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Abstract
Sleep apnea syndrome is a common sleep disorder. Detection of apnea and differentiation of its type:
obstructive (OSA), central (CSA) or mixed is important in the context of treatment methods, however, it
typically requires a great deal of technical and human resources. The aim of this research was to propose
a quasi-optimal procedure for processing single-channel electroencephalograms (EEG) from overnight
recordings, maximizing the accuracy of automatic apnea or hypopnea detection, as well as distinguishing
between the OSA and CSA types. The proposed methodology consisted in processing the EEG signals
divided into epochs, with the selection of the best methods at the stages of preprocessing, extraction and
selection of features, and classification. Normal breathing was unmistakably distinguished from apnea by
the k-nearest neighbors (kNN) and an artificial neural network (ANN), and with 99.98% accuracy by the
support vector machine (SVM). The average accuracy of multinomial classification was: 82.29%, 83.26%,
and 82.25% for the kNN, SVM and ANN, respectively. The sensitivity and precision of OSA and CSA
detection ranged from 55 to 66%, and the misclassification cases concerned only the apnea type.
Keywords: single-channel EEG, sleep apnea detection, optimization of signal processing, medical decision
support.
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1. Introduction

Sleep is one of the basic states of the human body. Being closely related to the central nervous
system, it affects its relaxation and is necessary for the normal functioning the entire human
being. Sleep apnea syndrome (SAS) is one of the most common sleep disorders that involves the
temporary reduction (hypopnea) or complete cessation (apnea) of breathing multiple times during
the night, which causes sleep fragmentation and has an influence on health, safety, and the quality
of human life. Generally, there are three types of apnea: obstructive (OSA), central (CSA), and
mixed (MSA) one, differing in factors influencing their occurrence. Counting only the respiratory
events (apnea or hypopnea) enables the determination of apnea severity: mild, moderate, severe,
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or extreme, whereas the differentiation of the event type is important in the context of therapeutic
options and the selection of treatment methods [1].

The gold standard in sleep disorder diagnostics is polysomnography (PSG) [1,2]. PSG consists
in recording various physiological signals during the night, including EEG, to evaluate the length
and quality of sleep and breathing patterns. PSG is complex, expensive, time-consuming and
based on recordings realized in a sleep laboratory and then annotated by experts.

The EEG represents the electrical activity of the brain and enables evaluation of the function
of the central nervous system by observing changes in the five brainwave activities. Typically,
two symmetrical EEG channels are recorded during PSG from the recommended and backup
electrode locations. Then, only one of them is used for further analysis [3]. The observed effect
of apnea on the EEG signal is the modification of the brainwaves [4, 5] and arousals occurring
after its episodes [6]. The above documents that SAS manifests in the EEG signal. Therefore,
automatic diagnostics with the use of portable EEG recorders can improve the effectiveness of
detecting apnea, including home surveillance. On the other hand, the optimized processing of the
single-channel EEG is of particular interest because it may be helpful also in the multi-channel
EEG signals analysis or EEG combination with other signals.

In recent years, a lot of studies have been published on the detection of apnea events based
on the use of single signals recorded during PSG, but including few with the single-channel
EEG [2, 7–27]. Most of the work applied binary classification to detect normal breathing (NB)
and apnea events (usually of the obstructive type only) [2, 7–11, 13, 16–20, 22–26, 28, 29]. The
studies, using solely the single EEG channel, achieved accuracy ranging from 76.70% [25] to
99.53% [11]. Differentiation of the apnea type into OSA, CSA, or MSA, using the single-channel
EEG signal, has been reported in only a few studies [14, 15, 21, 27]. There are also works on the
classification of the apnea type based on two symmetrical EEG channels [15], [28, 30–32]. The
accuracy of NB, OSA, and CSA classification obtained in these studies ranged from 63.80% to
64.30% with the use of the single-channel EEG signal [15] and from 70.30% to 99.68% with
the combination of features from two symmetrical EEG channels [15, 28, 31, 32]. Moreover,
two works proposed to distinguish also between apnea and hypopnea with the accuracy of
75.90% [21], and within six classes: apnea or hypopnea of each type at the level of 48.24% [21]
and 98.82% [27].

