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Manufacture of Toughened Al2O3-Based Composites by the Combination  
of RBAO and SPS Processes

The effect of additions of silver or titanium (0.5 or 3 vol.%) microparticles on the microstructure, as well as some physical 
properties of Al2O3-based composites, were studied. The processing method for the manufacturing of alumina-based composites 
was a combination of RBAO and SPS processes. After the SPS process, bodies with almost full density were obtained. Observa-
tions by optical microscopy show a very fine and homogenous microstructure in all samples. Concerning mechanical properties, the 
addition of metals on alumina increases its fracture toughness significantly (112% for the sample with additions of silver, while the 
composite with additions of titanium fracture toughness increases by 72%). In terms of optical properties, both silver and titanium 
improve the absorbance in the visible range. 
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1. Introduction

Because alumina has a hexagonal crystalline structure 
with an ionic-covalent bond, it presents excellent physical, 
dielectric, and mechanical properties; it also has good corro-
sion resistance, as well as high chemical and thermal stability 
at high temperatures. For these reasons, alumina is used in the 
textile industry for yarn guides, in nozzles for flaming or just 
throwing sparks, in uses of melting pots, as refractory lining of 
furnaces, protectors for thermocouples, in electronics it is used 
in components for interconnection, as cutting tools and it is 
also used as a biomaterial because it is inert and insoluble [1]. 
However, despite its remarkable characteristics, its low fracture 
toughness value limits many other potential applications since 
slight imperfections in its structure cause cracks to overgrow, 
provoking it to fracture easily. Hence, different researchers have 
sought to improve the fracture toughness of alumina through 
the addition of reinforcing materials in its matrix [2-8]. It has 
been established that the reinforcement mechanism is due to the 
deflection of cracks when they move forward and collide with 
a metallic particle [9-10]. Another critical situation that improves 
the mechanical characteristics of the alumina is the final grain 
size in its microstructure so that if it is possible to obtain fine 
grains at the end of the processing, the properties of the same will 

be enhanced. There are several suggested methods for making 
alumina-based composites with good final characteristics. For 
example, Alweendo et al. comment that the incorporation of 
submicron SiC into Al2O3 matrix improves mechanical properties 
of the matrix [8]. Winter et al. fabricated nickel-Al2O3 compos-
ites with compositionally graded microstructures with different 
physical properties [11]. Konopka and Szafran have produced 
Al2O3-Al composites via infiltration of porous ceramics by liquid 
Al; they comment in their work that microstructure of obtained 
composites can be important in applications in which electrical 
properties of a material are relevant [12]. Davis in his work 
describes chemical and physical properties of Al2O3, as well 
as its manufacturing process and its applications or uses [13]. 
Guglielmi et al. establish a methodology to produce full-scale, 
all-oxide composites with porous reaction-bonded aluminum 
oxide (RBAO) with good physical properties [14]. Despite 
the large number of studies carried out to process alumina and 
improve its physical properties through incorporating different 
reinforcements, the combination of Reaction Bonded Aluminum 
Oxide (RBAO) and Spark Plasma Sintering (SPS) processes for 
obtaining alumina has not been reported. The RBAO is based 
on homogeneously mixed powders containing 40% to 60% of 
aluminum combined with alumina; during an oxidation treatment 
(usually in an oxygen atmosphere) the aluminum is oxidized to 
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γ-Al2O3 at a temperature of approximately 900°C and undergoes 
a phase transformation to α-Al2O3 at 1100°C. The alumina ob-
tained by this method has better physical characteristics than the 
one obtained by other methods, and it can even have nanometric 
sizes [15-17]. On the other hand, it is well known that through 
the SPS process, it is possible to retain the very fine particle size 
of the powder after sintering, which can be explained due to 
the very high speeds of the method for consolidating materials 
[18-19]. In this work, alumina-based composite reinforced with 
silver or titanium pure metals were manufactured by means of the 
combination of RBAO and SPS process, aimed to determine the 
effect of these metals on the mechanical, electrical and optical 
properties of the resulting composites.

