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Abstract: Optimal estimation of water balance components at the local and regional scales is essential for many
applications such as integrated water resources management, hydrogeological modelling and irrigation scheduling.
Evapotranspiration is a very important component of the hydrological cycle at the soil surface, particularly in arid and
semi-arid lands. Mapping evapotranspiration at high resolution with internalised calibration (METRIC), trapezoid
interpolation model (TIM), two-source energy balance (TSEB), and soil-plant-atmosphere and remote sensing
evapotranspiration (SPARSE) models were applied using Landsat 8 images for four dates during 2014–2015 and
meteorological data. Surface energy maps were then generated. Latent heat flux estimated by four models was then
compared and evaluated with those measured by applying the method of Bowen ratio for the various days. In warm
periods with high water stress differences and with important surface temperature differences, METRIC proves to be
the most robust with the root-mean-square error (RMSE) less than 40 W∙m–2. However, during the periods with no
significant surface temperature and soil humidity differences, SPARSE model is superior with the RMSE of 35 W∙m–2.
The results of TIM are close to METRIC, since both models are sensitive to the difference in surface temperature.
However, SPARSE remains reliable with the RMSE of 55 W∙m–2 unlike TSEB, which has a large deviation from the
other models. On the other hand, during the days when the temperature difference is small, SPARSE and TSEB are
superior, with a clear advantage of SPARSE serial version, where temperature differences are less important.
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INTRODUCTION

Evapotranspiration (ET) is the important element of hydrological
balance; it accounts for almost two-thirds of the global return of
precipitation to the atmosphere [BRUTSAERT 1982]. This propor-
tion is higher in arid and semi-arid regions [CHEHBOUNI et al.
2008]. In these regions, irrigation consumes more than 80% of the
available water [WWAP 2012]. However, the efficiency of this use
could be well improved by reducing water losses through
evaporation into the atmosphere, infiltration to groundwater
and by good calculation of irrigation water requirements. This
optimisation of water use has a significant impact on agricultural
productivity by reducing costs and increasing production.
Evapotranspiration (ET) can be measured over time and at

a given point in an agricultural plot, but it is very difficult or
impossible to measure on a large scale, such as in the watershed.
Remote sensing is an appropriate tool for this monitoring, as it
allows the spatialisation of ET by monitoring vegetation growth
or by detecting water stress.

Many studies have compared and evaluated the remotely
sensed-based models. This studies have shown a large difference in
the results of latent heat flux compared to ground data, with root-
mean-square errors (RMSE) ranging from 60 W∙m–2 [TIMMERMANS
et al. 2007] to 150 W∙m–2 [CHOI et al. 2009]. The differences can be
explained by several factors such as the poor adaptation of these
algorithms to the fields studied (for example, the Priestley-Taylor
parameter (α) used for estimating the latent heat flux (LE) from
vegetation ranging from 1.26 to 1.8 depending on climate, or the xg
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coefficient for estimating soil heat flux G ranging from 0.2 to 0.4).
So, the contextual models are very sensitive to the difference in
surface temperature between the two extremes (dry and wet
boundary). These models lead to erroneous results when the
difference between surface and air temperature is low, or the
sensitivity of pixel-by-pixel models to the vegetation index (NDVI),
with LE values exploding in extremes, or even atmospheric
corrections that rely on algorithms adapted to regions and not
others as well as the quality of infrared images, poses problems for
some sensors like the band 11 of Landsat 8 thermal infrared sensor
(TIRS). These errors in the estimation of surface temperature (Ts)
can also lead to errors in the estimation of surface emissivity (1%
error in the emissivity value causes an underestimate of Ts of
approximately 0.4 to 0.8°C) [VIDAL, PERRIER 1990].

The objective of this work is to compare and evaluate the
relative performance of four thermal infrared (TIR) algorithms
derived from remote sensing data over an irrigated perimeter in
a semi-arid climatic context with heterogeneous land cover to
estimate surface energy flux, including latent heat flux, which can
be converted into actual daily ET and water stress degree in order
to provide an adequate and effective solution to water managers
and especially irrigation scheduling.

MATERIALS AND METHODS

STUDY AREA

For this work, we have selected a pilot site which corresponds to
the agricultural areas of the plain of Habra and which is a sub-
littoral depression of Oran. This site is located in the north-west
of Algeria between the longitudes 0°15'42" W and 0°7'6" E and
latitudes 35°31'34" N and 35°44'30" N (Fig. 1). This plain houses
the irrigated perimeter of Mohammadia, known by citrus
cultivation and also called “the plain of citrus fruits”. The selected

region is part of the immense plain of the Macta (Fig. 1) with an
area of 14,500 km2 [BENZATER et al. 2019], communicating with
the Mediterranean Sea by a narrow channel. The soils of the
Habra plain consist of sedimentary formation with variable
texture: alluvial-colluvial, alluvial, or rarely colluvial. These
formations are distributed in less regular and homogeneous
entities with a salinity of 8–16 mS∙cm–1 at a depth greater than
50 cm and with low leaching [FELLAH et al. 2021]. The study site is
located in a semi-arid area of a Mediterranean climate
characterised by a wet and cold period (minimum air temperature
(Ta) lies between 6 and 8°C) in late fall and winter, and another
dry and warm period (maximum Ta about 42°C) in late spring
and summer. The average annual rainfall is approximately
450 mm [ELOUISSI et al. 2017].

The choice of this selected area is dictated by the existence
of two water extremes between wet and dry lands, in particular
the marshes of Macta and the irrigated parcels of Habra, and by
the availability of agrometeorological data at the stations
located on the study site, namely the Mohammadia, Shaouria,
Bouhenni and Sidi Abdelmoumen stations, and its virtually flat
topography, which greatly simplifies the application of the four
models.

DATA USED

Meteorological data

The meteorological data used in this study (Tab. 1) are obtained
from the network of the National Office of Meteorology (Fr.
Office National de Météorologique, ONM) and the National
Water Resources Agency (Fr. Agence Nationale des Ressources
Hydrauliques, ANRH). However, data from Mohammadia, Sidi
Abdelmoumen, Menasria and Shaouria ONM meteorological
stations are used, with the Landsat 8 satellite measurements, to
characterise the water status over the Habra plain.
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Fig. 1. Location and land use land cover of Landsat 8 imagery acquired on September 1, 2014 (DOY 244) of the study area; DOY = day of year; source:
own elaboration based on Landsat satellite images from Earth Explorer [USGS undated a]

260 Evaluating four remote sensing based models to estimate latent heat flux in semi-arid climate for heterogeneous...



The available data are:
– air temperature at 2 m at the scale of the minute for the satellite
shooting days;

– soil temperatures (0.5 and 1 m);
– daily rainfall of the month of satellite shooting days;
– psychrometric temperatures at 2 m (wet thermometer and dry
thermometer);

– dew point temperature;
– air water vapour pressure;
– atmospheric pressure;
– air relative humidity;
– global radiation at hourly intervals of satellite shooting days;
– wind speed at 2 m.

Validation data

Validation data are the air temperature at 0.5 and 2.5 m (chromel-
alumel thermocouples) and the relative humidity at 0.5 and 2.5 m
(Vaisala capacitive sensors, Model HMP35D).

Satellite data

The use of satellite data has the advantage of providing near-daily
spatio-temporal tracking of most variables of the soil-vegetation-
atmosphere interface. These are variables characteristic of the
atmosphere (radiative, thermodynamic and mechanical), vegeta-
tion (structural, radiative and physiological) and soil (thermo-
dynamic and hydraulic). The satellite dataset consists of four
images acquired by the Landsat 8 OLI/TIRS satellite sensor
between September 2014 and March 2015.

PREPROCESSING OF SATELLITE IMAGES

Atmospheric correction in the visible, and near infrared bands

Radiometric and atmospheric corrections were made using
FLAASH (fast line-of-sight atmospheric analysis of spectral
hypercubes) ENVI software module. This is a correction
approach using five-dimensional look-up tables (LUT) [KAUFMAN
et al. 1997; STAENZ et al. 2002], namely the wavelength, the pixel
position, atmospheric water, terrain elevation and optical
thickness of the atmosphere at 550 nm. The latter is estimated

according to visibility (meteorological data). MODTRAN 4 radia-
tive transfer algorithm [BERK et al. 1999] is used for the estimation
of surface reflectance.

Atmospheric correction in the thermal infrared

Several methods exist to correct satellite data in the thermal
infrared (TIR) of atmospheric effects. We can either use
a radiative transfer code in the atmosphere such as MODTRAN
(moderate spectral atmospheric resolution transmittance) [BERK
et al. 1999] to estimate the various contributions of the
atmosphere, or we can use semi-automatic methods. Empirical
studies are based on differences in absorption by the atmosphere
between two near spectral bands, this is the case of the split-
window method. In this work, we chose to use the MODTRAN
4 atmospheric radiative transfer code to correct the radiance in
the TIR Landsat sensor.

Table 1. Meteorological conditions during the image acquisition of Landsat 8 OLI/TIRS on the selected days

Parameter at 10H38 (GMT) Unit 01.09.2014
(DOY 244)

19.10.2014
(DOY 292)

22.12.2014
(DOY 356)

12.03.2015
(DOY 071)

Relative humidity % 34.4 18 79 40

Air temperature °C 31 32.8 11.9 21.1

Incoming shortwave radiation W∙m–2 796 647 431 740

Atmospheric pressure kPa 101.32 101.26 102.46 101.47

Atmospheric radiation W∙m–2 402 331 246 388

Wind speed m∙s–1 3 1.8 0.4 1.8

Atmospheric transmittance – 0.73 0.71 0.75 0.77

Relative sunshine duration – 0.83 0.81 0.62 0.69

Potential evapotranspiration mm 4.05 5.31 1.02 4.61

Explanations: 10H38 = 10 h 38 min, GMT = Greenwich Mean Time, DOY = day of year.
Source: own elaboration based on National Office of Meteorology and the National Water Resources Agency.