The aim of this research was to propose an optimized procedure for a single-channel EEG
signal processing from overnight recordings, maximizing the accuracy of both automatic differ-
entiation between sleep apnea and normal breathing, as well as the distinguishing between the
apnea types. The main contribution of this work is to demonstrate that processing only one EEG
channel allows for the correct detection of NB and apnea events, as well as to show the possibility
of distinguishing the type (OSA or CSA) of respiratory events. In order to achieve the goal above,
the present research used the classic approach to multinomial classification: signal preprocessing,
its division into 30-second epochs, extraction and selection of features, classification, and the
final evaluation of classification accuracy.

2. Materials and methods

2.1. EEG data from St. Vincent’s University Hospital database

Data from the PhysioBank were used in this study [33]. This database contains EEG signals
from two symmetric locations (C3-A2 and C4-A1), sampled at 128 Hz from, 25 patients (4 women
and 21 men), diagnosed with SAS or primary snoring. In this study, the C3-A2 channel was
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chosen according to the American Academy of Sleep Medicine recommendations [1, 3]. The
database is annotated by one expert about the sleep stages and respiratory events classified as
three (obstructive, central, and mixed) types of apnea and hypopnea, all scored with a resolution
of 1 second.

2.2. Methodology for selecting the best methods

The proposed methodology concerns the selection of the best possible methods at subsequent
stages of EEG processing (Fig. 1). To this end, the approaches reported in the literature on the
use of EEG in sleep research that yielded high accuracy of classification were first identified. The
selection of optimal methods for preprocessing as well as feature selection was made by maxi-
mizing the performance of the knearest neighbors (kNN) algorithm (Section 2.3) [14,15,30]. At
individual stages of the analysis, the best method was ascertained by applying two- and one-sided
Student’s 𝑡-tests (𝛼 = 0.05), which, respectively, made it possible to determine whether the differ-
ences between the methods were statistically significant, and if any of the approaches was better.
Then, the chosen methods were used at the succeeding stages. All procedures were implemented
in MATLAB R2020b (The MathWorks, USA).

Fig. 1. The applied methodology for processing a single-channel EEG (see text for abbreviations used)

.

2.3. Preprocessing

The following preprocessing methods were compared: removing too high magnitudes and
effects of saturation, removal of disturbances from the power grid by low-pass and notch filtration,
and standardization.

Too high magnitudes and saturations are characterized by significant deviations in the signal
amplitude. Detection of the samples with excessive magnitudes was made by calculating the 𝑧-
score for each sample and then specifying thresholds for the outliers [34]. In addition, the removed
sequences had to be longer than 10 samples. Two methods for removing disturbances from the
power grid were compared i.e. low-pass filtering with a cut-off frequency of 45 Hz [9, 35], and
notch filtering at 50 Hz (removing interference from the power grid) and 60 Hz (a component of
an unknown source observed in some EEG recordings). Low-pass filtering was performed with
a 17th-order type II Chebyshev zero-phase filter [36]. Then a 2nd order zero-phase notch filter
with an attenuation width of 1 Hz was applied to the same data.

Because the EEG signals collected in the database come from tests performed at different times
and on different subjects, they vary in signal energy. Therefore, detrending and standardization
were performed to unify the average signal powers.

Finally, the signals were divided into 30-second epochs based on expert description. Next,
the respiratory events with a duration of at least 10 seconds were found and placed in the middle
of the epochs created (if the event was shorter than 30 s, it was supplemented with adjacent
samples from normal breathing). Similarly, the signal fragments with normal breathing were
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also split into 30-second epochs. Then the epochs were gathered in three classes representing:
NB, obstructive apnea/hypopnea (OSA), and central apnea/hypopnea (CSA). The three classes
were balanced taking into account the number of epochs corresponding to the least numerous
set. The comparison of the preprocessing methods was made with the features obtained with the
discrete wavelet transform (DWT) and Hilbert transform (HT) combined with scalar metrics (see
Section 2.4), and then using the kNN classifier [14, 15].

2.4. Feature extraction

Feature extraction was performed in two steps, i.e., signal decomposition (one- or two-
stage) and the calculation of scalar metrics of the obtained components. Among the one-stage
decomposition methods chosen were band-pass filtering (BPF) [8, 10], DWT [37], empirical
mode decomposition (EMD) [10], and variational mode decomposition (VMD) [12]. After that,
the HT was applied to components from EMD (the Hilbert–Huang transform, HHT), as well as
from the DWT [14–16,30] and VMD.