2. Experimental details

Alumina-based composites were fabricated from Al2O3 
powder (Sigma-Aldrich, 99.9%, 5 μm); metals powders em-
ployed were Ag and Ti, both (Mayer, 99.5%, 1 μm). The amount 
added of the corresponding metal was 0.5 and 3 vol.%. The 
amounts of metals used were chosen because, in previous similar 
works, alumina-based composites with this amount of metals 
were those that yielded the best fracture toughness values [20-21]. 

The processing of the desired composite materials was 
carried out in two stages. In the first stage, alumina and 40% 
aluminum were intensively dry-mixed in air in a planetary mill 
(Retsch PM 100, Germany). The powders resulting from this 
grinding were subjected to a heating cycle at 1°C/min up to 
1,100°C and keeping the powder there for 1 hour to achieve 
the oxidation of the aluminum according to reaction 1 (RBAO 
process, in an electrical furnace Carbolite RHF17/3E). A sam-
ple of these powders was subjected to TGA analysis to follow 
aluminum oxidation progress (Shymadzu, DTG60H). Once the 
alumina was obtained through the RBAO process, it was inten-
sively mixed with silver or titanium powders. The grinding and 
mixing of the powders were carried out for 3 hours at a rotation 
speed of 300 rpm, using a stainless steel container with zirconia 
grinding elements of 0.3 cm diameter, the ratio between powder 
weight/balls weight was 1:10, grinding was carried out using 
3 ml of isopropyl alcohol as a control medium. The resulting 
powders from the second milling stage were consolidated by 
plasma spark sintering (Dr. Sinter SPS-1020), heated at a rate 
of 100°C/min up to 900°C for 5 min in vacuum; a sintering 
pressure of 30 MPa was applied. The particle size distribution 
of milled powders was determined using a Mastersizer 2000 
equipment of English origin. The density was determined by the 
alcohol immersion method based on Archimedes’ principle, as is 
specified in ASTM C20-00 [22]. Before characterization of the 
sintered samples, all of them were prepared to mirror finish SiC 
papers grinding and polishing using 3 µm and 1 µm diamond 
suspension. Observations of the microstructure of each sintered 
sample were performed by optical microscopy (Nikon, Eclipse 
MA 200, Japan). The ultrasonic method determined Young’s 
modulus, following the ASTM C1198 – 09 standards [23], us-

ing a Grindosonic A-360 Japanese manufacturing equipment. 
Microhardness was evaluated in agreement with the ASTM 
C1327 standards [24]. In this case, twelve measurements were 
performed at different sample locations; these measurements 
were performed with a microhardness tester (Wilson Instruments 
Model S400, Japan). The fracture toughness was determined by 
the indentation fracture method using Miyoshi’s equation [25].

 2Al + 3/2O2 → Al2O3	 (1)
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Where: KIC is the fracture toughness (MPam0.5), H is the Vick-
ers hardness (GPa), E is the modulus of elasticity (GPa), P is 
the applied load (N), and c is the average length of the cracks 
obtained from the Vickers fingerprint tips (m). Electrical char-
acterization was performed to sample’s pellets as follows; elec-
trical resistivity was obtained by Kelvin’s method, also known 
as four-point method. Capacitors with a material’s sample as 
dielectric were constructed. Dielectric constant was determined 
utilizing sample’s dimensions and capacitance measurements. 
Regarding measurements of the optical properties, samples of the 
manufactured pellets were pulverized. A suspension of 24 mg of 
powder in 10 ml of distilled water was prepared for each mate-
rial. Suspensions were measured in a quartz cuvette with a CCD 
spectrometer (Thorlabs, NJ, CCS200) and a quartz tungsten-
halogen lamp (Thorlabs, NJ, QTH10) with broadband emission 
from 400 to 2200 nm. Absorbance measurements were carried 
out by using an integration time of 500 ms in all the samples.