Table 2. The spectral bands of Landsat 8 OLI/TIRS instrument

Spectral band Wavelength
(µm)

Resolution
(m)

1 – aerosols 0.433–0.453 30

2 – blue 0.450–0.515 30

3 – green 0.525–0.600 30

4 – red 0.630–0.680 30

5 – near infrared 0.845–0.885 30

6 – medium infrared 1 1.560–1.660 30

7 – medium infrared 2 2.100–2.300 30

8 – panchromatic 0.500–0.680 15

9 – cirrus 1.360–1.390 30

10 – medium infrared 10.30–11.30 100

11 – medium infrared 11.50–12.50 100

Source: own elaboration based on Landsat Missions [USGS undated b].
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Determination of input parameters

On-board radiometers measure spectral radiance in the visible,
near infrared, mid-infrared and thermal infrared at the top of the
atmosphere; these elementary radiance data are converted into
albedo (r), vegetation index (NDVI) and surface temperature (Ts).
The data used are Landsat 8 OLI/TIRS imagery. The spectral
bands of the two sensors are provided in digit number (encoded
in 8-bit) which are transformed into exo-atmospheric spectral
radiance (L"sat (λ)) in the optical and thermal domains. We use
the linear formula:

L"satð�Þ ¼ A CN þ B ð1Þ

where: L"sat (λ) = exo-atmospheric spectral radiance, CN = the
digit number, A and B = the calibration coefficients.

Spectral radiance is converted after atmospheric correction
into surface reflectance then this later is used to calculate albedo
(r) and vegetation index (NDVI).

The albedo (r) is calculated by the adapted (for Landsat 8)
formula proposed by LIANG et al. [2002]:

r ¼ 0:356r2 þ 0:13r4 þ 0:373r5 þ 0:085r6 þ 0:072r7 � 0:0018 ð2Þ

where: r = albedo, r2, r4, r5, r6 and r7 = respectively the reflectance
in bands 2, 4, 5, 6 and 7 of Landsat 8.

The vegetation index is calculated from surface reflectance
in red and near infrared. The values obtained for a terrestrial
surface are significant and correspond to physical reality (0–1),
unlike those obtained from the digit number. Normalised
vegetation index was calculated using the following equation:

NDV I ¼
NIR � R

NIRþR
ð3Þ

which corresponds in the case of Landsat 8 to:

NDV I ¼
r5 � r4

r5 þ r4

ð4Þ

where:NDVI = normalised difference vegetation index,NIR = near
infrared band, R = red band, r4, r5 = respectively the reflectance in
the bands 4 and 5 of Landsat 8.

Surface temperature

The surface temperature (Ts) is deduced from the thermal
infrared spectral radiance (L"sat(λ)). This later is expressed by
using the following equation [BARSI et al. 2005]:

L"sat �ð Þ ¼ ½"oL� Tsð Þ þ 1 � "oð ÞL#atm �ð Þ��� þ L"atm �ð Þ ð5Þ

where: Lλ(Ts) = spectral radiance of the surface, τλ = spectral
transmissivity of the atmosphere, L#atm(λ) = atmospheric radia-
tion received by the surface, L"atm(λ) = radiation received by the
sensor, εo = surface emissivity that is estimated as a logarithmic
(log) function of NDVI vegetation index using VAN DE GRIEND
and OWE [1993] formula:

"o ¼ 1:0094þ 0:047log NDV Ið Þ ð6Þ

Atmospheric parameters (τλ, L#atm(λ), L"atm(λ)) are calculated
using the on-line atmospheric correction parameters calculator

[BARSI et al. 2005]. These parameters make it possible to deduce
the corrected spectral radiance of the surface (Lλ(Ts)) by inversion
of the Equation (5). The surface temperatures (Ts) are finally
obtained as a function of these radiances using Planck’s formula
[CHANDER et al. 2009]:

Ts ¼
1321:08

log 774:89
L� Tsð Þ

þ 1
� � ð7Þ

MODELS

The estimation of optical and thermal remote sensing ET has
been the subject of many methodological approaches over the
past thirty years. Several approaches have been developed using
optical and thermal remote sensing to estimate ET, next, we cite
three categories of models.

1. Models that use simple semi-empirical relationships to
link daily ET to instantaneous surface temperature measurement
[SEGUIN, ITIER 1983]. The advantage of these models is to
circumvent three problems: a) estimation of surface roughness
lengths (involved in the sensitive heat flux), b) lack of continuous
measurement of surface temperatures, c) estimation of soil heat
flux which is negligible on a daily basis. However, they have
limitations related to the low spatial representativeness of air
temperature, measured locally, and the difficulty of taking into
account the heterogeneity of a surface. Unlike thermal infrared
methods, these models are also based on the assumption that the
H:Rn ratio, a relative sensible heat flux to net radiation, is constant
during the day and that the soil heat flux G is negligible on the
day scale.

2. Models that use deterministic relationships based on
a detailed description of soils and vegetation cover [OLIOSO et al.
1999]. These models are often referred to as soil-vegetation-
atmosphere transfer (SVAT) and can simulate surface temper-
ature from irrigation inputs and precipitation [CHIROUZE et al.
2014]. These models, which are difficult to implement on a large
scale because of the lack of information on irrigation, do not
depend on remote sensing data for their implementation.
However, remote sensing data can be assimilated into these
models [OLIOSO, JACOB 2002] and simulate mass and energy
transfers between soil, vegetation and atmosphere on time scales
of less than one hour, in accordance with the dynamics of
atmospheric and surface processes; however, these models are
highly parameterised and require information on water supply,
especially irrigation.

3. Methods that use remote sensing data in the thermal
infrared domain (3–15 μm) to calculate the instantaneous ET at
the time of the satellite’s upper passage, which can be converted
into daily values using algorithmic extrapolation as an evapora-
tion fraction. These methods can be divided into two groups
described next.
• Single source contextual models are developed to solve the
energy balance equation by linking current pixel conditions
to sites under extreme water conditions (very dry and very wet)
for various vegetation cover conditions. The properties of these
sites are used to determine some soil-vegetation-atmosphere
interface variables that are not accessible by remote sensing
[HAMIMED et al. 2009]. A well-calibrated single source model
may well surpass a poorly configured double source model
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[KUSTAS, DAUGHTRY 1990]. These models use the pixel values of
a given image and interpolate the ET values between the two
extremes to provide intermediate ET values, however, they have
a weakness when extreme water conditions are not present in
the image, especially in agricultural areas with sufficient irriga-
tion or when applied to satellite images with a low spatial
resolution where the surface temperature is an average pixel.
In this group we can mention simple models such as TIM
(trapezoid interpolation model), TS–VI (surface temperature–
vegetation index triangle method), and S-SEBI (simplified sur-
face energy balance index) or complexes such as SEBS (surface
energy balance system), SEBAL (surface energy balance al-
gorithm for land) and METRIC (mapping ET with internalised
calibration).

• Single pixel methods are adapted to high and low spatial resolu-
tion images, they allow us to estimate ET by solving the energy
balance equation for each pixel independently of the others. In
this group we can mention models such as TSEB (two-source
energy balance) and SPARSE (soil plant atmosphere and re-
mote sensing ET). However, these models are generally ex-
pected to be well adapted to uniform landscapes with fairly
homogeneous vegetation and surface water conditions [CHIR-
OUZE et al. 2014]. In this study, four models are analysed and
evaluated over the Habra plain using the Landsat 8 OLI/TIRS
images.

Mapping ET at high resolution with internalised calibration
(METRIC)

Like all the residual models, METRIC estimates ET based on the
resolution of the energy balance equation, the latent heat flux
(LE) as the residual term (Tab. 3):

Table 3. Symbols used in this study.

Symbol Unit Description

Cp J∙kg–1∙K–1 air specific heat at constant pressure
d m displacement height

dT K near-surface temperature difference
ea

Pa
air vapour pressure at reference level

e0 air vapour pressure at the aerodynamic level
esat (Tx) saturated vapour pressure at temperature Tx

EF – evaporative fraction
ET

mm∙h–1

evapotranspiration
ETo daily reference evapotranspiration
ETinst instantaneous evapotranspiration
ETj daily evapotranspiration

EThor hourly evapotranspiration
fc – fraction cover
g m∙s–2 acceleration due to gravity
G

W∙m–2 soil heat flux

H sensible heat flux
k – von Karman’s constant (= 0.41)
L m Monin-Obukhov length
L#

W∙m–2

incoming longwave radiation

L" emitted outgoing longwave radiation
LE latent heat flux
LEs soil latent heat flux

Symbol Unit Description

LEc canopy latent heat flux
m

–

coefficient of the stability function
nsw coefficient in rav

NDVI normalised difference vegetation index
r, r0 surface albedo

ra

s∙m–1

aerodynamic resistance between the aerody-
namic level and the reference level

rah aerodynamic resistance to heat transport

ras
aerodynamic resistance between the soil and
the aerodynamic level

rav
aerodynamic resistance between the vegetation
and the aerodynamic level

rg W∙m–2 net radiation over the soil
rsl

s∙m–1
surface resistance to evaporation

rx
resistance of the total surface layer boundary
layer

Rg

W∙m–2

incoming shortwave radiation
Rn total net radiation at the surface
Rns soil net radiation
Rnc canopy net radiation