BPF was performed with a cascade combination of constant-phase low-pass and high-pass
Chebyshev Type II filters with the minimum order, considering the frequency ranges characteristic
for the five brainwaves: delta (0–4 Hz), theta (4–8 Hz), alpha (8–16 Hz), beta (16–32 Hz), and
gamma (32–64 Hz) [1]. The DWT is a time-scale signal analysis method returning detailed and
approximation coefficients at a given level. The decomposition of epochs was performed using the
Daubechies 3 wavelet, whose shape is similar to EEG signal fragments [37]. Taking into account
the sampling frequency (128 Hz) and the frequency ranges of the brainwaves, the number of
decomposition levels was set at 4 to obtain 5 sub-signals matching these subbands. EMD is an
iterative algorithm that decomposes a signal into a finite number of oscillating intrinsic mode
functions (IMFs), having two properties: the number of extremes is the same as the number of
zero crossings (±1), and their envelopes are symmetrical in relation to the baseline [10]. The
number of IMFs depends on the information contained in the signal and as such may be different
for each epoch. Therefore, in order to unify the amount of obtained features for all epochs, the first
13 IMFs were used in further analyses. VMD allows to decompose a signal into a predetermined
number of IMFs with limited frequency bands located around the adaptive center frequencies,
calculated by solving a limited variational problem [38]. Each epoch was decomposed into 5
IMFs, as there are 5 brainwaves. The HT returns an analytic signal. For the analytical signals of
the components from the first stage of decomposition, their instantaneous amplitudes (IA) and
frequencies (IF) were calculated, as well as the weighted frequencies (WIF) [14].

At the end, 9 scalar features were calculated for all waveforms characterizing the EEG epochs,
such as statistical indexes: skewness, kurtosis, median [7,8,10,16,35]; Hjorth parameters: activity,
mobility, complexity and the ratio of the activity to the sum of the activities of all signals [35],
Shannon entropy [12, 16], and maximum amplitude [35].

2.5. Feature selection

Three feature selection methods based on feature filtering were deduced from the literature:
theminimum redundancy maximum relevance (MRMR) approach [35], the ReliefF algorithm [40]
and the analysis of variance (ANOVA) [14,15,30], as well as their combinations withmultivariate
regression analysis (MRA) [14, 15, 30]. The effectiveness of these methods was tested for the
largest set of features (351), extracted with the HHT method.

In the MRMR method, the feature ranking was made based on themutual information quotient
(MIQ) with values indicating the significant features [39]. Then, based on a decrease in MIQs,
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two thresholds were selected: 0.015 and 0. ReliefF is a ranking algorithm finding the closest
𝑘 neighbors for each feature and determining which of them have different values for different
classes and similar for the same class. It assigns weights according to their relevance. As a result,
the features are sorted according to importance related to their weights [40]. The selection of
features was made for the 𝑘 values from 3 to half the size of the feature vector and different
values of the weight thresholds th (set for 𝑘 = 10, which is the default value [40]) to reject some
of the features and then to test new, smaller vectors. ANOVA allows to determine whether the
observed variability of a feature is related to its belonging to a class. Therefore, it was used to
reject those features that did not differentiate between the classes (𝛼 = 0.05). On the other hand,
MRA backward selection made it possible to discard features that were almost linearly dependent
on others, using the adjusted coefficient of determination 𝑅

2
> 0.95 [30].

After finding the best method, it was used to select features separately for vectors from each
extraction method. Then these features were combined into one overall set and the final features
were reselected using the same method.

2.6. Classification

In order to test the effectiveness of classification within the three classes (NB, OSA and CSA),
three classifiers were compared: kNN [8,9,12,16,31,32], the support vector machine (SVM) [5,
7, 10, 11, 16, 31, 32], and two architectures of the artificial neural network (ANN) [7, 11, 16, 37].

The kNN method is a nonlinear classifier that enables assigning a new element to a class
based on knowledge of its closest neighbors belonging. Results of this multinomial automatic
classification were tested for 10 metrics: Hamming, Jaccard, Spearman, Chebyshev, Minkowski,
Euclidean, correlation, cosine, city-block, and standardized Euclidean, the number of neighbors
from 3 to 150, and the majority decision taking method [41].

The SVM is a supervised learning algorithm that allows to create a hyperplane dividing the
transformed feature space into classes and minimize the classification error by obtaining the
maximum geometric distance between them [32]. The classification within three classes was
made by decomposing the problem into three binary classifications. The search for the optimal
SVM structure was performed for the most popular kernel functions: linear, radial (2𝜎2 from
10−5 to 107) and polynomial (degree of 2 and 3), as well as for different values of box constraint
parameter 𝐶 (from 10−5 to 107), which enables to avoid overfitting, and then, with smaller step
nearly the optimal value, by scaling 𝐶 and 2𝜎2 by 0.2; 0.4; 0.6; 0.8; 1; 2; 4; 6; 8 [42].