3. Results and discussion

3.1. Powder sizes (aluminum + alumina)

Fig. 1 shows the curve of cumulative (%) vs. particle size, 
also in this figure it is presented the curve of Vol (%) vs. par-
ticle size (first milling stage). In these curves it is possible to 
observe that a good distribution of particle sizes is obtained in 
the powders after the grinding stage. The cumulative (%) versus 
particle size graph in the figure indicates that 50% of the powders 
contain particle sizes of less than 1.5 microns; another 30% of the 
powders have sizes of approximately 2 microns; the remaining 
20% of the powders are between 2 and 2.5 microns. On the other 
hand, the Vol (%) vs. particle size curve shows the homogene-
ous size distribution of the particles since in the sample, there 
are particles with sizes ranging from 0.3 microns to particles 
of about 2.5 microns. This particle size distribution obtained 
after the grinding step favors the consolidation of the material, 
besides significantly helping in the aluminum oxidation reaction 
through the RBAO process, fulfilling one of the main objectives 
of this project. Also, these results indicate that the grinding stage 
was effective in obtaining fine particles, which will help ensure 
a good development in the sintering phase because the multiple 
contacts between the particles will favor the diffusion processes. 
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Fig. 1. Particle size analysis graph of powders after milling

3.2. Thermogravimetric analysis (RBAO process)

Fig. 2 shows the thermogravimetric analysis carried out 
on the mixture of Al + Al2O3 powders subjected to the heating 
cycle used to form alumina through the oxidation of aluminum 
(RBAO process). The graph shows that from room temperature 
and up to 500°C, the weight of the sample remains constant; 
from 500°C, there is a slight weight gain which ends at 650°C; 
at higher temperatures, the weight gain is more significant, this 
weight gain ends at approximately 900°C. Both weight gains 
are related to the oxidation of aluminum according to reac-
tion 1. By observing the temperatures at which this gain in 
weight occurs, the aluminum has to oxidize slightly when it is 
in a solid state, and subsequently, its oxidation is stronger when 
it is in a liquid state. The total weight gain was approximately 
11% which corresponds to the amount of oxygen that entered 
the mixture as mentioned above to oxidize the aluminum and 
form the new alumina. This gain in weight corresponds well 
with the stoichiometric amount of aluminum oxidized during 

the RBAO process step. Another important situation to note 
is that aluminum oxidizes more when it is in liquid phase than 
when it is solid; the reason for this is that there is a greater area 
of contact with oxygen and greater diffusion of oxygen in the 
metal. This behavior was also documented by Claussen et al. 
when he proposed the RBAO technique [15].

3.3. XRD evolution of RBAO process

Fig. 3 presents the X-ray diffraction patterns obtained from 
interrupted tests at different temperatures during the oxidation 
cycle, which was done in order to observe the progress of the 
aluminum oxidation reaction (RBAO process). These diffraction 
patterns corroborate what was observed in the thermogravimetric 
analysis since they show that the intensity of the aluminum peaks 
decreases as the temperature increases, while the intensity of the 
alumina peaks increases. This behavior indicates that reaction 1 
is taking place, which is completed when the sample reaches 
900°C, because at this temperature, there is no longer a peak 
corresponding to aluminum. This response is also observed in 
the work of Claussen et al. [15]. 

Fig. 3. X-ray diffraction patterns of interrupted tests at different tem-
peratures during the oxidation cycle. 1: Al2O3, 2: Al

3.4. XRD sintered samples

Fig. 4 presents the X-ray diffraction patterns obtained on 
the sintered samples by spark plasma; the lower part of the fig-
ure corresponds to the control´s sample (no metal was added). 
This pattern shows the presence of peaks corresponding to the 
alumina. The following two patterns correspond to the samples 
to which silver was added, where, in addition to the peaks cor-
responding to alumina, several low-intensity peaks correspond-
ing to silver can be distinguished. The two patterns at the top 
of the figure correspond to the sample with titanium additions; 

Fig. 2. Thermogravimetric analysis of Al + Al2O3 mixture powders 
heated at 1,100°C



252

some low-intensity peaks can be identified in these patterns, 
corresponding to titanium. The low intensity of the silver and 
titanium peaks in the respective pattern is explained by the fact 
that the additions of these metals in the samples were minimal. 
However, the most important thing about this figure is that it is 
verified that the desired composition was obtained at the end of 
the sintering stage since no other crystalline species correspond-
ing to another material are observed.