Tatm incoming atmospheric radiation
Ts

K

surface temperature
Tsl soil temperature
Tc canopy temperature

Ta air temperature
Taero aerodynamic temperature
T0, Tac aerodynamic temperature of the air
Trad radiative surface temperature
u*

m∙s–1
friction velocity

u200 wind speed at blending height (200 m)
xg – coefficient of soil heat flux
zom m roughness length for momentum transport
α0

–

coefficient in rav
αs soil albedo
αv vegetation albedo
β evapotranspiration efficiency
βo Bowen ratio

ρ kg∙m–3 air density
φ

–

Priestley-Taylor parameter
εa atmosphere emissivity
εo surface emissivity
τ atmospheric transmittance

εs soil emissivity
εv vegetation emissivity

φ parameter similar to the Priestley-Taylor para-
meter

λ J∙kg–1 latent heat of vaporisation of water
γ

kPa∙K–1
psychrometric constant

Δ slope of the saturation vapor curve
σ W∙m–2∙K2 Stefan–Bolzman constant
ψh –

stability function for heat transport
ψm stability function for momentum transport

Source: own elaboration.

cont. Tab. 3

Tewfik A. Oualid, Abderrahmane Hamimed, Abdelkader Khaldi 263

© 2022. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB).
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/)



LE ¼ Rn � G � H ð8Þ

Net radiation at the surface (Rn) is the balance sheet of the
different forms of radiative exchange. It is calculated using
formula:

Rn ¼ 1 � rð ÞRg þ L # � L " ð9Þ

To calculate net radiation we must estimate the following terms:
the incoming shortwave radiation Rg (obtained from meteorolo-
gical observations); this data allowed us to estimate the
transmissivity (τ) of the atmosphere, which represents the capacity
of the atmosphere to transmit solar radiation. Emission by the
surface (L") was obtained by the Stephan-Boltzmann expression
(L" = εTs4), using the surface temperature (Ts) and the surface
emissivity (ε). Long-wave atmospheric radiation (L#) was obtained
using air temperature Ta and emissivity of atmosphere. The latter
is calculated as a function of the transmissivity of the atmosphere
(τ) according to the expression of BASTIAANSSEN et al. [1998]:

" ¼ 1:08 log �ð Þ½ �
0:265

ð10Þ

Soil heat flux (G) is calculated from empirical formula of
BASTIANSSEN et al. [2000]:

G ¼ Ts � 273:15ð Þ 0:0038þ 0:0074rð Þ 1 � 0:98NDV I4
� �

Rn ð11Þ

Landsat 8 data was acquired around 10:30 GMT.
Sensible heat flux (H) is calculated as a function of

difference between Taero and surface temperature identical to
that on the zoh thermal roughness height and that of Ta:

H ¼ ½ð�CpÞ : rah� Taero � Tað Þ ð12Þ

where, ρ = density of air at constant pressure, Cp = specific heat of
air at constant pressure, rah = resistance to turbulent transfer,
Taero = aerodynamic temperature, Ta = air temperature.

In the METRIC model, sensible heat flux (H) is calculated
without needing to know the values of Taero and Ta, difficult to
obtain by remote sensing, but rather the difference (dT) between
the temperatures T1 and T2 (corresponding respectively to the
heights z1 = 0, 1 and z2 = 2 m above the surface) which is
a function of Ts:

H ¼ �Cpð Þ : rah½ �dT ð13Þ

where: dT = near-surface temperature difference, rah is de-
termined between two atmospheric levels z1 and z2 using a wind
speed u200, obtained by extrapolation, at the mixing height (zb)
(generally between 50 and 200 m above the surface) and an
iterative procedure for the correction of atmospheric stabilities to
heat transfer and momentum transfer, based on the Monin-
Obukhov theory [PAULSON 1970]. In this work, a mixing height
(zb) of 200 m was used. The difference (dT) between the
temperatures T1 and T2 is calculated using the linear function of
Ts:

dT ¼ a Ts þ b ð14Þ

Coefficients a and b are empirically calculated using the triangle
of the scatter plot generated by the scatter plot of the vegetation

index NDVI and the surface temperature Ts [KHALDI et al. 2011].
On bare soils with a high surface temperature, we identify dry
pixels and on those with dense vegetation cover and a low
temperature we identify wet pixels. Then H dry (Hs) and H wet
(Hh) are calculated using the energy balance equation, as follows:

Hh ¼ Rn � Gð Þh � LEh ð15Þ

Hs ¼ Rn � Gð Þs � LEs ð16Þ

where: Hs = sensible heat flux for the dry pixels, Hh = sensible
heat flux for wet pixels, Rn = net radiation at the surface. A dry
pixel is characterised by a latent heat flux (LEs) = 0 and H = (Rn –
G). For a wet pixel, latent heat flux (LEhor) = hourly value of the
reference ET (ETr) [ALLEN et al. 1998] multiplied by an empirical
coefficient of 1.05. The choice of this coefficient is dictated mainly
by the assumption that a wet pixel (totally covered by vegetation)
generally has a value ET rate of 5% greater than ETr, due to the
presence of moist soil under cover, which will slightly increase
total ET [ALLEN et al. 2007]. The determination of Hs and Hh

allows, by inversion of the Equation (8), to deduce the difference
between the temperatures T1 and T2 of the dry pixels (dTs) and
that of the wet pixels (dTh). The coefficients a and b of Equation
(15) are calculated using the adjustment of a line passing through
the two pairs of values (dT and Ts), corresponding to dry and wet
pixels. The use of the expression H then makes it possible to
estimate the sensible and latent heat fluxes. The latter must make
it possible to interpret more precisely the attitude of the surface
compared to water stress. However, its values strongly depend on
the conditions of its estimation. Indicators of water stress can be
deduced such as the surface resistance to evaporation (rs),
the parameter of Priestley-Taylor (α), and the evaporative fraction
of (EF).

Latent heat flux (LE) is then converted into (ETinst)
instantaneous ET (in mm∙h–1 converts from s to h) using the
following formula:

ETinst ¼ 3600 : ��ð Þð ÞLE ð18Þ

where: ρ = density of water (~1 kg∙m3), λ = latent heat of water
vaporisation (~2.45 ∙ 106 J∙kg–1 at 20°C).

Reference ET fraction (ETrF) is calculated from the hourly
value of ET (EThor) and ETr ratio. It is considered similar to that
integrated during the day [GENTINE et al. 2011]. The daily
evapotranspiration (ETj) is calculated using from the expression
[ALLEN et al. 2007]:

ETj ¼ ETrFETo ð18Þ

where: ETo = daily reference ET (mm∙d–1) which is calculated by
the Penman-Monteith equation [ALLEN et al. 1998] using
conventional data provided by the weather station.

Trapezoid interpolation model (TIM)

Unlike models that use the energy balance equation to estimate
latent heat flux, and because of the complexity of estimating
sensible heat flux (H), TIM is a contextual one-layer model based
on a simple interpolation method using measurable parameters
with remote sensing proposed by [JIANG, ISLAM 2001] which
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establishes a link between available energy (Rn – G) and latent
heat flux, comparable to the Priestley-Taylor equation:

LE ¼ ’
�

� þ �
Rn � Gð Þ ð19Þ

where: φ = a parameter similar to the Priestley-Taylor parameter
(α = 1.26) varying between 0 and 1.26 and depending on the
surface water status, γ = the psychrometric constant, generally
equal to 0.066 kPa∙K–1 [CRAGO, BRUTSAERT 1992]. The key point of
the TIM model is the interpretation of the trapezoidal shape of
the scatter plot resulting from interpolation between Ts and
NDVI (Fig. 2). Four points of the trapezoid (dry vegetation cover,
wet vegetation cover, dry bare soil and moist bare soil) represent
the two limits in terms of surface temperature and vegetation
cover rate, where they are determined in our experimental work.
Net radiation (Rn) was calculated using [ALLEN et al. 1998]
formula:

Rn ¼ 1 � rð ÞRg þ L # � L " ð20Þ

G is calculated using an empirical approach proposed by MORAN

et al. [1989]:

G ¼ 0:583exp � 2:13NDVIð ÞRn ð21aÞ

In the case where the NDVI < 0 the formula then becomes:

G ¼ 0:583Rn ð21bÞ

The parameter φ is determined based on the interpretation of the
trapezoid shape of the scatter plot between the surface
temperature (Ts) and the vegetation index (NDVI) (Fig. 2)
according to STISEN et al. [2008] by the expression:

’ ¼
Ts � Ts min

Ts max � Ts min

’max � ’minð Þ þ ’min ð22Þ

The parameter φmin is deducted according to the fraction cover of
canopy (fc) by:

’min ¼ ’max fc ð23Þ

where

’max ¼
�þ �

�
ð24Þ

and fc is given by:

fc ¼
NDV I � NDV Imin

NDV Imax NDV Imin

� �2

ð25Þ

where: NDVImin = minimal value of normalised difference
vegetation index, NDVImax = maximal value of normalised
difference vegetation index.