The ANN is a nonlinear model inspired by the nervous system. The search for suboptimal
network architecture was performed for two ANN structures: with one hidden layer with a radial
function and two hidden layers with log-sigmoidal activation functions, which are sufficient to
approximate any mapping [43]. In the output layer, the SoftMax function was used, which allows
to estimate the probability of belonging to the classes. The selection of the number of neurons in
the hidden layers was carried out in two stages. First, the number of neurons in one or both layers
were set from 10 to 100, in increments of 10. Then, in the proximity of the best performance, the
number of neurons was changed in increments of 1. Neural network weights and thresholds were
randomly initialized before each network training. The search for suboptimal ANN architecture
was performed using the scaled conjugate gradient training algorithm because for this algorithm
the network training time was about 700 times shorter than for other tried ones. Then, for the
ANN selected as optimal, training was also performed with the use of two additional training
algorithms: gradient steepest descent and Levenberg–Marquardt (LM).
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2.7. Assessment of efficiency of classifiers

The performance evaluation of the classifiers was performed using 32-fold cross-validation
since testing the model 32 times allows to obtain a sufficiently good statistical averaging. The
obtained subsets were of roughly equal numbers: 128 or 129 epochs. The average accuracy with
the standard deviation of classification for the validation data was used as the primary performance
indicator for a classifier with specific hyperparameters. The obtained results were then used to
optimize the model hyperparameters, which allowed to achieve the maximum average accuracy
(𝐴) of classification. Moreover, the average precision (𝑃) and sensitivity (𝑆) were also used to
evaluate preprocessing and the feature selection methods [44].

3. Results

Various types of combinations of the preprocessing methods were tested. The best classifica-
tion result of 54.43%, with a statistically significant difference to the signal without preprocessing
(52.36%, 𝑝-value = 8.14 × 10−6), was observed for a combination of removing too high mag-
nitudes and signal saturations, low-pass filtering, and signal standardization. After dividing the
preprocessed signals into 30-second segments, the apneas covered 335 central, 208 obstructive,
and 128 mixed epochs. Hypopneas included 1401, 1038, and 102 of the obstructive, central and
mixed types. After merging them, the CSA proved to be the least numerous class. For this reason,
1373 epochs representing also the other two classes were randomly drawn. Thus, the total number
of epochs in the three balanced classes was 4119.

During the first stage of feature extraction, EEG epochs were decomposed into multiple
waveforms: each 5 by BPF, DWT and VMD; first 13 by EMD; 15 (5 × 3) by DWT or VMD
combined with HT; and 39 (13× 3) by HHT. Then, after calculating the 9 scalar features for each
component, the successive feature vectors contained: 45 features for each BPF, DWT and VMD;
117 for EMD; 135 for DWT+HT and VMD+HT, and 351 for HHT. Combining all subsets into
one gave a total of 873 features (Table 1). The results of the comparison between the feature
selection methods for the HTT set, including the Student 𝑡-tests, are shown in Table 2. The
ReliefF method reduced the number of features from 351 to 292 and improved the classification
precision from 68.04±2.25 to 68.65±2.34%, however, without statistically significant difference

Table 1. Number of features before and after two-stage selection using the ReliefF algorithm shown for individual
extraction methods.

Extraction method
Number of features Percentage of selected

features (%)Before selection After first selection After final selection

BPF 45 11 11 24.4

DWT 45 18 15 33.3

EMD 117 48 22 18.8

VMD 45 39 17 37.8

HHT 351 292 257 73.2

DWT+HT 135 105 58 43.0

VMD+HT 135 7 7 5.2

Overall set 873 520 387 44.3
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(𝑝−value = 0.059). Nevertheless, it was chosen for further stages of research. This final set was
used to optimize the three classifiers by tuning their hyperparameters. Tables 3–5 demonstrate the
best classification results, respectively. The average accuracy of the multinomial classification,
assessed by 32-fold cross-validation, was 82.29 ± 2.29%, 83.26 ± 2.62%, and 82.25 ± 2.80%
for the kNN with the standardized Euclidean metric and 𝑘 = 47; the SVM with a radial basis
function, 2𝜎2 = 40 and 𝐶 = 20; and the feedforward ANN with 14 + 14 neurons in two hidden
layers, log-sigmoid activation function, and the LM learning algorithm, respectively.