Fig. 4. X-ray diffraction patterns of the sintered samples by spark 
plasma. 1: Al2O3, 2: Ag, 3: Ti

In order to corroborate the presence of silver and titanium 
in the composites, X-ray energy dispersive analysis (EDS) was 
performed on the corresponding composite. Fig. 5 shows the 
spectra obtained from this analysis. The analysis was performed 
on the light and dark phases of the microstructures presented 
here. In the spectrum of Fig. 5a, the dark phase of the micro-
structure shows the presence of the chemical elements Al and O, 
which correspond to the alumina matrix of the sample. When 
the same analysis is performed on the clear phase of the same 
microstructure, it can be observed that in the spectrum, in ad-
dition to the elements Al and O, peaks appear that correspond 
to the silver added to the composite. Identical observations are 
made when the EDS analysis is performed on the sample with 
titanium additions. Fig. 5b shows that the spectrum obtained from 
the dark phase analysis indicates the presence of Al and O, while 
the spectrum obtained from the light phase analysis shows the 
presence of titanium. These analyses confirm the XRD results, 
which indicate the formation of the Al2O3-Ag and Al2O3-Ti 
composites.

3.5. Microstructure

Fig. 6 presents the micrographs obtained by optical micros-
copy of the sintered samples; in general, dense and homogeneous 

microstructures are observed in these pictures. The microstruc-
ture is so fine that neither the grain boundaries nor the added 
metals presence can be observed, except for the pure alumina 
sample; in this case, some pores and defects are observed. In 
the other samples, neither the presence of porosity nor defects 
in the samples are observed. Therefore, it can be considered that 
the samples were adequately sintered.

3.6. Mechanical properties

Fig. 7 presents the relative densities and elastic modulus 
of the sintered samples; concerning density, the pure alumina 
sample was the one that reached the lowest degree of density, 
having obtained 96% of its relative density. When silver is added 
to alumina, its relative density improves up to 97%, while when 
titanium is added, the relative density reached was 98%. From 
these results, it is clear that additions of metals that are good 
conductors of heat accelerate the diffusion of atoms during 
sintering which is reflected in bodies better densified. As far 
as the elastic modulus is concerned, the opposite effect occurs 
because with metals’ addition, the modulus of the resulting 
composite decreases. This effect is normal because metals are 
much less rigid or, in other words, have less elastic modulus 
than alumina, so that when combining alumina with metal, the 
elastic modulus decreases. On the other hand, no significant 
effect of the metal content on the final elastic modulus of the 
composite is observed since the final modulus was similar for 
the two metal contents studied. Ighodaro and Okoli, in their 

a)

b)

Fig. 5. Spectra of the EDS analysis performed in (a) Al2O3-Ag and 
(b) Al2O3-Ti composites
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review, report several works where alumina was reinforced with 
different metals in which elastic moduli similar to those of this 
work were obtained [9].

Fig. 7. Relative densities and elastic modulus of sintered samples

Fig. 8 presents the values of hardness and fracture toughness 
of the sintered samples; as concerns the hardness of the samples, 
it is to be expected that the sample with the highest hardness 
was the one containing 100% alumina. However, with silver ad-
ditions, the hardness of the composite decreases by up to 30%. 
On the other hand, the hardness only decreases by 6% for the 
sample with titanium additions. As in the elastic module, metals 
are softer than alumina, hence this behavior. However, the better 

toughness of metal with respect to ceramic is shown in this same 
figure, as the fracture toughness of alumina is improved by up to 
112% for the sample with additions of 0.5 vol.% silver, while, 
for the composite with additions of 0.5 vol.% titanium fracture 
toughness increases by 72%, which is also favorable. One reason 
for these high values of fracture toughness obtained in these 
composites is the good degree of densification obtained in them, 
coupled with the presence of very fine structures. The reinforce-
ment mechanism that acts in this type of composite has been well 
documented [9-10] and reported as the deflection of cracks that 
collide with metal particles as they grow, and must deviate its 
trajectory in order to continue growing, which translates into 