Two-source energy balance (TSEB)

Unlike the single-layer approaches (METRIC and TIM), which
use surface temperature as a relative indicator to differentiate dry
and wet pixels and interpolate between the two boundaries, TSEB
model adopts a more physical approach to interpret the surface
temperature in relation to the energy balance [CHOI et al. 2009],
and separates the Earth’s surface into two components: soil
surface and vegetation. Surface temperature is partitioned at the
zenith angle (θ) in the contributions of the soil and canopy using
the equation:

Tradð�Þ ¼ fc �ð Þ Tc
4 þ 1 � fc �ð Þð Þ Tsl

4
� �1

4 ð26Þ

where: Trad = radiative surface temperature, fc = the fraction cover
of the canopy, depending on the leaf area index (LAI) as fc = 1 –
exp (–0.5LAI). Therefore, sensible heat flux H (soil and
vegetation) is calculated:

H ¼ Hc þHs ð27Þ

Hc ¼ � Cp
Tc � Tac

rx
ð28Þ

and

Hs ¼ � Cp
Tsl � Tac

rsl
ð29Þ

H ¼ � Cp
Tac � Ta

rah
ð30Þ

where: Hc = canopy sensible heat flux [KUSTAS, NORMAN 1999].
Two energy balances are calculated separately for soil and
vegetation:

Rn ¼ Rns þ Rnc ¼ H þ LE þG ð31Þ

Rns ¼ Hc þ LEs þG ð32Þ

Rnc ¼ Hc þ LEc ð33Þ

where: Hs and Hc = sensible heat fluxes separated between soil
and vegetation, Rns and Rnc = the net radiation for the soil and
vegetation. The canopy latent heat flux (LEc) is calculated from
the Priestley-Taylor equation: (LEc = 1.26 fg Δ : (Δ + γ) Rnc),
where: γ = the psychrometric constant, generally equal to 0.066

Fig. 2. Illustration of the trapezoid method used for identifying wet and
dry pixels; source: [FELLAH et al. 2021]
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kPa∙K–1. The soil latent heat flux (LEs = Rns + G + Hs) is calculated
as a residual of the energy balance, G is calculated using the
fraction of the Rns (G ≈ 0.35Rns) [CHOUDHURY et al. 1987]. TSEB
uses meteorological and remote sensing data in order to calculate
the soil and vegetation temperatures to finally calculate the
surface energy fluxes; however it remains sensitive to the
uncertainty of the Ts caused by the quality of the sensors as
well as the emissivity errors due to atmospheric correction.

Soil plant atmosphere and remote sensing ET (SPARSE)

Articulating on the logic of TSEB model and formulations at the
cutting edge of turbulent and radiative exchange, SPARSE model
is a two-source model with two versions (serial and parallel)
which estimates the evaporation of the soil and the transpiration
of the vegetation separately by estimating the components of the
energy balance for the soil and the vegetation. At contrary to
TSEB, the SPARSE algorithm uses the Penman-Monteith formula
rather than that of Priestley-Taylor for the estimation of the
potential transpiration applicable in semi-arid zones [COLAIZZI
et al. 2012] because of the coefficient 1.26 suggested by Priestley-
Taylor underestimates transpiration and overestimates evapora-
tion. SPARSE is a linearisation of all the energy balance equations.

Prescribed mode and retrieval mode

The SPARSE model is based on the same logic of single-layer
models such as SEBAL, METRIC and SEBS for the identification
of extremely dry and wet sites in a “prescribed” mode in order to
provide the theoretical boundaries (stress conditions where
sensible heat flux is maximum and potential condition where
the latent heat flux is maximum), these two boundaries serve to
frame the second “recovery” mode which uses the radiative
surface temperature (Trad) to estimate the surface energy fluxes
(Fig. 3).

“Layer” series version and “Patch” parallel version

Like two-source energy balance (TSEB), soil plant atmosphere
and remote sensing ET (SPARSE) offers two versions: “Layer”
and “Patch”. “Layer” version offers a soil-vegetation couple
closely linked with a series resistance system with a single
temperature at the aerodynamic level, “Patch” version offers an
“atmosphere soil” system independent of the “atmosphere
vegetation” system with two aerodynamic temperatures (Fig. 4).

Energy fluxes and surface radiative temperature are
expressed for both versions:

Rnsl ¼ GþHs þ LEs ð34Þ

Rnc ¼ Hc þ LEc ð35Þ

H ¼ Hs þHv ð36Þ

LE ¼ LEsl þ LEc ð37Þ

G ¼ xg Rns ð38Þ

Serial version “Layer”:

Hs ¼ �cp
Tsl � Ts

ras
ð39Þ

Hc ¼ � Cp
Tc � Ts

rav
ð40Þ

H ¼ � Cp
Ts � Ta

rah
ð41Þ

Fig. 3. Flowchart of the SPARSE algorithm under prescribed and recovery conditions;
source: [BOULET et al. 2015]
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LEs ¼
� Cp

�
�s
esat Tsð Þ � e0

ras þ rssmin

ð42Þ

LEc ¼
� Cp

�
�v
esat Tcð Þ � e0

rav þ rvvmin

ð43Þ

LE ¼
� Cp

�

e0 � ea

rah
ð44Þ

Parallel version “Patch”:

Hs ¼ 1 � fcð Þ�Cp
Ts � Ta

ras þ ra
ð45Þ

Hv ¼ fc�Cp
Tv � Ta

rav þ ra
ð46Þ

H ¼ �Cp
T0 � Ta

ra
ð47Þ

LEs ¼ 1 � fcð Þ
�Cp

�
�s

esat Tsð Þ � ea

ras þ rssmin þ ra
ð48Þ

LEv ¼ fc
�Cp

�
�v

esat Tvð Þ � ea

rav þ rvvmin þ ra
ð49Þ

LE ¼
�Cp

�

e0 � ea

ra
ð50Þ

Bowen ratio energy balance (BREB)

In this work and for the validation of the data simulated by the
four models we calculated the latent heat flux by the energy
balance method of the Bowen ratio (BREB) from measurements
at two levels (0.5 and 2.5 m above surface) of air temperature
using chromel-alumel thermocouples and relative humidity using
Vaisala capacitive probes (Model HMP35D). Generally, the BREB
method has an uncertainty of ~20% [KUSTAS, NORMAN 1999].

�o ¼
H

LE
ffi

�T

�e
ð51Þ

where: ΔT and Δe = temperature and vapour pressure gradient
between the two levels of measurements, respectively. We use the
calculated Bowen ratio to derive the sensible and latent heat fluxes:

H ¼
�o Rn � Gð Þ

1þ �o
ð52Þ

LE ¼
Rn � Gð Þ

1þ �o
ð53Þ

RESULTS AND DISCUSSION

In this work, the simulation of the energy balance equation by the
four models (METRIC, TIM, TSEB and SPARSE) offers us the
possibility to demonstrate that the surface parameters, namely
albedo, vegetation index and surface temperature, obtained from
optical and thermal remote sensing data, allows us to simulate the
latent heat flux (LE), estimated for METRIC as the residual term
of the energy balance equation, estimated for TIM directly using
the Priestley-Taylor equation, and estimated for TSEB and
SPARSE by calculating the latent heat flux of vegetation (LEc)
and soil (LEs) separately. To assess the performance of the results
of the four models, two statistical measures were used: the RMSE
and the bias (average difference between the estimated and
observed values). For validation of model output results and in
the luck of validation mean of ET or LE at large-scale, the
simulated LE latent heat flux is not accurate and requires careful
consideration [HAMIMED et al. 2014]. In our work, we used the
Bowen ratio method, 3 values (pixels), for the four days, the first
point was characterised by dense vegetation, the second by
moderate vegetation, the third by bare soil, measured on the
ground for the latent heat flux. These values were compared with
those obtained from the four models, noting that this type of
validation does not ensure that the model provides reliable flux
across all surface types [CHOI et al. 2009; KHALDI et al. 2011].

SURFACE TEMPERATURE

The surface temperature (Ts) has a major influence on the
estimation of the latent heat flux (LE) to which they are linked by
the equation of the surface energy balance. It is essential to
acquire the information on soil moisture needed in several areas
including a large-scale irrigation project (mass agriculture). The
correlation between the surface temperature (Ts) of the (Landsat
8 OLI/TIRS) satellite and that measured on the ground, obtained
by an Apogee infrared radiometer (IRTS-P), showed reliable
results with a correlation coefficient (R2) of 0.96. Simulated
surface temperature Ts is slightly underestimated relative to the
measured surface temperature, with RMSE of 3.45 K and a bias of
–3.36 K (Fig. 5).

Temperature errors recorded are almost identical to the
values reported in previous studies with an RMSE ranging from
approximately 2.8 to 4.2 K [CONSOLI, VANELLA et al. 2014; FELLAH
et al. 2021; MADUGUNDU et al. 2017; DOS SANTOS et al. 2020;
TIMMERMANS et al. 2007; ZOU et al. 2018]. Noting that for our study
site, surface temperature Ts and bare soils (dry pixels) are

Fig. 4. Diagram showing model approaches in series and in parallel;
source: BOULET et al. [2015]
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characterised by high values, while for dense vegetation of
irrigated soils (wet pixels) are characterised by low values (Tab. 4).

NET RADIATION

The spatialisation of net radiation Rn with the four models
showed a significant agreement with a slight overestimation for
TSEB and SPARSE, the difference is probably due to the different
formulation between the two single-source models (METRIC and
TIM) which directly estimate net Rn radiation using the formula
by ALLEN et al. [1998], and the two-source TSEB and SPARSE
models, which estimate the soil net radiation Rns and vegetation
net radiation Rnc, separately and finally deduct the Rn value as the
sum of the two fluxes. It is noted that higher values of net
radiation are simulated over a dense and generally moist canopy
(high NDVI and low Ts) (Tab. 5).