Table 2. Comparison of the precision of classification for different methods of feature selection (features extracted
by the HTT; classified by the kNN: 𝑘 = 17, city metrics).

P ±SD (%) Number of features

Original set 68.04 ± 2.25 351

MRMR 67.85 ± 2.32 323

ANOVA 68.08 ± 2.27 329

ReliefF 68.65 ± 2.34 292

ANOVA +MRA 66.52 ± 2.34∗ 217

ReliefF+MRA 66.79 ± 2.4∗ 238

The results of statistical tests (𝑝-value = 0.119 for kNN and SVM, 0.938 for kNN and ANN,
and 0.137 for SVM and ANN compared) indicate that there is no significant difference between the
average accuracy of individual classifiers, and therefore the results obtained using these methods
are comparable.

Based on the confusion matrices of the tested classifiers (Tables 3–5), it can be seen that the
NB epochs were flawlessly distinguished from the apnea epochs by kNN and ANN, and with an

Table 3. Confusion matrix (expert qualification in columns, prediction in rows) and performance of the kNN model
for 𝑘 = 47 and standardized Euclidean metric.

Confusion matrix
Classifier performance [%]

In classes Averaged

NB OSA CSA 𝐴𝑖 𝑃𝑖 𝑆𝑖 𝐴 𝑃 𝑆

NB 1373 0 0 100.00 100.00 100.00
82.29 73.44 73.44OSA 0 1084 805 73.44 57.38 78.95

CSA 0 289 568 73.44 66.28 41.37

Table 4. Confusion matrix (expert qualification in columns, prediction in rows) and performance of the SVM model
for the radial function, 𝐶 = 20 and 2𝜎2 = 40.

Confusion matrix
Classifier performance [%]

In classes Averaged

NB OSA CSA 𝐴𝑖 𝑃𝑖 𝑆𝑖 𝐴 𝑃 𝑆

NB 1372 0 0 99.98 100.00 99.93
83.26 74.90 74.90OSA 0 859 519 74.92 62.34 62.56

CSA 1 514 854 74.90 62.38 62.20
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accuracy of 99.98% by SVM (with one confused element). On the other hand, the sensitivity
and precision of the detection of OSA and CSA epochs range from 55 to 66%, and the cases
of misclassification concern only the apnea type. The average sensitivity and precision for these
classifiers were between 73 and 75%.

Table 5. Confusion matrix (expert qualification in columns, prediction in rows) and performance of the ANN model
with 14 + 14 neurons in hidden layers, after LM learning.

Confusion matrix
Classifier performance [%]

In classes Averaged

NB OSA CSA 𝐴𝑖 𝑃𝑖 𝑆𝑖 𝐴 𝑃 𝑆

NB 1373 0 0 100.00 100.00 100.00

OSA 0 807 531 73.37 60.31 58.78 82.25 73.37 73.37

CSA 0 566 842 73.37 59.80 61.33

4. Discussion

The aim of this research was to propose a quasi-optimal procedure for single-channel EEG
signal processing, maximizing the accuracy of both automatic sleep apnea detection and the
differentiation between the types of apnea. This procedure assumed the classic approach to
decision making based on machine learning with features extraction and selection and consisted
in selecting the most effective methods at the subsequent stages of signal processing.

First, the tested EEG preprocessing methods showed that removing too high magnitudes and
saturations visible in the signal did significantly decrease the precision of sleep apnea detection.
Nevertheless, their removal seems reasonable because they certainly do not represent the electrical
activity of the brain and therefore might have an undefined effect on the interpretation of the EEG
signal, including its classification. In addition, 98.16% of the detected too high magnitudes came
from signal samples annotated as NB and only 1.84% as OSA. There were no too high magnitudes
in the CSA class. These results shows also that notch filtering did not affect the classification
performance. The observed positive effect of limiting the frequency band to 45 Hz was confirmed
in the literature [12]. Additionally, such an upper limit from 35 to 45 Hz was also applied in other
works on the detection of sleep apnea on the basis of the EEG signal [9, 12, 26, 35]. Moreover,
there are studies that investigated changes in EEG signal power before, during and after sleep
apnea episodes, which did not include frequencies above 30 Hz [4]. In contrast, there is research
in which the set of selected features contained about 20% elements in the high frequency range of
32–64 Hz [14, 30]. Although frequencies below 30 Hz are dominant during sleep, and therefore
this range was usually analyzed in sleep apnea studies, it seems worthwhile to conduct further
research on the influence of the beta and gamma brainwaves (16–64 Hz) on the accuracy of sleep
apnea detection. Summarizing, standardization of the EEG signals has proven to be the most
effective preprocessing method.

