 𝑗 𝑠13 𝑗 𝑠23 𝑗 𝑠123 𝑗

index
of cube

1 – 0 ON 4 –4 0 0 4 4 0 0 𝑗 = 1
0 – 1 ON 4 4 0 0 –4 4 0 0 𝑗 = 2
0 1 0 DC 3 –1 1 1 –1 –1 1 1 . . .
1 – 1 DC 2 2 0 0 2 –2 0 0 𝑗 = 𝑤 + 𝑘

s –3 1 1 1 1 5 1 1

Representation of the disjoint cubes from Table 1 employing the Karnaugh
map is depicted previously in Fig. 1 (left). A similar table can be constructed for
non-optimal cubes selection, see Fig. 1 (right). In such a case, the table will have
7 rows with different local spectral coefficients, but a final spectrum s is the same
as in Table 1. In most cases, the number of cubes of the Boolean function is much
smaller than 2𝑛. The value of 2𝑛 is critical in the algorithms based on the FWHT
approach. The cube-based spectrum determination is devoid of these drawbacks,
but in some cases, the computational complexity may be less favorable than in
the FWHT method. This is shown below.

5. The spectral identification of a Boolean function

Corollary 1 Any fully defined linear Boolean function 𝑓 of 𝑛 variables, encoded
by means of the mapping {0, 1} → {1,−1}, is characterized by the following
unique Walsh-Hadamard spectrum distribution [12]:

𝑠𝑖 =

{
(−1)𝑐 × 2𝑛 for 𝑖 = (𝑘 − 𝑐)/2,
0 otherwise ,

(18)

where 𝑘 and 𝑐 have the same meanings as previously and 𝑖 = 0, 1, . . . , 2𝑛 − 1.

Let Boolean function 𝑓 is undefined in one point, so 𝑓 can be extended to a
linear (affine) form, if coordinates of some 𝑖-th row ofH𝑛, and the coordinates of
Y 𝑓 are the same (or complementary), except for the undefined coordinate. This
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means that the 2𝑛−1 coordinates of the 𝑖-th row ofH𝑛 andY 𝑓 are the same (𝑐 = 0)
or complementary (𝑐 = 1), hence either 𝑠𝑖 = (2𝑛 − 1) × (1) = 2𝑛 − 1, if 𝑐 = 0, or
𝑠𝑖 = (2𝑛 − 1) × (−1) = −(2𝑛 − 1), if 𝑐 = 1. If the Boolean function 𝑓 satisfies the
assumptions of Corollary 1, then this function can be formed as an affine (linear)
if undefined point in the vector 𝚫 𝑓 is replaced by a value 0 (for 𝑐 = 1) or 1 (for
𝑐 = 0).

Observation. Let 𝑓 be a partial Boolean function, represented by encoded truth
vector [𝑦0, 𝑦1, . . . , 𝑦2𝑛−1], where 𝑦𝑖 ∈ {+1,−1, 0}. Let 𝑓 be undefined at 𝑑 points,
𝑦𝑖 = 0 for 𝑖 = 1, . . . , 𝑑. Function 𝑓 can be extended up to the affine (linear) as
follows:

a. If all undefined points are located within in the set 𝑇 𝑓 , then 𝑠0 = +𝑑.

b. If all undefined points are located within in the set 𝐹 𝑓 , then 𝑠0 = −𝑑.

c. If all undefined points are located in the set 𝑇 𝑓 ∪ 𝐹 𝑓 , then 𝑠0 ≠ 𝑑 and for
some 𝑖, 𝑠𝑖 = ±(2𝑛 − 𝑑) = (−1)𝑐 · (2𝑛 − 𝑑).

6. Algorithm of extension of Boolean function to linear form

Input: The truth-vector 𝚫 𝑓𝑘 of the 𝑛 variable Boolean function 𝑓𝑘 . The number of
undefined points 𝑑 in the vector 𝚫 𝑓𝑘 .
Output: All extensions (if any exist) of the partially defined Boolean function 𝑓 .

1. For a given Boolean function, determine how the Walsh-Hadamard spec-
trum will be calculated:

a. If spectrum will be calculated by the Walsh-Hadamard Trans-
form, then: encode the truth-vector according to the mapping 𝚫 𝑓𝑘 :
{0, 1,−} → {1,−1, 0}, so 𝚫 𝑓𝑘 → Y𝑘 . Calculate the Walsh-Hadamard
spectral coefficients 𝑠𝑖 ∈ s, 𝑖 = 0, 1, . . . , 2𝑛 − 1 of the vector Y𝑘 , by
using (3) or the FWHT.

b. If the spectrum is calculated by disjoint cubes, then: spectral co-
efficients are calculated from the formulas (6)–(17). Finally, the same
spectral coefficients 𝑠𝑖 ∈ s, identically ordered, are computed.

