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A new two-scroll 4-D hyperchaotic system
with a unique saddle point equilibrium, its bifurcation
analysis, circuit design and a control application

to complete synchronization

Sundarapandian VAIDYANATHAN, Irene M. MOROZ and Aceng SAMBAS

In this work, we present new results for a two-scroll 4-D hyperchaotic system with a unique
saddle point equilibrium at the origin. The bifurcation and multi-stability analysis for the new
hyperchaotic system are discussed in detail. As a control application, we develop a feedback
control based on integral sliding mode control (ISMC) for the complete synchronization of a
pair of two-scroll hyperchaotic systems developed in this work. Numerical simulations using
Matlab are provided to illustrate the hyperchaotic phase portraits, bifurcation diagrams and
synchronization results. Finally, as an electronic application, we simulate the new hyperchaotic
system using Multisim for real-world implementations.

Key words: hyperchaos, hyperchaotic systems, bifurcation analysis, multi-stability analysis,
synchronization, Multisim, circuit simulation

1. Introduction

Oscillators [1–3], memristors [4–6], circuits [7–9], encryption [10,11], cryp-
tosystems [12–14], and fuzzy systems [15, 16] are some popular areas where
hyperchaotic systems find applications owing to the high complexity in their
dynamics.
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The modelling of two-scroll hyperchaotic systems with varying level of com-
plexity is an active research work in chaos literature. In this work, we find a
new two-scroll hyperchaotic system with a unique saddle point equilibrium at the
origin. We detail the qualitative features of the two-scroll hyperchaotic system
comprehensively using bifurcation diagrams with the help of Lyapunov charac-
teristic exponents (LCE). Bifurcation analysis is very useful in unravelling the
various dynamic features of a chaotic or hyperchaotic system [17–19]. We also
consider the dynamics at infinity.
A multi-stability analysis of the two-scroll hyperchaotic system is also carried

out by fixing the values of the system parameters in the hyperchaotic case but by
considering two different initial data. Multi-stability is a special complex feature
of chaotic and hyperchaotic systems [8, 9, 14].
Using Multisim, we build an electronic circuit of the new two-scroll hyper-

chaotic system and the outputs of the Multisim circuit cohesively demonstrate
the matching with the Matlab outputs of the same system.
As a control application, we describe a complete synchronization design of

a pair of two-scroll hyperchaotic systems with the help of integral sliding mode
control (ISMC). Slidingmode control is a popular control technique with inherent
advantages such as robustness, insensitivity to small parameter variations, fast
convergence, etc. [20–22].

2. A new two-scroll hyperchaotic system with a unique saddle point equilibrium

In this work, we propose a new hyperchaotic system:
¤𝑦1 = 𝑎(𝑦2 − 𝑦1) + 𝑝𝑦2𝑦3 ,
¤𝑦2 = 𝑏𝑦2 − 𝑦1𝑦3 + 𝑦4 ,
¤𝑦3 = 𝑦1𝑦2 − 𝑐𝑦3 ,
¤𝑦4 = −𝑞𝑦2.

(1)

The state of the 4-D system (1) is designated 𝑌 = (𝑦1, 𝑦2, 𝑦3, 𝑦4).
Using Lyapunov exponents, it shall be shown in this work that the system (1)

exhibits a hyperchaotic attractor when the system parameters assume the values

𝑎 = 40, 𝑏 = 28, 𝑐 = 3, 𝑝 = 0.4, 𝑞 = 2.5. (2)

For 𝑇 = 1𝐸5 seconds, the Lyapunov characteristic exponents (LCE) of the
4-D system (1) were numerically estimated for 𝑌 (0) = (0.4, 0.2, 0.4, 0.2) and
(𝑎, 𝑏, 𝑐, 𝑝, 𝑞) = (40, 28, 3, 0.4, 2.5) to be:

𝑙1 = 3.0717, 𝑙2 = 0.0527, 𝑙3 = 0, 𝑙4 = −18.1354. (3)
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Thus, we conclude that the 4-D system (1) has dissipative hyperchaoticmotion
for the chosen values (2).
Figure 1 exhibits the Matlab plots of the 4-D system (1) for 𝑌 (0) =

(0.4, 0.2, 0.4, 0.2) and (𝑎, 𝑏, 𝑐, 𝑝, 𝑞) = (40, 28, 3, 0.4, 2.5).

(a) (b)

(c) (d)

Figure 1: State orbits of the two-scroll 4-D hyperchaotic system given by (1) for 𝑌 (0) =
(0.4, 0.2, 0.4, 0.2) and (𝑎, 𝑏, 𝑐, 𝑝, 𝑞) = (40, 28, 3, 0.4, 2.5): (a) 𝑦1−𝑦2-plane, (b) 𝑦2−𝑦3-
plane, (c) 𝑦3−𝑦4-plane and (d) 𝑦1−𝑦4-plane

To derive the fixed points of the 4-D hyperchaotic system (1), we seek the
roots of the following system of equations:

𝑎(𝑦2 − 𝑦1) + 𝑝𝑦2𝑦3 = 0 (4a)
𝑏𝑦2 − 𝑦1𝑦3 + 𝑦4 = 0 (4b)

𝑦1𝑦2 − 𝑐𝑦3 = 0 (4c)
−𝑞𝑦2 = 0 (4d)
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Since 𝑞 > 0, (4d) implies that 𝑦2 = 0.
Substituting 𝑦2 = 0 into (4c), 𝑐𝑦3 = 0, and since 𝑐 > 0, we conclude that