Fig. 6. Optical microscopy micrographs of the sintered samples. A: Al2O3, B: Al2O3-0.05%Ag, C: Al2O3-3.0%Ag, D: Al2O3-0.05%Ti, 
E: Al2O3-3.0%Ti

Fig. 8. Hardness and fracture toughness of sintered samples
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greater energy consumption and hence an improvement in the 
toughness of the composite. The results indicate that there is no 
considerable effect of the different amounts of reinforcing metal 
used on the hardness or fracture toughness of the composites.

Fig. 9 shows a typical fingerprint resulting from the micro-
hardness test where the cracks formed during indentation can 
be observed and used to calculate the fracture toughness of the 
materials under study. It is worth mentioning that the reported 
result is the average of 12 measurements performed in different 
indentations.

Fig. 9. Typical fingerprint resulting from the microhardness test, used 
to calculate fracture toughness in composites

3.7. Optical properties

Fig. 10 shows absorbance response in the range from 400 
to 800 nm of pure Al2O3 and Al2O3 with Ag or Ti additions; as 
can be seen, pure Al2O3 shows the lower absorbance in the vis-
ible range. It can also be observed two small peaks at 542 and 
609 nm; these peaks are enhanced with Ag or Ti additions. It is 
noticed that Ti additions show a linear increase in the Al2O3 
absorbance. Regarding Ag additions, a higher absorbance than 
in Ti is observed for both 0.5 vol.% and 1.0 vol.% additions.

Light absorption enhancement in the visible range could 
expand or improve the areas of application of Al2O3. For exam-
ple, Dordevic et al. [26] extended the visible optical absorption 
of Al2O3, increasing the band gap to convert the Al2O3 from 
insulator to semiconductor. Al2O3 can also be utilized to improve 
the performance in perovskite solar cells [27].

3.8. Electrical properties

Fig. 11 shows the electrical properties for the studied 
materials; the resistivity present in these samples is within 
a range characteristic of insulating materials, typically from 108 
to 1020 Ωm [28]. However, the addition of silver or titanium to 
the alumina causes a decrease of 90 and 70% respectively in 
the resistivity of the alumina, thus losing part of the insulating 
properties of the alumina. This phenomenon is due to the natural 
electrical conductive characteristic of metals. Also, in Fig. 11 it 
can be observed an increase of the dielectric constant depending 
on the doping material added to alumina, but with values close 
to that of pure alumina, so the addition of metals to the alumina 
does not have a significant effect on its dielectric constant.

Fig. 11. Resistivity and dielectric constant of sintered samples

4. Conclusions

•	 Through the combination of the RBAO and SPS processes, 
it was possible to successfully manufacture dense alumina-
based composites reinforced with silver or titanium micro-
particles. The RBAO process helped obtain fine particles 
smaller than 1 micron, which favored the consolidation of 
the samples. Furthermore, the rapid consolidation of the 
samples during the SPS process helps to retain the fine 
particle size after the sintering step.

•	 Of the two amounts of reinforcing metals used (0.5 and 
3 vol.%), the results indicate that these amounts are not 
considerably affected on the different properties evaluated. 

Fig. 10. Visible light absorption of Al2O3 and Al2O3 with Ag or Ti 
additions
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On the other hand, the use of silver resulted in increasing 
the mechanical and electrical properties of alumina, while 
titanium better absorbs radiation in the visible spectrum.

•	 The use of reinforcing metals in alumina improves its 
fracture toughness considerably. An improvement of 112% 
and 72% was obtained when using 3 vol.% of silver and 
titanium respectively in the value of this property. The re-
inforcement mechanism that acts in this type of composite 
is the deflection of cracks that collide with metal particles 
as they grow.
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