2. Calculate the values:

a. {𝑠𝑖} = max{|𝑠𝑖 |, 𝑖 = 0, . . . , 2𝑛 − 1},
b. 𝑧 = #{𝑠𝑖}, where symbol # denotes the cardinality of set.

3. 𝑗 = 1.
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4. 𝑖 = arg
𝑗=1,...,𝑧

{(𝑠𝑖) 𝑗 }, where 𝑗 denotes current number of the element 𝑠𝑖 with

the subscript 𝑖.

5. if 𝑠𝑖 ≠ ±(2𝑛 − 𝑑) then the function 𝑓 can not be extended up. Go to step 9.

6. if 𝑠
𝑖
> 0 then 𝑐 = 0 else 𝑐 = 1.

7. 𝑘 = 2𝑖 + 𝑐.

8. 𝚫 𝑓𝑘 =
1
2 [1 + (−1)1−𝑐 · 𝑤𝑎𝑙 (𝑘, 𝑡)].

9. 𝑗 = 𝑗 + 1.
10. if 𝑗 < 𝑧, then go to step 4.

11. End of the algorithm.
The advantage of the above algorithm is that it can be applied to fully defined

and incompletely defined Boolean functions. It does not matter which method is
used to calculate the spectral coefficients. For large functions, a method based on
disjoint cubes should be preferred because, in most cases, the number of cubes
is much smaller than 2𝑛. The spectrum of smaller functions can be calculated
directly using the Fast Walsh-Hadamard (FWHT), as it is simpler in software
implementation.

Example 1 Let the truth-vector of a given partial Boolean function 𝑓𝑘 have the
form 𝚫 𝑓𝑘 = [−−1 0−− 0 1]. Number of the undefined points of 𝑓𝑘 is equal 𝑑 = 4.
Number of input variables is 𝑛 = 3. The Walsh-Hadamard transform forms the
vector of spectral coefficients: s 𝑓𝑘 = [0 0 0 0 0 − 4 0 4].
Therefore {𝑠5, 𝑠7} = max

𝑖=0,...,2𝑛−1
{|𝑠𝑖 |}, 𝑠5 = −2𝑛 + 𝑑 = −4 and 𝑠7 = 2𝑛 − 𝑑 = 4.

Hence, function 𝑓 can be extended up to its two forms:
𝑠𝑖=5 < 0 : 𝑘 = 2𝑖 + 𝑐 = 2𝑖 + 1 = 2 × 5 + 1 = 11.
𝑠𝑖=7 > 0 : 𝑘 = 2𝑖 + 𝑐 = 2𝑖 + 0 = 2 × 7 + 0 = 14.
Taking into account above discussion, we can see that two functions have

been found: 𝑓11 = 1 ⊕ 𝑥2 ⊕ 𝑥1, 𝚫 𝑓11 = [10100101] and 𝑓14 = 𝑥3 ⊕ 𝑥2 ⊕ 𝑥1,
𝚫 𝑓14 = [01101001].
It may also be observed that after mapping {0, 1} → {1,−1]} the function 𝑓11

has equivalent representation to the discrete Walsh function (−1) ·𝑤𝑎𝑙 (5, 𝑡) from
the matrix −H3, and that the function 𝑓14 is equivalent to the function 𝑤𝑎𝑙 (7, 𝑡)
from the same matrix H3.

An algorithmic search of affine (linear) functions has been significantly improved.
It is important because, instead of processing all possible Boolean functions (for
a given 𝑛), only a few functions have to be checked. Brute force search is not
practical.
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Example 2 If the truth vector of a given Boolean function is performed as 𝚫 𝑓 =

[1 − − − − − − − − − − − − − − − 1 − − − − − − − −0 − − − − − −], (𝑛 = 5) then
on the basis of proposed algorithm, in a single algorithm pass, eight affine binary
functions are recommended: 𝑓3, 𝑓7, 𝑓11, 𝑓15, 𝑓17, 𝑓21, 𝑓25, 𝑓29 = 1 ⊕ 𝑥4 ⊕ 𝑥3 ⊕ 𝑥2.
For the vector 𝚫 𝑓 = [01 − 00110 − 001100110 − 1100101 − 00110] we obtain
only a single linear function (𝑠𝑥=27 = +32), which can finally be represented as
the binary vector [01100110100110011001100101100110].