𝑦3 = 0.
Substituting 𝑦2 = 0 and 𝑦3 = 0 into (4b), we find that 𝑦4 = 0, and substituting

𝑦2 = 0 into (4a), we see that 𝑎𝑦1 = 0.
Since 𝑎 > 0, we conclude that 𝑦1 = 0.
Hence, the unique fixed point of the 4-D system (1) is given by 𝐵0 =

(0, 0, 0, 0).
The stability nature of the fixed point 𝐵0 is found via the Jacobian or the

linearized matrix 𝐽0 of the 4-D system (1) at 𝐵0.
Thus:

𝐽0 =


−40 40 0 0
0 28 0 1
0 0 −3 0
0 −2.5 0 0

 . (5)

The eigenvalues of 𝐽0 are numerically estimated as follows:

𝜇1 = −3, 𝜇2 = −40, 𝜇3 = 0.0896, 𝜇4 = 27.9104. (6)

Using the first method of Lyapunov stability theory, we deduce that 𝐵0 is is a
saddle point (and so unstable).
The new 4-D two-scroll hyperchaotic system (1) has multistability, as

it exhibits two coexisting attractors for the parameters (𝑎, 𝑏, 𝑐, 𝑝, 𝑞) =

(40, 28, 3, 0.4, 2.5) and two different initial data points, viz. 𝑌0 =

(0.4, 0.2, 0.4, 0.2) (blue orbit) and 𝑍0 = (−0.6, 0.4, 0.4,−0.6) (red orbit).

(a) (b)

Figure 2: Multistability of the 4-D two-scroll system (1): Two coexisting hyper-
chaotic attractors for (𝑎, 𝑏, 𝑐, 𝑝, 𝑞) = (40, 28, 3, 0.4, 2.5) and two initial phases 𝑌0 =

(0.4, 0.2, 0.4, 0.2) (blue orbit) and 𝑍0 = (−0.6, 0.4, 0.4,−0.6) (red orbit): (a) 𝑦1−𝑦2
plane and (b) 𝑦1−𝑦3 plane
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Figure 2 shows this coexistence of two hyperchaotic attractors for
(𝑎, 𝑏, 𝑐, 𝑝, 𝑞) = (40, 28, 3, 0.4, 2.5), where the blue hyperchaotic attractor as-
sociates for the initial state 𝑌0 = (0.4, 0.2, 0.4, 0.2) and the red hyperchaotic
attractor for the initial state 𝑍0 = (−0.6, 0.4, 0.4,−0.6).

3. Bifurcation analysis of the new hyperchaotic system

We now investigate the 4-D system:

¤𝑦1 = 𝑎(𝑦2 − 𝑦1) + 𝑝𝑦2𝑦3 = 𝐹 (𝑦1, 𝑦2, 𝑦3, 𝑦4), (7a)
¤𝑦2 = 𝑏𝑦2 − 𝑦1𝑦3 + 𝑦4 = 𝐺 (𝑦1, 𝑦2, 𝑦3, 𝑦4), (7b)
¤𝑦3 = 𝑦1𝑦2 − 𝑐𝑦3 = 𝐻 (𝑦1, 𝑦2, 𝑦3, 𝑦4), (7c)
¤𝑦4 = −𝑞𝑦2 = 𝐾 (𝑦1, 𝑦2, 𝑦3, 𝑦4), (7d)

for arbitrary positive parameter values of 𝑎, 𝑏, 𝑐, 𝑝, 𝑞. The divergence of the
flow is:

𝜕𝐹

𝜕𝑦1
+ 𝜕𝐺

𝜕𝑦2
+ 𝜕𝐻

𝜕𝑦3
+ 𝜕𝐾

𝜕𝑦4
= −(𝑎 + 𝑐 − 𝑏). (8)

We therefore require 𝑎 + 𝑐 − 𝑏 > 0 for contracting flows; the flow is divergence-
free if 𝑎+𝑐−𝑏 = 0. For the chosen set of parameter values (𝑎, 𝑏, 𝑐) = (40, 28, 3),
the divergence of the flow equals −15, so volumes contract in phase space.

3.1. Linear stability analysis

The fixed points are found by setting the RHS of (7) to zero. This gives the
trivial equilibrium point (𝑦1, 𝑦2, 𝑦3, 𝑦4) = (0, 0, 0, 0) only. Its linear stability is
found by computing the Jacobian matrix, evaluated at the equilibrium value:

𝐽 =
©­­«
−𝑎 𝑎 0 0
0 𝑏 0 1
0 0 −𝑐 0
0 −𝑞 0 0

ª®®¬ , (9)

and then determining the roots of the characteristic equation:

(𝜆 + 𝑐)𝜆3 + (𝑎 − 𝑏)𝜆2 − 𝑎𝑏𝜆 − 𝑞 = 0. (10)

3.2. Bifurcations

Since 𝑐 > 0, the first eigenvalue is negative, so we focus upon the remaining
three eigenvalues. A steady bifurcation, 𝜆 = 0, occurs when 𝑞 = 0. However 𝑞 ≠ 0
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here, so a steady bifurcation cannot occur. For a Hopf bifurcation, 𝜆 = ±𝑖𝜔, we
require

𝜔2 = 𝑞/(𝑏 − 𝑎) = 𝑎𝑏 > 0, (11)

so that 𝑏 − 𝑎 > 0. For the chosen parameter set, this cannot occur, so neither of
the two codimension-one bifurcations are possible.