SOIL HEAT FLUX

Conductive soil heat flux (G) estimated by TSEB and SPARSE
showed a significant overestimation compared to METRIC and
TIM especially for the two days, DOY 356 and DOY 071, which
are characterised by a low surface temperature with RMSE up to
97 and 70 W∙m–2 between METRIC and TSEB. This significant
difference comes from the formulation of TSEB and SPARSE
which estimates G as a fraction of Rns with an xg coefficient of
0.35 for TSEB, and 0.4 for SPARSE, as for METRIC and TIM, G is
a fraction of Rn. However, for the days with a high surface
temperature Ts, the RMSE decreases to 6.57. The comparison
between the measured soil heat flux values and those simulated by
remote sensing data shows that the METRIC and TIM models
lead to an underestimation of G with RMSE of 21.3 W∙m–2 and
a bias of –20.8 W∙m–2, while the TSEB and SPARSE models lead
to an overestimation with RMSE of 11.9 W∙m–2 with a bias of 10.7
W∙m–2. These results are very similar to the results of previous
studies: TEIXEIRA et al. [2009] with RMSE of 13.3 W∙m–2,
MKHWANAZI et al. [2012] with RMSE of 14.2 W∙m–2, HAMIMED
et al. [2014] with RMSE of 13.2 W∙m–2, NEHAL et al. [2017] with
RMSE of 14 W∙m–2, FELLAH et al. [2021] with RMSE of 15.2 W∙m–2.
It is also noted that for hot and dry surfaces the values of G are
higher, ranging up to 93 W∙m–2 for the METRIC and TIM models,
and more than 135 W∙m–2 for the TSEB and SPARSE models,
however, G values remain lower for canopies and cold surfaces
(Tab. 5). The impact of soil heat flow G on available energy (Rn –
G) remains low, which means that model inaccuracies do not have
an impact on energy balance modelling and everything on the
latent heat flux (LE) [NEHAL et al. 2017].

SENSIBLE HEAT FLUX

The spatialisation of the sensible heat flux (H) is the most delicate
point for the residual models because it allows the estimation of
the latent heat flux due to difficulties in estimating the
aerodynamic resistance to heat transfer (rah) except for the
contextual model TIM which estimates LE directly without
estimating H, and estimates it as a residual term by closing the

Fig. 5. Comparison between ground-measured and simulated surface
temperature on September 1, 2014 (DOY 244); RMSE = root-mean-square
error; bias = average difference between the estimated and observed
values, R2 = correlation coefficient; source: own study

Table 4. Instantaneous average values of surface parameters above dry and wet pixels in study area

Parameter Unit

01.09.2014
(DOY 244)

19.10.2014
(DOY 292)

22.12.2014
(DOY 356)

12.03.2015
(DOY 071)

dry pixel wet pixel dry pixel wet pixel dry pixel wet pixel dry pixel wet pixel

NDVI

–

0.08 0.70 0.9 0.73 0.12 0.75 0.11 0.79

Albedo 0.32 0.21 0.29 0.16 0.20 0.15 0.27 0.21

Emissivity 0.92 0.99 0.91 0.99 0.90 0.99 0.91 0.99

Surface temperature K 334.1 307.3 325.6 297.4 298.9 283.4 329.6 303.5

Near-surface air temperature
difference K 2.34 0 2.22 0 2.42 0 3.51 0

Friction velocity s∙m–1 0.30 0.37 0.26 0.29 0.25 0.28 0.35 0.42

Monin-Obukhov length m –34.1 –825.6 –13.8 –769.4 –10.9 –730.2 –13.8 390.1

Aerodynamic resistance to
heat transport s∙m–1 20.5 17.3 19.1 16.6 22.4 26.1 15.3 18.1

Source: own study.
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energy balance equation. The rah is low for hot and dry pixels
(bare soil) (Tab. 4), which causes the release of heat into the
atmosphere due to the large differences between surface (Ts) and
air (Ta) temperatures. However, for wet pixels (irrigated area), rah
values are also low because the available energy (Rn – G) is
transformed into ET. This difference in sensible heat flux for dry
and wet pixels is caused by the soil moisture condition and its
impact on the energy distribution between latent and sensible
heat flux. Wet surfaces are characterised by low H values while
dry surfaces are characterised by high H values (Tab. 5).

Sensible heat flux values simulated by METRIC and TIM are
overestimated compared to that measured in soil with RMSE
values ranging from 35 to 85 W∙m–2 for METRIC, and from 80 to
125 W∙m–2 for TIM. It was noted that the two-source models are
more accurate for estimating H with RMSE between 30 and 75
W∙m–2 for TSEB and between 25 and 60 W∙m–2 for SPARSE.
Errors in the estimates are almost identical to those in previous
studies [DOS SANTOS et al. 2020; FELLAH et al. 2021; KUSTAS, NORMAN
1999; TANG, LI 2015; TIMMERMANS et al. 2007]. These results are
explained by the type of formulation used in each model, thus the
two-source models are more robust than the single-source models
which do not take into account all resistance parameters such as
stomatic resistance and which use a single surface temperature,
while the two-source models use a temperature for soil Tsl and
vegetation Tc for estimation Hc and Hs.

H varies in a range from H = 0 (extremely wet pixel) to
H = Rn – G (extremely dry pixel), the histograms of H are
produced almost similarly by METRIC and TIM covering a full
range from 0 to 410 W∙m–2 (Fig. 6) on average. To reinforce the
interpolation of values in this range, there is also a homogeneous
spatial distribution of H on the ground with extreme values for

dry bare soil at high surface temperature, and near zero for wet
dense vegetation at low surface temperature. However, the
problem is that when both limits (dry and wet) do not exist,
the two single-source models, METRIC, and especially, TIM,
seem to struggle to simulate the sensible heat flux H because they
are sensitive to the temperature difference between the two dry
and wet limits. In order to correct this problem, we calculated
theoretically the four temperatures of the four points (dry bare
soil, wet bare soil, dense wet vegetation and dense dry vegetation)

Table 5. Comparison of the net radiation (Rn), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) obtained from the four
models: mapping evapotranspiration at high resolution with internalised calibration (METRIC), trapezoid interpolation model (TIM),
two-source energy balance (TSEB), soil plant atmosphere and remote sensing evapotranspiration (SPARSE)

Model Pixel
01.09.2014 (DOY 244) 19.10.2014 (DOY 292) 22.12.2014 (DOY 356) 12.03.2015 (DOY 071)

Rn G H LE Rn G H LE Rn G H LE Rn G H LE

METRIC

dry

163 93 271 0.11 193 62 466 7.13 148 22 157 7.62 261 74 348 14

TIM 163 93 359 0.13 193 62 322 5.18 148 22 197 11.6 261 74 379 12

TSEB 166 111 296 2.64 193 104 95 118 198 136 59 88.7 316 135 117 216

SPARSE 181 121 299 1.7 210 111 70 133 164 72 17 123 276 129 82 186

METRIC

wet

605 35 0 548 634 31 0 475 425 4 0 325 626 22 0 582

TIM 605 35 0 577 634 31 0 477 425 4 –73 374 626 22 –16 582

TSEB 647 42 –16 596 532 38 –76 501 392 69 –28 282 681 62 –27 568

SPARSE 641 –3 –21 549 553 42 –30 471 361 33 –4 293 647 55 –13 528

METRIC

aver-
age

421 85 172 164 387 56 209 120 271 16 54 200 518 51 106 360

TIM 421 85 211 125 387 56 137 192 271 16 27 226 518 52 68 397

TSEB 436 101 142 192 395 77 24 294 328 113 13 201 584 115 23 445

SPARSE 446 84 137 225 411 82 25 304 294 58 6 229 545 109 24 413

Source: own study.
Currently, dry and warm bare soils (low NDVI values and high Ts values) are characterised by low Rn values. The validation of the Rn results showed
that the ground-measured values and the remotely sensed-obtained (by all models) showed a better agreement with RMSE of 27.6 W∙m–2 for METRIC
and TIM, and about 32.4 W∙m–2 for TSEB and SPARSE. These values are consistent with previous studies [CHOI et al. 2009; FELLAH et al. 2021; DOS
SANTOS et al. 2020; TANG, LI 2015; ZOU et al. 2018].

Fig. 6. Sensible heat flux (H, W∙m–2) frequency histograms from mapping
evapotranspiration at high resolution with internalised calibration
(METRIC) model, trapezoid interpolation model (TIM), two-source
energy balance (TSEB) model, soil plant atmosphere and remote sensing
evapotranspiration (SPARSE) models for 19.10.2014 (DOY 292); source:
own study
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for days DOY 356 (22.12.2014) and DOY 71 (12.03.2015), two
days when the temperature difference is minimal, to reduce
estimation errors of H, but despite this, these two models have
difficulties in simulating H. The TSEB and SPARSE models
estimate H by calculating different aerodynamic resistances and
stomatic resistance, and do not make any hypothesis on
hydrological and temperature parameters, that is to say, the
existence of extremely dry and wet sites, we thus notice
a frequency distribution of H which culminates at lower limited
values and in a narrow range, between 100 and 200 W∙m–2. These
results are almost identical to those obtained in previous studies
[CHOI et al. 2009; FRENCH et al. 2005; TIMMERMANS et al. 2007]
which found a similar restriction of the flux range using SEBAL
compared to TSEB, and TIM–METRIC compared to TSEB.

LATENT HEAT FLUX

In the absence of a means for validation of the latent heat flux
(LE) at large-scale, the simulated results are not accurate and
require careful consideration [HAMIMED et al. 2014]. The method
used for validation is the Bowen ration which is based on the
comparison of the LE ground-measured values (3 values for the
four days: the first point characterised by dense vegetation, the
second by moderate vegetation, the third by bare soil) with those
obtained from the four models. This statistics comparison (bias
and RMSE) shows a difference illustrated in (Tab. 6).

These statistics are consistent with those obtained by the
other researchers [CHOI et al. 2009; DOS SANTOS et al. 2020;
TIMMERMANS et al. 2007]. The result of the comparison of the
simulated LE with the ground measured LE shows that the four
models provide comparable outputs (Fig. 7) with a slight
advantage of the METRIC model in case of large temperature
and humidity differences, which means the existence of extremely
dry, hot and extremely wet and cold sites, this model can be
considered as a promising approach for the spatialisation of ET in
the case of places where the means of validation and information
are inaccessible.