7. The complexity of the algorithms

As it was explained, the complexity of the Fast Walsh-Hadamard transform
requires 𝑂 (𝑛2𝑛) additions and storing 𝑂 (2𝑛) elements at each of 𝑛 calculation
stages. The same computation and space complexity offer methods based on
multivariate polynomials or Fast Möbius Transform [5]. Unfortunately, for larger
functions, the Hadamard 2𝑛 × 2𝑛 matrices H𝑛 are inconvenient to use. For this
reason, the cube representation of the Boolean function is preferred as the more
compact description of large functions.
Disjoint cubes can be generated based on the method detailed presented

in [8, 9]. Spectral coefficients are directly computed based on ON and DC cube
representation only. From Eqs. (6)–(17) follows, the computational time will
increase as the function variables (𝑛) increase, as well as the total number of
cubes (𝑒 = 𝑤 + 𝑘). For any cube, the 2𝑛 separate spectral coefficients 𝑠𝑖 are
computed (see Table 1). For 𝑒 cubes, 𝑒 ·2𝑛 calculations are performed. If we omit
simple addition operations, then for every cube we are dealing with calculations
of the type 𝑒 · (−1)𝑎 · 2𝑏 with approximate 𝑂 (1) computational complexity for
each 𝑠𝑖 spectral coefficient, 𝑖 = 0, . . . , 2𝑛 − 1. The computational complexity of
complete spectral coefficients calculations is 𝑂 (𝑒2𝑛). It means that for 𝑒 ¬ 𝑛,
the computational complexity of the cube-based method is smaller than for the
FWHT method. For 𝑛 > 𝑒, the computational complexity of the cube-based
procedure increases, and it is worse than for FWHT. The cube method requires
storing 𝑂 (2𝑛) elements for each cube because calculations can be performed
“in place”. However, the cube-based method overcomes the limitations of large
square matrices H𝑛 of size 2𝑛 × 2𝑛.
In some cases where a given cube contains 𝐷𝐶 points, the spectral coefficient

is zero, and calculations are not needed (see Eqs. (6)–(17)). The computational
complexity is then more favorable than the Walsh-Hadamard transform.
It is known that Boolean functions can be represented in different ways [3, 4,

9, 10, 13], for example as:
• ANF – Algebraic Normal Form,

• NNF – Numeric Normal Form,
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• TT – Truth Table,

• Walsh spectral coefficients,

• Disjoin cubes.

The NNF and ANF representations will not be analyzed here. The interested
reader may find extensive literature on this topic. The most important positions
are given in the References. Figure 2 shows that Boolean function linearity eval-
uation is conducted using the truth table (TT) of 𝑓 . If 𝑓 is represented as NNF
or ANF form, then TT must first be built with a cost of 𝑂. Similarly, if linearity
of the function will be evaluated based on the polynomial form. In mentioned
cases, only complete Boolean functions can be evaluated, which is denoted by the
C letter. Linearity of functions, evaluated by Walsh spectral coefficients (FWHT
or cube-based representation), allows analysis of both complete (C) and incom-
plete (I) Boolean functions. This is an advantage of spectral methods because,
as shown, it enables the extension of incomplete functions to complete version
with the possibility of obtaining a linear form, if possible. As a reminder, in
Fig. 2 the brute force method is also mentioned, but it has no practical signifi-

Figure 2: Different representation of a Boolean function 𝑓 (𝑥𝑛, . . . , 𝑥1),
along with complexity of transformation to True Table (TT) form and
various final representations of function 𝑓
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cance. As we know, for functions of 𝑛 variables, 22𝑛 different Boolean functions
can be constructed, of which only 2𝑛+1 are linear functions and their comple-
ments. The full review method is costly and ineffective, especially for the large 𝑛.
Quantum algorithms form a separate group of Boolean function classifications.
However, quantum algorithms use different mechanisms than Walsh-Hadamard
spectrum-based or disjoint cube-based approaches. These algorithms’ taxonomy
is also shown in Fig. 2.

8. Conclusion

Checking whether a given fully specified Boolean function can be represented
according to Definition 1 stated in the Section 2, is very inconvenient. These
problems can be overcome by spectral analysis. As shown, the spectral method
can be applied to both fully and incompletely defined functions. A fast algorithm
will generate its full representation if a partially specified Boolean function can
be extended. The calculation of the partial spectra for each cube can be conducted
independently if cube based technique is employed. Thus, the computations can
be performed in parallel, which speeds up the calculations, especially for large
Boolean functions. The algorithm proposed in this work can find all linear and
affine extensions obtained from the original, not fully defined Boolean function
in a single pass. It should be considered a unique advantage of the method.
Spectrum-based algorithms have advantages over methods based on oracle or
polynomial computing.
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