3.3. Nonlinear dynamics

We find it instructive to explore the nonlinear dynamics of the four-
dimensional system for parameter values other than the chosen set of values.
To do this, we construct bifurcation transition diagrams as each parameter varies
in turn, as a function of 𝑥max.
Figure 3 shows the bifurcation transition plot of the maxima of 𝑥max as 𝑎

decreases from 𝑎 = 40. There is a period-four window when 35.85 < 𝑎 < 36.15
and another smaller window when 34.75 < 𝑎 < 35. The dynamics becomes
periodic for 𝑎 < 34.35 and then grows without bound for 𝑎 < 29.35.

Figure 3: Bifurcation transition plot of 𝑥max as 𝑎 decreases

Figure 4 shows the corresponding plot when 𝑏 decreases from 𝑏 = 30. The
dynamics is chaotic for 11.7 < 𝑏, before the appearance of a succession of



A NEW TWO-SCROLL 4-D HYPERCHAOTIC SYSTEM
WITH A UNIQUE SADDLE POINT EQUILIBRIUM. . . 283

Figure 4: Bifurcation transition plot of 𝑥max as 𝑏 increases

Figure 5: Bifurcation transition plot of 𝑥max as 𝑐 decreases
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periodic branches: period 7 for 9.15 < 𝑏 < 11.7; period 5 for 6.05 < 𝑏 < 9.15;
period 3 for 3.8 < 𝑏 < 6.05 and period 1 for 0 < 𝑏 < 3.8.
Figure 5 shows the bifurcation transition plot as 𝑐 decreases from 𝑐 = 10.

Here we have periodic states for 9.4 < 𝑐, giving rise to chaotic behaviour between
0.2 < 𝑐 < 9.4. There is then a period 4 state for 𝑐 = 0.1 and a period 2 state
for 𝑐 = 0.05.

3.4. Dynamics at infinity
3.4.1. Case A

The behaviour of 𝑥max as 𝑎 decreases, as shown in Figure 3, suggests that we
consider the dynamics of Eq. (7) as 𝑥 → ∞ in order to identify the source of the
periodic orbit for 𝑎 < 34.35.
We therefore introduce new variables

(𝑦1, 𝑦2, 𝑦3, 𝑦4) =
(
1
𝑋
,
𝑢

𝑋
,
𝑣

𝑋
,
𝑤

𝑋

)
, 𝑡 = 𝑋𝜏. (12)

Substitution into Eq. (7) gives
d
d𝑡

→ 1
𝑋

d
d𝜏
and

𝑋𝜏 = 𝑎(1 − 𝑢)𝑋2 − 𝑝𝑢𝑣𝑋, (13a)
𝑢𝜏 = 𝑎𝑢(1 − 𝑢)𝑋 − 𝑝𝑢2𝑣 + 𝑏𝑢𝑋 − 𝑣 + 𝑤𝑋, (13b)
𝑣𝜏 = 𝑎𝑣(1 − 𝑢)𝑋 − 𝑝𝑢𝑣2 + 𝑢 − 𝑐𝑣𝑋, (13c)
𝑤𝜏 = 𝑎𝑤(1 − 𝑢)𝑋 − 𝑝𝑢𝑣𝑤 − 𝑞𝑢𝑋, (13d)

where subscripts denote derivatives with respect to 𝜏.
In order to obtain the dynamics at infinity, we now take the limit 𝑋 → 0 so

that Eq. (13) becomes

𝑢𝜏 = −𝑣(1 + 𝑝𝑢2), (14a)
𝑣𝜏 = 𝑢(1 − 𝑝𝑣2), (14b)
𝑤𝜏 = −𝑝𝑢𝑣𝑤, (14c)

together with 𝑋𝜏 = 0. From the equations for 𝑢𝜏 = 0 and 𝑣𝜏 = 0, we obtain the
fixed point (𝑢, 𝑣) = (0, 0). Then 𝑤𝜏 = 0 is automatically satisfied for an arbitrary
value for 𝑤.
The stability of this fixed point at infinity is found from the eigenvalues of the

three-dimensional Jacobian matrix:

𝐽∞ =
©­«
−2𝑝𝑢𝑣 −1 − 𝑝𝑢2 0
1 −2𝑝𝑢𝑣 0

−𝑝𝑣𝑤 −𝑝𝑢𝑤 −𝑝𝑢𝑣
ª®¬ , (15)
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evaluated at (0, 0, 𝑤𝑎𝑟𝑏):

𝐽𝐴 =

(0 −1 0
1 0 0
0 0 0

)
. (16)

The eigenvalues are therefore a pair of pure imaginary eigenvalues 𝜆1,2 = ±𝑖, and
a zero eigenvalue 𝜆3 = 0. This is the Jacobian matrix for a codimension-two zero-
Hopf bifurcation [23]. The eigenvalues suggest that we have a centre at infinity,
and this is the source of the periodic orbits for finite values of the variables 𝑦 𝑗 ,
𝑗 = 1, ..., 4. Moreover, we can find the equation for this periodic orbit at infinity
as follows.
From (14c), we get

− 𝑝𝑢𝑣 = 𝑤𝜏

𝑤
. (17)