However, on days when the difference in temperature and
humidity is non-existent (cold winter days), the single-source
models, METRIC and, especially, TIM, struggle to simulate the
sensible and latent heat flux (Tab. 6), whereas the two-source
models TSEB and SPARSE are more accurate because of their
algorithms, which use two temperatures (vegetation Tc and soil
Tsl) to estimate pixel-by-pixel flux and do not assume the
existence of extremely dry and wet sites. The SPARSE model is
the most accurate for these conditions and in second position is
TSEB model. The LE varies for the 4 models and for the 4 dates
according to the averages represented in Table 6, the inter-
comparison of the LE between the models is represented in
Figures 8–11.

The spatial distributions of the latent heat fluxes between
the four models showed a significant agreement (Fig. 12).

Table 6. Statistics comparing latent heat flux (LE) between field measurements and values obtained by the four models

DOY Observed LE (Bowen)
LE (METRIC) LE (TIM) LE (TSEB) LE (SPARSE)

average RMSE bias average RMSE bias average RMSE bias average RMSE bias

244

wet pixel 502 523 21 –21 582 80 –80 591 89 –89 547 45 –45

moderate pixel 327 318 9 9 361 34 –34 403 76 –76 298 29 29

dry pixel 26 16 10 10 14 12 12 90 64 –64 73 47 –47

292

wet pixel 472 469 3 3 503 31 –31 501 29 –29 490 18 –18

moderate pixel 291 310 19 –19 322 31 –31 345 54 –54 331 41 –41

dry pixel 11 7 4 4 6 5 5 119 108 –108 135 124 –124

356

wet pixel 320 378 58 –58 401 81 –81 287 34 34 305 15 15

moderate pixel 199 259 60 60 350 151 –151 162 27 27 207 8 –8

dry pixel 94 35 59 59 29 65 –65 90 4 4 125 31 –31

071

wet pixel 520 579 59 –59 581 61 –61 561 41 –41 527 7 –7

moderate pixel 313 364 51 –51 359 46 –46 317 5 –5 284 29 29

dry pixel 182 59 123 123 12 170 170 220 38 –38 190 08 –08

Explanations: DOY, RMSE, bias, METRIC, TIM, TSEB, SPARSE as in Fig. 5, Tab. 5.
Source: own study.

Fig. 7. Comparison between the latent heat flux (LE) measured on the
ground and the latent heat flux estimated by the four models for the
three points for the four days (01.09.2014 – DOY 244, 19.10.2014 –
DOY 292, 22.12.2014 – DOY 356, 12.03.2015 – DOY 071); METRIC,
TIM, TSEB, SPARSE as in Tab. 5; source: own study
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Fig. 8. Density plots of latent heat flux LE (W∙m–2) for METRIC–TIM, METRIC–TSEB, METRIC–
SPARSE, TIM–TSEB, TIM–SPARSE and TSEB–SPARSE of the day 01.09.2014 (DOY 244); METRIC,
TIM, TSEB, SPARSE as in Tab. 5; source: own study

Fig. 9. Density plots of latent heat flux LE (W∙m–2) for METRIC–TIM, METRIC–TSEB, METRIC–
SPARSE, TIM–TSEB, TIM–SPARSE and TSEB–SPARSE of the day 19.10.2014 (DOY 292); METRIC,
TIM, TSEB, SPARSE as in Tab. 5; source: own study

Fig. 10. Density plots of latent heat flux LE (W∙m–2) for METRIC–TIM, METRIC–TSEB, METRIC–
SPARSE, TIM–TSEB, TIM–SPARSE and TSEB–SPARSE of the day 22.12.2014 (DOY 356); METRIC,
TIM, TSEB, SPARSE as in Tab. 5; source: own study
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Despite the difference for G and H between the two models
METRIC–TIM and TSEB–SPASRE, the first two overestimate H
and underestimate G, while the last two overestimate G and
underestimate H, so in the end they give almost the same results
on the days when there is a big difference in temperature and
humidity, DOY 244 and DOY 292. The days when there is a small
difference, DOY 71 or practically DOY 356, METRIC and
especially TIM have difficulties to simulate LE, which makes the
difference significant with the TSEB and SPARSE models which
are very robust in these conditions, noting that the SPARSE is the
best in these conditions. It is also noted that TIM and METRIC
produce LE histograms, covering a full range from 0 to 600 W∙m–2

forcing interpolation of LE values across this range applying the
hypothesis of existence of extremely wet sites L = Rn – G and dry
LE = 0. TSEB and SPARSE produce the highest LE values covering
a narrow range of 200 to 550 W∙m–2 (Fig. 13), with an estimated
latent heat flux pixel by pixel independently of the others
assuming there are no assumptions about the scope of the image.

Fig. 11. Density plots of latent heat flux LE (W∙m–2) for METRIC–TIM, METRIC–TSEB, METRIC–
SPARSE, TIM–TSEB, TIM–SPARSE and TSEB–SPARSE of the day 12.03.2015 (DOY 071); METRIC,
TIM, TSEB, SPARSE as in Tab. 5; source: own study

Fig. 12. Spatial distributions of the latent heat fluxes estimated with METRIC, TIM, TSEB, SPARSE for
the four days (01.09.2014, 19.10.2014, 22.12.2014, 12.03.2015); METRIC, TIM, TSEB, SPARSE as in Tab.
5; source: own study

Fig. 13. Latent heat flux (LE, W∙m–2) frequency histograms from
METRIC, TIM, TSEB, SPARSE for 12.03.2015 (DOY 071); METRIC,
TIM, TSEB, SPARSE as in Tab. 5; source: own study
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CONCLUSIONS

In this work, we have shown the value of multi-spectral satellite
data with a high spatial resolution (Landsat 8 OLI/TIRS) to
estimate energy flux and in particular, the latent heat flux which is
the energy equivalent of ET and the water state. For our study
site, which is characterised by heterogeneous soil cover and
during days when there is a large difference in temperature and
soil moisture, the four models used provide almost similar LE
outputs with a slight advantage of the METRIC model with RMSE
between 9 and 21 W∙m–2 for DOY 244, on the other hand on days
when this difference is small, the two-source models, TSEB and
SPARSE, distinguish and offer us a simulation close to reality
with an RMSE between 8 and 15 W∙m–2 for DOY 071, unlike one-
source models, METRIC and TIM, have difficulties in simulating
latent heat flux. The METRIC and TIM models force the
interpolation of H and LE which is reflected in histograms with
a wide distribution, unlike TSEB and SPARSE. The greatest
differences between the models for H and LE were identified in
the sites where the vegetation cover was split with a leaf area
index (LAI) < 2. Underestimation of G and overestimation of H
for METRIC and TIM, and overestimation of G and under-
estimation of H for TSEB and SPARSE, tended to modulate the
deviation in LE towards the end for the four models. Although
comparisons with ground measurements of the LE using the
Bowen ratio method with the four models gave satisfactory and
encouraging results for the future, two models stand out in this
study, METRIC and SPARSE, the first performing in summer and
autumn (large difference in temperature and soil moisture on the
site), and the second performing in winter and spring (small
difference in temperature and soil moisture on the site). This wide
study site with its heterogeneous coverage allowed us to test the
four models, something that was not tested in previous studies
with generally homogeneous sites with a simple area like the site
of soil moisture–atmosphere coupling experiment (SMACEX). In
perspective, since the two models have distinguished themselves
from the others, METRIC and SPARSE, respectively with their
strengths and weakness, we propose a hybrid methodology that is
based on the logic of the METRIC model in the conditions of
large temperature and humidity differences, which is the case in
summer and autumn days with a partially vegetated cover, and
the SPARSE logic, based on the two-source pixel-by-pixel method
in the conditions of low temperature and humidity difference in
the image, which applies to winter and spring days with an almost
total natural cover (no dry bare soil). Until technology gives us
the opportunity to have daily high-resolution images, drones are
very useful, especially in extreme weather conditions with
a resolution per millimetre, but the only disadvantage remains
the limit of the computer means of processing large amounts of
data.

ACKNOWLEDGEMENTS

This work was carried out under the CMEP PHC MAGHREB
research contract (code: 14MDU927). The authors’ thanks are
addressed to the teams (LRSBG, IRD of INAT and CESBIO) and
to the experts of the journal for their critical reading of the text.

REFERENCES

ALLEN R.G., PEREIRA L.S., RAES D. SMITH M. 1998. Crop evapotranspira-
tion – guidelines for computing crop water requirements. FAO
Irrigation and Drainage Paper. No. 56. Rome. FAO. ISBN 92-5-
104219-5 pp. 300.

ALLEN R.G., TASUMI M., TREZZA R. 2007. Satellite-based energy balance
for mapping evapotranspiration with internalized calibration
(METRIC) – model. Journal of Irrigation and Drainage
Engineering. Vol. 133(4) p. 380–394. DOI 10.1061/(ASCE)
0733-9437(2007)133:4(380).

BARSI J.A., SCHOTT J.R., PALLUCONI F.D., HOOK S.J. 2005. Validation of
a web-based atmospheric correction tool for single thermal band
instruments. Earth Observing Systems X. Proceedings of Society
of Photo-Optical Instrumentation Engineers (SPIE). Vol. 5882.
p. 136–142. DOI 10.1117/12.619990.

BASTIAANSSEN W.G.M. 2000. SEBAL-based sensible and latent heat
fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology.
Vol. 229(1–2) p. 87–100. DOI 10.1016/S0022-1694(99)00202-4.