Multiplying (14a) by 𝑢, (14b) by 𝑣 and adding, we get

𝑢𝑢𝜏 + 𝑣𝑣𝜏 = −𝑝𝑢𝑣
(
𝑢2 + 𝑣2). (18)

Substituting from (17) into (18), we get

𝑢𝑢𝜏 + 𝑣𝑣𝜏 =
𝑤𝜏

𝑤

(
𝑢2 + 𝑣2

)
. (19)

We define
𝑌 = 𝑢2 + 𝑣2. (20)

Then we find that
𝑌𝜏 = 2(𝑢𝑢𝜏 + 𝑣𝑣𝜏) = 2

𝑤𝜏

𝑤
𝑌. (21)

Separating the variables, we get

𝑌𝜏

𝑌
= 2

𝑤𝜏

𝑤
. (22)

The differential equation (22) can be integrated directly to give

𝑢2 + 𝑣2 = 𝐴2𝑤2, (23)

for some constant of integration 𝐴, which is determined from the initial data for
(𝑢, 𝑣, 𝑤). For example, if we take initial data for our numerical integrations to be
(𝑢, 𝑣, 𝑤) = (0.5, 0.5, 0.1) (the periodic solution, shown in black, in Figure 7), we
obtain 𝐴2 = 50.
Figure 6 shows the phase portraits of (𝑢, 𝑣, 𝑤) for the initial data

(1.05, 0.1, 0.1): the behaviour is clearly periodic. Figure 7 shows the phase
portraits, projected into the (𝑢, 𝑣)-plane for 4 choices of initial conditions:
(1.05, 0.1, 0.1), (0.5, 0.1, 0.1), (0.1, 0.1, 0.1) and (0.5, 0.5, 0.1). The dynamics
is clearly that of a centre at infinity.
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Figure 6: Phase portraits of the equation (14) for the initial data: (1.05, 0.1, 0.1)

Figure 7: Phase portraits of the equation (14), projected onto the (𝑢, 𝑣)-plane for four
different initial conditions
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3.4.2. Case B

Here, we define

(𝑦1, 𝑦2, 𝑦3, 𝑦4) =
(
𝑢

𝑋
,
1
𝑋
,
𝑣

𝑋
,
𝑤

𝑋

)
, 𝑡 = 𝑋𝜏, (24)

We substitute into Eq. (7), take the limit 𝑋 → 0, and obtain

𝑢𝜏 = 𝑣(1 + 𝑝𝑢2), (25a)
𝑣𝜏 = 𝑢(1 + 𝑣2), (25b)
𝑤𝜏 = 𝑢𝑣𝑤. (25c)

We again take the fixed point to be (𝑢, 𝑣, 𝑤) = (0, 0, 𝑤arb), with stability given by
the eigenvalues of

𝐽𝐵 =

(0 𝑝 0
1 0 0
0 0 0

)
). (26)

This fixed point at infinity is a saddle, with eigenspectrum 𝜆1,2 = ±√𝑝 and 𝜆3 = 0.
3.4.3. Case C

With the change of variables:

(𝑦1, 𝑦2, 𝑦3, 𝑦4) =
(
𝑢

𝑋
,
𝑣

𝑋
,
1
𝑋
,
𝑤

𝑋

)
, 𝑡 = 𝑋𝜏, (27)

Eq. (7) becomes, as 𝑋 → 0,

𝑢𝜏 = 𝑣(𝑝 − 𝑢2), (28a)
𝑣𝜏 = −𝑢(1 + 𝑣2), (28b)
𝑤𝜏 = −𝑢𝑣𝑤. (28c)

Again taking the fixed point as (𝑢, 𝑣, 𝑤) = (0, 0, 𝑤𝑎𝑟𝑏) as before, the linear
stability is found from the eigenspectrum of the Jacobian matrix

𝐽𝐶 =

( 0 𝑝 0
−1 0 0
0 0 0

)
. (29)

We therefore obtain a centre with 𝜆1,2 = ±√𝑝𝑖 and 𝜆3 = 0.
Following the approach used for Case A, we introduce 𝑌 = 𝑢2 + 𝑣2, and

combine Eq. (28) to give

1
2
𝑌𝜏 = (𝑌 + 1 − 𝑝)𝑤𝜏

𝑤
, (30)



288 S. VAIDYANATHAN, I.M. MOROZ, A. SAMBAS

which integrates to give

𝑢2 + 𝑣2 = 𝐶2𝑤2 + 𝑝 − 1, (31)

for a constant of integration 𝐶.
For the initial condition (0.5, 0.5, 0.1), we obtain 𝐶2 = 110. Figure 8 shows

the phase portraits of the centre at infinity for initial data of (0.5, 0.5, 0.1).

Figure 8: Phase portraits of the equation (28) for the initial data: (0.5, 0.5, 0.1)

3.4.4. Case D

Finally the change of variables:

(𝑦1, 𝑦2, 𝑦3, 𝑦4) =
(
𝑢

𝑋
,
𝑣

𝑋
,
𝑤

𝑋
,
1
𝑋

)
, 𝑡 = 𝑋𝜏, (32)

transforms Eq. (7) to the following:

𝑢𝜏 = 𝑝𝑣𝑤, (33a)
𝑣𝜏 = −𝑢𝑤, (33b)
𝑤𝜏 = 𝑢𝑣, (33c)

as 𝑋 → 0.
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With 𝑌 = 𝑢2 + 𝑣2, the system (33) can be combined to give

𝑌𝜏 = (𝑝 − 1)𝑤2𝜏 (34)

with the integral
𝑢2 + 𝑣2 = 𝑤2(𝑝 − 1) + 𝐷, (35)

for a constant of integration 𝐷.
For the initial condition (0.5, 0.5, 0.1), 𝐷 = 0.506. Because there are no linear

terms in Eq. (33), there are three zero eigenvalues for the corresponding Jacobian
matrix. Nevertheless, we can integrate system (33) and obtain the periodic phase
portraits shown in Figure 9.

Figure 9: Phase portraits of the equation (33) for the initial data: (0.5, 0.5, 0.1)

3.4.5. Summary

In all four systems at infinity, the only parameter which appears (apart from
constants of integration, determined from initial data) is the parameter 𝑝. In
three of the four cases (Cases A, C and D) we observe a stable periodic state,
whose equation can be determined exactly by combining the particular system
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under consideration. Even for Case B, which yields a saddle point at infinity, we
can derive an equation for the orbit. Only the local dynamics depends upon the
remaining parameters of the system.

4. Complete synchronization of the new two-scroll hyperchaotic systems

To achieve global synchronization of the new two-scroll hyperchaotic sys-
tems, we make use of integral sliding mode control (ISMC), which is a popular
technique in the control literature.
The transmitter system is taken as the two-scroll dynamics discussed in Sec-

tion 2, viz. 
¤𝑦1 = 𝑎(𝑦2 − 𝑦1) + 𝑝𝑦2𝑦3 ,
¤𝑦2 = 𝑏𝑦2 − 𝑦1𝑦3 + 𝑦4 ,
¤𝑦3 = 𝑦1𝑦2 − 𝑐𝑦3 ,
¤𝑦4 = −𝑞𝑦2 .

(36)

We represent 𝑌 = (𝑦1, 𝑦2, 𝑦3, 𝑦4) as the state of the transmitter system (36).
The receiver system is taken as the two-scroll dynamics with controls given by

¤𝑤1 = 𝑎(𝑤2 − 𝑤1) + 𝑝𝑤2𝑤3 +𝑉1 ,
¤𝑤2 = 𝑏𝑤2 − 𝑤1𝑤3 + 𝑤4 +𝑉2 ,
¤𝑤3 = 𝑤1𝑤2 − 𝑐𝑤3 +𝑉3 ,
¤𝑤4 = −𝑞𝑤2 +𝑉4 .

(37)

We represent𝑊 = (𝑤1, 𝑤2, 𝑤3, 𝑤4) as the state of the receiver system (37).
We denote 𝑉 = (𝑉1, 𝑉2, 𝑉3, 𝑉4) as the sliding mode controller which is to be

designed in this section so as to completely synchronize the respective states of
the transmitter system (36) and the receiver system (37).
The synchronization error for the transmitter system (36) and the receiver

system (37) is described as follows:
𝜒1 = 𝑤1 − 𝑦1 ,
𝜒2 = 𝑤2 − 𝑦2 ,
𝜒3 = 𝑤3 − 𝑦3 ,
𝜒4 = 𝑤4 − 𝑦4 .

(38)

It is easy to see that
¤𝜒1 = 𝑎(𝜒2 − 𝜒1) + 𝑝(𝑤2𝑤3 − 𝑦2𝑦3) +𝑉1 ,
¤𝜒2 = 𝑏𝜒2 + 𝜒4 − 𝑤1𝑤3 + 𝑦1𝑦3 +𝑉2 ,
¤𝜒3 = −𝑐𝜒3 + 𝑤1𝑤2 − 𝑦1𝑦2 +𝑉3 ,
¤𝜒4 = −𝑞𝜒2 +𝑉4 .

(39)
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In the IMSC design, we associate an integral sliding surface with every
synchronization error variable 𝜒𝑖, (𝑖 = 1, 2, 3, 4) as follows:

𝑆1 = 𝜒1 + 𝜇1
𝑡∫
0

𝜒1(𝛼)d𝛼 ,

𝑆2 = 𝜒2 + 𝜇2
𝑡∫
0

𝜒2(𝛼)d𝛼 ,

𝑆3 = 𝜒3 + 𝜇3
𝑡∫
0

𝜒3(𝛼)d𝛼 ,

𝑆4 = 𝜒4 + 𝜇4
𝑡∫
0

𝜒4(𝛼)d𝛼 .

(40)

Differentiating the equations given in (40), we obtain:
¤𝑆1 = ¤𝜒1 + 𝜇1 𝜒1 ,
¤𝑆2 = ¤𝜒2 + 𝜇2 𝜒2 ,
¤𝑆3 = ¤𝜒3 + 𝜇3 𝜒3 ,
¤𝑆4 = ¤𝜒4 + 𝜇4 𝜒4 .