BASTIAANSSEN W.G.M., MENENTI M., FEDDES R.A., HOLTSLAG A.A.M.
1998. Remote sensing surface energy balance algorithm for land
(SEBAL), 1. Formulation. Journal of Hydrology. Vol. 212–213(1–
4) p. 198–212. DOI 10.1016/S0022-1694(98)00253-4.

BENZATER B., ELOUISSI A., BENARICHA B., HABI M. 2019. Spatio-temporal
trends in daily maximum rainfall in northwestern Algeria (Macta
watershed case, Algeria). Arabian Journal of Geosciences. Vol. 12
(370) p. 1–18. DOI 10.1007/s12517-019-4488-8.

BERK A., ANDERSON G.P., BERNSTEIN L.S., ACHARYA P.K., DOTHE H.,
MATTHEW M.W., ..., HOKE M.L. 1999. MODTRAN4 radiative
transfer modeling for atmospheric correction. Optical spectro-
scopic techniques and instrumentation for atmospheric and
space research III. Proceedings of Society of Photo-Optical
Instrumentation Engineers. SPIE’s International Symposium on
Optical Science, Engineering, and Instrumentation. Vol. 3756
p. 348–353. DOI 10.1117/12.366388.

BOULET G., MOUGENOT B., LHOMME J.P., FANISE P., LILI-CHABAANE Z.,
OLIOSO A., ..., LAGOUARDE J.P. 2015. The SPARSE model for the
prediction of water stress and evapotranspiration components
from thermal infra-red data and its evaluation over irrigated and
rainfed wheat. Hydrology and Earth System Sciences. Vol. 19(11)
p. 4653–4672. DOI 10.5194/hess-19-4653-2015.

BRUTSAERT W. 1982. Evaporation into the atmosphere: Theory, history
and applications. Springer Dordrecht. ISBN 978-90-277-1247-9
pp. 299. DOI 10.1007/978-94-017-1497-6.

CHANDER G., MARKHAM B.L., HELDER D.L. 2009. Summary of current
radiometric calibration coefficients for Landsat MSS, TM, ETM+,
and EO-1 ALI sensors. Remote Sensing of Environment. Vol. 113
(5) p. 893–903. DOI 10.1016/j.rse.2009.01.007.

CHEHBOUNI A., ESCADAFAL R., DUCHEMIN B., BOULET G., SIMONNEAUX V.,
DEDIEU G., ..., SOBRINO J.A. 2008. An integrated modelling and
remote sensing approach for hydrological study in arid and semi-
arid regions: The SUDMED Programme. International Journal of
Remote Sensing. Vol. 29(17–18) p. 5161–5181. DOI 10.1080/
01431160802036417.

CHIROUZE J., BOULET G., JARLAN L., FIEUZAL R., RODRIGUEZ J.C., EZZAHAR,
J., ..., CHEHBOUNI G. 2014. Intercomparison of four remote-
sensing-based energy balance methods to retrieve surface
evapotranspiration and water stress of irrigated fields in semi-
arid climate. Hydrology and Earth System Sciences. Vol. 18(3)
p. 1165–1188. DOI 10.5194/hess-18-1165-2014.

CHOI M., KUSTAS W.P., ANDERSON M.C., ALLEN R.G., LI F., KJAERSGAARD J.
H. 2009. An intercomparison of three remote sensing-based
surface energy balance algorithms over a corn and soybean

Tewfik A. Oualid, Abderrahmane Hamimed, Abdelkader Khaldi 273

© 2022. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB).
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/)

https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
https://doi.org/10.1117/12.619990
https://doi.org/10.1016/S0022-1694(99)00202-4
https://doi.org/10.1016/S0022-1694(98)00253-4
https://doi.org/10.1007/s12517-019-4488-8
https://doi.org/10.1117/12.366388
https://doi.org/10.5194/hess-19-4653-2015
https://doi.org/10.1007/978-94-017-1497-6
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1080/01431160802036417
https://doi.org/10.1080/01431160802036417
https://doi.org/10.5194/hess-18-1165-2014


production region (Iowa, U.S.) during SMACEX. Agricultural
and Forest Meteorology. Vol. 149(12) p. 2082–2097. DOI
10.1016/j.agrformet.2009.07.002.

CHOUDHURY B.J., IDSO S.B., REGINATO R.J. 1987. Analysis of an empirical
model for soil heat flux under a growing wheat crop for
estimating evaporation by an infrared-temperature based energy
balance equation. Agricultural and Forest Meteorology. Vol. 39
(4) p. 283–297. DOI 10.1016/0168-1923(87)90021-9.

COLAIZZI P.D., KUSTAS W.P., ANDERSON M.C., AGAM N., TOLK J.A., EVETT
S.R., HOWELL T.A., GOWDA P.H., O’SHAUGHNESSY S.A. 2012. Two-
source energy balance model estimates of evapotranspiration
using component and composite surface temperatures. Advances
in Water Resources. Vol. 50 p. 134–151. DOI 10.1016/j.
advwatres.2012.06.004.

CONSOLI S., VANELLA D. 2014. Comparisons of satellite-based models for
estimating evapotranspiration fluxes. Journal of Hydrology.
Vol. 513 p. 475–489. DOI 10.1016/j.jhydrol.2014.03.071.

CRAGO R.D., BRUTSAERT W. 1992. A comparison of several evaporation
equations. Water Resources Research. Vol. 28(3) p. 951–954.
DOI 10.1029/91WR03149.

DOS SANTOS C.A.C., MARIANO D.A., NASCIMENTO F.C.A., DANTAS F.R.C.,
OLIVEIRA G., SILVA M.T., ..., NEALE C.M.U. 2020. Spatio-temporal
patterns of energy exchange and evapotranspiration during an
intense drought for drylands in Brazil. International Journal of
Applied Earth Observation and Geoinformation. Vol. 85, 101982
p. 1–11. DOI 10.1016/j.jag.2019.101982.

ELOUISSI A., HABI M., BENARICHA B., BOUALEM S.A. 2017. Climate change
impact on rainfall spatio-temporal variability (Macta watershed
case, Algeria). Arabian Journal of Geosciences. Vol. 10(22), 496
p. 1–14. DOI 10.1007/s12517-017-3264-x.

FELLAH S., HAMIMED A., MILOUDI K., KHALDI A., BENSLIMANE M., TEIXEIRA
A.H.D. 2021. Application of SEBAL and Ts/VI trapezoid models
for estimating actual evapotranspiration in the Algerian semi-
arid environment to improve agricultural water management.
Revista Brasileira de Meteorologia. Vol. 36(2) p. 219–236. DOI
10.1590/0102-77863610020.

FRENCH A.N., JACOB F., ANDERSON M.C., KUSTAS W.P., TIMMERMANS W.,
GIESKE A., ..., BRUNSELL N. 2005. Surface energy fluxes with the
Advanced Spaceborne Thermal Emission and Reflection radio-
meter (ASTER) at the Iowa 2002 SMACEX site (USA). Remote
Sensing of Environment. Vol. 99(1–2) p. 55–65. DOI 10.1016/j.
rse.2005.05.015.

GENTINE P., ENTEKHABI D., POLCHER J. 2011. The diurnal behavior of
evaporative fraction in the soil-vegetation-atmospheric boundary
layer continuum. Journal of Hydrometeorology. Vol. 12(6)
p. 1530–1546.

HAMIMED A., KHALDI A., MEHOR M., SEDDINI A. 2009. Estimation of daily
actual evapotranspiration in Algerian semiarid environment with
satellite ASTER. EARSeL eProceedings. Vol. 8(2) p. 140–151.

HAMIMED A., NEHAL L., KHALDI A., AZZAZ H. 2014. Contribution à la
spatialisation de l’évapotranspiration d’un agro-système semi-
aride en Algérie par utilisation de la télédétection et du modele
METRIC [Contribution to the spatialization of evapotranspira-
tion in a semi-arid agro-system in Algeria using remote sensing
and METRIC model]. Physio-Géo – Géographie Physique et
Environnement. Vol. 8 p. 197–213. DOI 10.4000/physio-
geo.4063.

JIANG L., ISLAM S. 2001. Estimation of surface evaporation map over
southern Great Plains using remote sensing data. Water
Resources Research. Vol. 37(2) p. 329–340. DOI 10.1029/
2000WR900255.

KAUFMAN Y.J., TANRÉ D., REMER L.A., VERMOTE E.F., CHU A., HOLBEN B.
N. 1997. Operational remote sensing of tropospheric aerosol over

land from EOS moderate resolution imaging spectroradiometer.
Journal of Geophysical Research: Atmospheres. Vol. 102(D14)
p. 17051–17067. DOI 10.1029/96JD03988.

KHALDI A., HAMIMED A., MEDERBAL K. SEDDINI A. 2011. Obtaining
evapotranspiration and surface energy fluxes with remotely
sensed data to improve agricultural water management. African
Journal of Food Agriculture Nutrition and Development. Vol. 11
(1) p. 4558–4581. DOI 10.4314/ajfand.v11i1.65881.

KUSTAS W.P., DAUGHTRY C.S. 1990. Estimation of the soil heat flux/net
radiation ratio from spectral data. Agricultural and Forest
Meteorology. Vol. 49(3) p. 205–223. DOI 10.1016/0168-1923
(90)90033-3.

KUSTAS W.P., NORMAN J.M. 1999. Evaluation of soil and vegetation heat
flux predictions using a simple two-source model with radio-
metric temperatures for partial canopy cover. Agricultural and
Forest Meteorology. Vol. 94(1) p. 13–29. DOI 10.1016/S0168-
1923(99)00005-2.