(41)

We suppose that 𝜇1, 𝜇2, 𝜇3 and 𝜇4 are positive constants, and consider the
integral sliding mode controls as follows:

𝑉1 = −𝑎(𝜒2 − 𝜒1) − 𝑝(𝑤2𝑤3 − 𝑦2𝑦3) − 𝜇1𝜒1 − 𝜖1sgn(𝑆1) − 𝜅1𝑆1 ,
𝑉2 = −𝑏𝜒2 − 𝜒4 + 𝑤1𝑤3 − 𝑦1𝑦3 − 𝜇2𝜒2 − 𝜖2sgn(𝑆2) − 𝜅2𝑆2 ,
𝑉3 = 𝑐𝜒3 − 𝑤1𝑤2 + 𝑦1𝑦2 − 𝜇3𝜒3 − 𝜖3sgn(𝑆3) − 𝜅3𝑆3 ,
𝑉4 = 𝑞𝜒2 − 𝜇4𝜒4 − 𝜖4sgn(𝑆4) − 𝜅4𝑆4 .

(42)

In Eq. (42), 𝜇𝑖, 𝜏𝑖, 𝜅𝑖, (𝑖 = 1, 2, 3, 4) are positive constants.
Substituting (42) into the error dynamics (39), we obtain the following:

¤𝜒1 = −𝜇1 𝜒1 − 𝜖1 sgn(𝑆1) − 𝜅1𝑆1 ,
¤𝜒2 = −𝜇2 𝜒2 − 𝜖2 sgn(𝑆2) − 𝜅2𝑆2 ,
¤𝜒3 = −𝜇3 𝜒3 − 𝜖3 sgn(𝑆3) − 𝜅3𝑆3 ,
¤𝜒4 = −𝜇4 𝜒4 − 𝜖4 sgn(𝑆4) − 𝜅4𝑆4 .

(43)

The following theorem states the main control result for this system on the
synchronization of the two-scroll hyperchaotic systems (36) and (37).
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Theorem 1 The integral sliding mode control law (42) renders the transmitter
system (36) and receiver system (37) synchronized globally for all values of initial
states 𝑌 (0), 𝑊 (0) in R4, where it is assumed that 𝜇𝑖, 𝜖𝑖, 𝜅𝑖, (𝑖 = 1, 2, 3, 4) are
positive constants.

Proof. We start the proof by taking the Lyapunov function defined by

𝑉 (𝑆1, 𝑆2, 𝑆3, 𝑆4) =
1
2

(
𝑆21 + 𝑆

2
2 + 𝑆

2
3 + 𝑆

2
4

)
. (44)

We note that 𝑉 takes all non-negative values. Also, 𝑉 = 0 if and only if
𝑆1 = 𝑆2 = 𝑆3 = 𝑆4 = 0.
This shows that 𝑉 is a quadratic and strictly positive definite function on R4.
Next, we find that

¤𝑉 = 𝑆1 ¤𝑆1 + 𝑆2 ¤𝑆2 + 𝑆3 ¤𝑆3 + 𝑆4 ¤𝑆4 . (45)

A simple calculation shows that

¤𝑉 =

4∑︁
𝑖=1

𝑆𝑖
(
− 𝜖𝑖 sgn(𝑆𝑖) − 𝜅𝑖𝑆𝑖

)
(46)

which can be simplified as follows:

¤𝑉 = −
4∑︁
𝑖=1

[
𝜖𝑖 |𝑆𝑖 | + 𝜅𝑖𝑆2𝑖

]
. (47)

Since 𝜖𝑖 > 0 and 𝜅𝑖 > 0 for 𝑖 = 1, 2, 3, 4, ¤𝑉 is a negative definite function
defined on R4.
Using Lyapunov stability theory, it is deduced that 𝑆𝑖 (𝑡) → 0, (𝑖 = 1, 2, 3, 4)

as 𝑡 → ∞.
Hence, it follows that 𝜒𝑖 (𝑡) → 0, (𝑖 = 1, 2, 3, 4) as 𝑡 → ∞.
This completes the proof. 2

For MATLAB simulations, the constants are considered as in the hyperchaos
case, viz. (𝑎, 𝑏, 𝑐, 𝑝, 𝑞) = (40, 28, 3, 0.4, 2.5) .
Let us assume the sliding constants as 𝜖𝑖 = 0.3, 𝜅𝑖 = 12 and 𝜇𝑖 = 12 for

𝑖 = 1, 2, 3, 4.
The initial state of the transmitter system (36) is taken as

𝑦1(0) = 4.2, 𝑦2(0) = 8.3, 𝑦3(0) = 7.2, 𝑦4(0) = 1.6. (48)

The initial state of the receiver system (37) is taken as

𝑤1(0) = 3.8, 𝑤2(0) = 5.4, 𝑤3(0) = 12.6, 𝑤4(0) = 15.9. (49)

The sliding controller design based on the 4-D hyperchaotic systems (36) and
(37) is illustrated in the Figure 10.
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Figure 10: MATLAB plot showing complete synchronization errors with time-history
for the 4-D hyperchaotic systems (36) and (37)

5. Circuit simulation of the new 4D Hyperchaotic System

In this work, the new 4D hyperchaotic system is realized by the NI MultiSIM
14.0 platform. The electronic circuit design of the proposed hyperchaotic system
is shown in Figure 11.
Applying the Kirchhoff laws, the circuit presented in Figure 11 is described

by the following equations:

¤𝑦1 =
1

𝐶1𝑅1
𝑦2 −

1
𝐶1𝑅2

𝑦1 +
1

10𝐶1𝑅3
𝑦2𝑦3 ,

¤𝑦2 =
1

𝐶2𝑅4
𝑦2 −

1
10𝐶2𝑅5

𝑦1𝑦3 +
1

𝐶2𝑅6
𝑦4 ,

¤𝑦3 =
1

10𝐶3𝑅7
𝑦1𝑦2 −

1
10𝐶3𝑅8

𝑦3

¤𝑦4 = − 1
𝐶4𝑅9

𝑦2 .

(50)
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Figure 11: Circuit design of the new two-scroll hyperchaotic system

Here, 𝑦1, 𝑦2, 𝑦3, 𝑦4 correspond to the voltages on the integrators U1A, U2A,
U3A and U4A, respectively. The values of components in the circuit are selected
as: 𝑅1 = 𝑅2 = 10 kΩ, 𝑅4 = 14.285 kΩ, 𝑅5 = 𝑅8 = 40 kΩ, 𝑅6 = 400 kΩ, 𝑅7 =
133.33 kΩ, 𝑅9 = 160 kΩ, 𝑅3 = 𝑅10 = 𝑅11 = 𝑅12 = 𝑅13 = 𝑅14 = 𝑅15 = 100 kΩ,
𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 3.2 nF. MultiSIM outputs of the circuit are presented
in Figure 12. These results are consistent with the numerical simulation results
presented in Section 2.
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(a)

(b)

(c)

(d)

Figure 12: Hyperchaotic attractors of new 4D Hyperchaotic system using NI MultiSIM
circuit simulation: (a) 𝑦1−𝑦2 plane, (b) 𝑦2−𝑦3 plane, (c) 𝑦3−𝑦4 plane and 𝑦1−𝑦4 plane
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6. Conclusions

A two-scroll 4-D hyperchaotic system with a unique saddle point equilibrium
at the origin was proposed in this work and the bifurcation properties of the new
system were discussed in detail. Using integral sliding mode control (ISMC),
we designed a nonlinear control for the complete synchronization of a pair of
two-scroll hyperchaotic systems developed in this work. Finally, as an electronic
application, we simulated the new 4-D two-scroll hyperchaotic system using
Multisim for real-world implementations.

References

[1] Y.J. Monkam, S.T. Kingni, R. Tchitnga and P. Woafo: Electronic simu-
lation and microcontroller real implementation of an autonomous chaotic
and hyperchaotic system made of a Colpitts-Josephson junction like circuit.
Analog Integrated Circuits and Signal Processing, 110(3), (2022), 395–407.
DOI: 10.1007/s10470-021-01965-1.

[2] J. Petrzela: Chaotic and hyperchaotic self-oscillations of lambda diode
composed by generalized bipolar transistors. Applied Sciences, 11(8),
(2021), Article ID 3326. DOI: 10.3390/app11083326.

[3] J.P. Singh, K. Rajagopal andB.K. Roy: Switching between dissipative and
conservative behaviors in a modified hyperchaotic system with the variation
of its parameter. International Journal of Bifurcation and Chaos, 31(16)
(2021), Article ID 2130048-8. DOI: 10.1142/S0218127421300482.

[4] Y. Jiang, C. Li, C. Zhang, Y. Zhao and H. Zang: A double-memristor
hyperchaotic oscillator with complete amplitude control. IEEE Transactions
on Circuits and Systems I: Regular Papers, 68(12), (2021), 4935–4944.DOI:
10.1109/TCSI.2021.3121499.

[5] D. Yan, L. Wang, S. Duan and J. Chen: Designing twin memristor-based
multiscroll systems by varying the flux variable of memristor. International
Journal of Bifurcation and Chaos, 31(7), (2021), Article ID 2150099. DOI:
10.1142/S0218127421500991.

[6] R. Li and R. Ding: A simple time-delay memristor and its application in
2D HR neuron model. International Journal of Modern Physics B, 35(13),
(2021), Article ID 2150166. DOI: 10.1142/S0217979221501666.

[7] S. Yan, E. Wang, Q. Wang, X. Sun and Y. Ren: Analysis, circuit im-
plementation and synchronization control of a hyperchaotic system. Phys-
ica Scripta, 96(12), (2021), Article ID 125257. DOI: 10.1088/1402-4896/
ac379b.

https://doi.org/10.1007/s10470-021-01965-1
https://doi.org/10.3390/app11083326
https://doi.org/10.1142/S0218127421300482
https://doi.org/10.1109/TCSI.2021.3121499
https://doi.org/10.1142/S0218127421500991
https://doi.org/10.1142/S0217979221501666
https://doi.org/10.1088/1402-4896/ac379b
https://doi.org/10.1088/1402-4896/ac379b


A NEW TWO-SCROLL 4-D HYPERCHAOTIC SYSTEM
WITH A UNIQUE SADDLE POINT EQUILIBRIUM. . . 297

[8] S. Vaidyanathan, S. He and A. Sambas: A new multistable double-scroll
4-D hyperchaotic system with no equilibrium point, its bifurcation analysis,
synchronization and circuit design. Archives of Control Sciences, 31(1),
(2021), 99–128. DOI: 10.24425/acs.2021.136882.

[9] S. Vaidyanathan, I.M. Moroz and A. Sambas: A new 4-D hyperchaotic
system with no equilibrium, its multistability, offset boosting and circuit
simulation. Archives of Control Sciences, 30(3), (2020), 575–597. DOI:
10.24425/acs.2020.134678.