LIANG S., SHUEY C., RUSS A., FANG H., CHEN M., WALTHALL C., DAUGHTRY
C., HUNT B. 2002. Narrowband to broadband conversions of land
surface albedo: II. Validation. Remote Sensing of Environment.
Vol. 84(1) p. 25–41. DOI 10.1016/S0034-4257(02)00068-8.

MADUGUNDU R., AL-GAADI K.A., TOLA E., HASSABALLA A.A., PATIL V.C.
2017. Performance of the METRIC model in estimating
evapotranspiration fluxes over an irrigated field in Saudi Arabia
using Landsat-8 images. Hydrology and Earth System Sciences.
Vol. 21(12) p. 6135–6151. DOI 10.5194/hess-21-6135-2017.

MKHWANAZI M., CHÁVEZ J.L., RAMBIKUR E.H. 2012. Comparison of large
aperture scintillometer and satellite-based energy balance models
in sensible heat flux and crop evapotranspiration determination.
International Journal of Remote Sensing Applications. Vol. 2(1)
p. 24–30.

MORAN M.S., JACKSON R.D., RAYMOND L.H., GAY L. W., SLATER P.N. 1989.
Mapping surface energy balance components by combining
Landsat Thematic Mapper and ground-based meteorological
data. Remote Sensing of Environment. Vol. 30(1) p. 77–87.

MUZYLEV E.L., USPENSKII A.B., STARTSEVA Z.P., VOLKOVA E.V., KUKHARSKII
A.V. 2010. Modeling water and heat balance components for the
river basin using remote sensing data on underlying surface
characteristics. Russian Meteorology and Hydrology. Vol. 35
p. 225–235. DOI 10.3103/S1068373910030106.

NEHAL L., HAMIMED H., KHALDI A., SOUIDI, Z., ZAAGANE M. 2017.
Evapotranspiration and surface energy fluxes estimation using
the Landsat-7 enhanced thematic mapper plus image over
a semiarid agrosystem in the north-west of Algeria. Revista
Brasileira de Meteorologia. Vol. 32 p. 691–702. DOI 10.1590/
0102-7786324016.

OLIOSO A., JACOB F. 2002. Estimation de l’évapotranspiration à partir de
mesures de télédétection [Evapotranspiration estimation using
remote sensing data]. La Houille Blanche. Vol. 88(1) p. 62–67.
DOI 10.1051/lhb/2002008.

OLIOSO A., CHAUKI H., COURAULT D., WIGNERON J.P. 1999. Estimation of
evapotranspiration and photosynthesis by assimilation of remote
sensing data into SVAT models. Remote Sensing of Environ-
ment. Vol. 68 p. 341–356.

PAULSON C.A. 1970. The mathematical representation of wind speed
and temperature profiles in the unstable atmospheric surface
layer. Journal of Applied Meteorology. Vol. 9(6) p. 857–861.

SEGUIN B., ITIER B. 1983. Using midday surface temperature to estimate
daily evaporation from satellite thermal IR data. International
Journal of Remote Sensing. Vol. 4(2) p. 371–383. DOI 10.1080/
01431168308948554.

STAENZ K., SECKER J., GAO B.C., DAVIS C., NADEAU C. 2002. Radiative
transfer codes applied to hyperspectral data for the retrieval of

274 Evaluating four remote sensing based models to estimate latent heat flux in semi-arid climate for heterogeneous...

© 2022. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB).
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/)

https://doi.org/10.1016/j.agrformet.2009.07.002
https://doi.org/10.1016/j.agrformet.2009.07.002
https://doi.org/10.1016/0168-1923(87)90021-9
https://doi.org/10.1016/j.advwatres.2012.06.004
https://doi.org/10.1016/j.advwatres.2012.06.004
https://doi.org/10.1016/j.jhydrol.2014.03.071
https://doi.org/10.1029/91WR03149
https://doi.org/10.1016/j.jag.2019.101982
https://doi.org/10.1007/s12517-017-3264-x
https://doi.org/10.1590/0102-77863610020
https://doi.org/10.1590/0102-77863610020
https://doi.org/10.1016/j.rse.2005.05.015
https://doi.org/10.1016/j.rse.2005.05.015
https://doi.org/10.4000/physio-geo.4063
https://doi.org/10.4000/physio-geo.4063
https://doi.org/10.1029/2000WR900255
https://doi.org/10.1029/2000WR900255
https://doi.org/10.1029/96JD03988
https://doi.org/10.4314/ajfand.v11i1.65881
https://doi.org/10.1016/0168-1923(90)90033-3
https://doi.org/10.1016/0168-1923(90)90033-3
https://doi.org/10.1016/S0168-1923(99)00005-2
https://doi.org/10.1016/S0168-1923(99)00005-2
https://doi.org/10.1016/S0034-4257(02)00068-8
https://doi.org/10.5194/hess-21-6135-2017
https://doi.org/10.3103/S1068373910030106
https://doi.org/10.1590/0102-7786324016
https://doi.org/10.1590/0102-7786324016
https://doi.org/10.1051/lhb/2002008
https://doi.org/10.1080/01431168308948554
https://doi.org/10.1080/01431168308948554


surface reflectance. ISPRS Journal of Photogrammetry and
Remote Sensing. Vol. 57(3) p. 194–203. DOI 10.1016/S0924-
2716(02)00121-1.

STISEN S., SANDHOLT I., NØRGAARD A., FENSHOLT R., JENSEN K.H. 2008.
Combining the triangle method with thermal inertia to estimate
regional evapotranspiration – Applied to MSG-SEVIRI data in
the Senegal River basin. Remote Sensing of Environment.
Vol. 112(3) p. 1242–1255. DOI 10.1016/j.rse.2007.08.013.

TANG R., LI Z.L. 2015. Evaluation of two end-member-based models for
regional land surface evapotranspiration estimation from MODIS
data. Agricultural and Forest Meteorology. Vol. 202 p. 69–82.

TEIXEIRA A.D.C., BASTIAANSSEN W.G., AHMAD M.U.D., BOS M.G. 2009.
Reviewing SEBAL input parameters for assessing evapotranspira-
tion and water productivity for the Low-Middle Sao Francisco
River basin, Brazil: Part A: Calibration and validation. Agricul-
tural and Forest Meteorology. Vol. 149(3–4) p. 462–476. DOI
10.1016/j.agrformet.2008.09.016.

TIMMERMANS W.J., KUSTAS W.P., ANDERSON M.C., FRENCH A.N. 2007. An
intercomparison of the surface energy balance algorithm for land
(SEBAL) and the two-source energy balance (TSEB) modeling
schemes. Remote Sensing of Environment. Vol. 108(4) p. 369–
384. DOI 10.1016/j.rse.2006.11.028.

USGS undated a. Earth Explorer. [online]. United States Geological
Survey [Access 19.10.2016]. Available at: http://earthexplorer.
usgs.gov

USGS undated b. Landsat Missions [online]. United States Geological
Survey [Access 05.03.2022]. Available at: https://www.usgs.gov/
landsat-missions/landsat-8

VAN DE GRIEND A.A., OWE M. 1993. On the relationship between
thermal emissivity and the normalized difference vegetation
index for natural surfaces. International Journal of Remote
Sensing. Vol. 14(6) p. 1119–1131. DOI 10.1080/01431169
308904400.

VIDAL A., PERRIER A. 1990. Irrigation monitoring by following the water
balance from NOAA-AVHRR thermal infrared data. IEEE
Transactions on Geoscience and Remote Sensing. Vol. 28(5)
p. 949–954. DOI 10.1109/36.58984.

WWAP 2012. Managing water under uncertainty and risk: The United
Nations World Water Development Report 4. Paris, France.
UNESCO World Water Assessment Programme pp. 886.

ZOU M., ZHONG L., MA Y., HU Y., HUANG Z., XU K., FENG L. 2018.
Comparison of two satellite-based evapotranspiration models of
the Nagqu River Basin of the Tibetan Plateau. Journal of
Geophysical Research: Atmospheres. Vol. 123(8) p. 3961–3975.
DOI 10.1002/2017JD027965.

Tewfik A. Oualid, Abderrahmane Hamimed, Abdelkader Khaldi 275

© 2022. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB).
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/)

https://doi.org/10.1016/S0924-2716(02)00121-1
https://doi.org/10.1016/S0924-2716(02)00121-1
https://doi.org/10.1016/j.rse.2007.08.013
https://doi.org/10.1016/j.agrformet.2008.09.016
https://doi.org/10.1016/j.agrformet.2008.09.016
https://doi.org/10.1016/j.rse.2006.11.028
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
https://www.usgs.gov/landsat-missions/landsat-8
https://www.usgs.gov/landsat-missions/landsat-8
https://doi.org/10.1080/01431169308904400
https://doi.org/10.1080/01431169308904400
https://doi.org/10.1109/36.58984
https://doi.org/10.1002/2017JD027965

	INTRODUCTION
	MATERIALS AND METHODS
	STUDY AREA
	DATA USED
	Meteorological data
	Validation data
	Satellite data

	PREPROCESSING OF SATELLITE IMAGES
	Atmospheric correction in the visible, and near infrared bands
	Atmospheric correction in the thermal infrared
	Determination of input parameters
	Surface temperature

	MODELS
	Mapping ET at high resolution with internalised calibration (METRIC)
	Trapezoid interpolation model (TIM)
	Two-source energy balance (TSEB)
	Soil plant atmosphere and remote sensing ET (SPARSE)
	Prescribed mode and retrieval mode
	“Layer” series version and “Patch” parallel version
	Bowen ratio energy balance (BREB)


	RESULTS AND DISCUSSION
	SURFACE TEMPERATURE
	NET RADIATION
	SOIL HEAT FLUX
	SENSIBLE HEAT FLUX
	LATENT HEAT FLUX

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