[10] X.Wang,M. Gao, X.Min, Z. Lin andH. Ho-Ching Iu: On the use of mem-
ristive hyperchaotic system to design color image encryption scheme. IEEE
Access, 8 (2020), 182240–182248. DOI: 10.1109/ACCESS.2020.3027480.

[11] G.D. Leutcho, H.Wang, T.F. Fozin, K. Sun, Z.T. Njitacke and J. Kengne:
Dynamics of a new multistable 4D hyperchaotic Lorenz system and its
applications. International Journal of Bifurcation and Chaos, 32(1), (2022),
Article ID 2250001. DOI: 10.1142/S0218127422500018.

[12] B. Ge, X. Chen, G. Chen and Z. Shen: Secure and fast image encryption al-
gorithm using hyper-chaos-based key generator and vector operation. IEEE
Access, 9 (2021), 137635–137654. DOI: 10.1109/ACCESS.2021.3118377.

[13] M. Liu, M. Yu, J. Wang, Y. Chen and Y. Bian: Design of 9-D global
chaotic system and its application in secure communication. Circuit World,
48(1), (2022), 88–104. DOI: 10.1108/CW-03-2020-0042.

[14] S. Vaidyanathan, A. Sambas, E. Tlelo-Cuautle, A.A. Abd El-Latif,
B. Abd-El-Atty, O. Giullen-Fernandez, K. Benkouider, M.A. Mo-
hamed, M. Mamat and M.A.H. Ibrahim: A new 4-D multi-stable hyper-
chaotic system with no balance point: Bifurcation analysis, circuit simu-
lation, FPGA realization and image cryptosystem. IEEE Access, 9 (2021),
144555–144573. DOI: 10.1109/ACCESS.2021.3121428.

[15] K. Behih, S.E. Saadi and Z. Bouchama: Hyperchaos synchronization
using T-S fuzzy model based synergetic control theory. International Jour-
nal of Intelligent Engineering and Systems, 14(6), (2021), 588–595. DOI:
10.22266/ijies2021.1231.52.

[16] T.L. Le: Multilayer interval type-2 fuzzy controller design for hyperchaotic
synchronization. IEEE Access, 9 (2021), 155286–155296. DOI: 10.1109/ac-
cess.2021.3126880.

[17] X. Li, C. Zheng, X.Wang, Y. Cao andG. Xu: Symmetric coexisting attrac-
tors and extreme multistability in chaotic system.Modern Physics Letters B,
35(32), (2021), Article ID 2150458. DOI: 10.1142/S0217984921504583.

https://doi.org/10.24425/acs.2021.136882
https://doi.org/10.24425/acs.2020.134678
https://doi.org/10.1109/ACCESS.2020.3027480
https://doi.org/10.1142/S0218127422500018
https://doi.org/10.1109/ACCESS.2021.3118377
https://doi.org/10.1108/CW-03-2020-0042
https://doi.org/10.1109/ACCESS.2021.3121428
https://doi.org/10.22266/ijies2021.1231.52
https://doi.org/10.1109/access.2021.3126880
https://doi.org/10.1109/access.2021.3126880
https://doi.org/10.1142/S0217984921504583


298 S. VAIDYANATHAN, I.M. MOROZ, A. SAMBAS

[18] J. Shi, K. He and H. Fang: Chaos, Hopf bifurcation and control of a
fractional-order delay financial system.Mathematics and Computers in Sim-
ulation, 194 (2022), 348–364. DOI: 10.1016/j.matcom.2021.12.009.

[19] G.D. Leutcho, H.Wang, T.F. Fozin, K. Sun Z.T. Njitacke and J. Kengne:
Dynamics of a new multistable 4D hyperchaotic Lorenz system and its
applications. International Journal of Bifurcation and Chaos, 32(1), (2022),
Article ID 2250001. DOI: 10.1142/S0218127422500018.

[20] N. Mazhar, F.M. Malik, A. Raza and R. Khan: Predefined-time control
of nonlinear systems: A sigmoid function based sliding manifold design
approach.Alexandria Engineering Journal, 61(9), (2022), 6831–6841.DOI:
10.1016/j.aej.2021.12.030.

[21] A.R. Periyanagayam and Y.H. Joo: Integral sliding mode control for in-
creasing maximum power extraction efficiency of variable-speed wind en-
ergy system. International Journal of Electrical Power and Energy Systems,
139 (2022), Article ID 107958. DOI: 10.1016/j.ijepes.2022.107958.

[22] J. Ansari, A. Reza Abbasi and B. Bahmani Firouzi: Decentralized LMI-
based event-triggered integral sliding mode LFC of power systems with
disturbance observer. Integral sliding mode control for increasing maxi-
mum power extraction efficiency of variable-speed wind energy system.
International Journal of Electrical Power and Energy Systems, 138 (2022),
Article ID 107971. DOI: 10.1016/j.ijepes.2022.107971.

[23] J. Guckenheimer and P. Holmes: Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields. Springer, New York, NY, USA,
1983.

https://doi.org/10.1016/j.matcom.2021.12.009
https://doi.org/10.1142/S0218127422500018
https://doi.org/10.1016/j.aej.2021.12.030
https://doi.org/10.1016/j.ijepes.2022.107958
https://doi.org/10.1016/j.ijepes.2022.107971

	S. Vaidyanathan, I.M. Moroz, A. Sambas: A new two-scroll 4-D hyperchaotic system with a unique saddle point equilibrium, its bifurcation analysis, circuit design and a control application to complete synchronization