In the studies on the EEG use to detect apnea, features were usually extracted by decomposing
the signal into waveforms related to the brainwaves and then calculating their scalar measures.
In the works with the classification accuracy about 90%, the feature vectors had from 5 to 140
elements. In this study with the extraction methods: BPF, DWT, EMD, VMD, HHT, DWT+HT
and VMD+HT, the sets with 45 to 351 features have been computed. However, after combining
all the subsets, a total of 873 features have been obtained, which is a much larger set than in the
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quoted literature. This large set allowed to finally select the features that distinguished the classes
very effectively.

The selection of features was performed only in a few of relevant studies: [11,14–17,26,30,35],
by applying the MRMR algorithm [35], Fisher’s method [11], the ANOVA and MRA [14,15,30],
the 𝑝-values of Student’s 𝑡-test [26] and SVM recursive elimination [17]. In other works, the feature
vector dimension was not reduced, and the discriminant ability of its elements was not checked,
but their number was usually small. The high accuracy of sleep apnea classification, from 89.01%
to 99.00%, was obtained in studies without feature selection [10, 12, 13, 16–18, 20, 23, 24] and
from 89.90% to 99.53% when they were selected [11,26, 35]. In this study, the MRMR, ReliefF,
ANOVA, ANOVA+MRA and ReliefF+MRA were compared. Each of these methods reduced the
number of HHT features (Table 1). On the basis of the Student 𝑡-tests, it can be concluded that the
average precision without selection is higher than after it for ANOVA+MRA and ReliefF+MRA
(however, the greatest reduction to 217 features was obtained with the ANOVA+MRA), whereas
the outcomes of ReliefF as well as the MRMR and ANOVA alone did not show a statistically
significant difference. The deterioration of the classification precision to 66.52% obtained after
additional MRA application was unexpected and should be further investigated. In the end, the
ReliefF method was chosen because it allowed the greatest increase in average precision to
68.65% while reasonably reducing the number of HHT features from 351 to 292. Afterwards, the
reselection of features from the overall set (520 features yielding the precision 72.91%) did not
improve the precision of classification (72.56%). According to the 𝑡-test, there was no statistically
significant difference between using the overall set and the features after reselection, however, this
limited their number to 387 (Table 1) and therefore this vector was considered reasonable to use
in the next step. Nevertheless, it is worth noting that the two-step selection reduced the vector size
to 43.3% (Table 1), and the HTT yielded the 257 most informative features. The second method
in the order, DWT+HT, provided 15% of the differentiating features.

Most of the works published in recent years have dealt with binary classification within the
class of NB and apnea, regardless of its type, or only with OSA. In this study, the accuracy
of distinguishing between NB and apnea, regardless of its type, is 100% for kNN and ANN
(Tables 3–5), so it is better or comparable to those achieved in the literature, that ranged from
78.10% to 99.53% [7–11, 13, 16–18, 18, 20, 22, 24–26, 29]. Such high accuracy results primarily
from the appropriately extracted and selected features and, perhaps, from constructing the EEG
epochs with the respiratory events placed in their center.

Recently, several papers have been published aimed at distinguishing the type of apnea based
on a single EEG channel only. Research depicted in [14, 15] yielded the maximal accuracy
64.30% of the multinomial classification (NB, OSA, and CSA) in contrast to the higher accuracy
of 83.26% reached in this work (Table 4). There are works which differentiated both apnea and
hypopnea, having six classes corresponding also to the types of events [21, 26]. Alimardani and
Moor achieved a mean accuracy of 48.24% and the highest precision within the obstructive
type 50.00% for apnea (SVM) and 72.50% for hypopnea (linear discriminant analysis, LDA),
and for the central type 38.10% for apnea (LDA) and 50.88% for hypopnea (SVM) [21]. In
this study, the highest precision for the combined apnea/hypopnea classes was 62.24% (SVM)
for obstructive and 66.28% (kNN) for the central type. Chatterjee and Jana attained high mean
accuracy within six classes from 81.39% to 98.92% (kNN) depending on the used database [27].
The discrimination between NB and obstructive apnea and hypopnea was realized by Gurrala et
al. with the average accuracy 95.90%, but the authors did not present classification assessment
for each class separately [23]. The results achieved in the presented work, however, cannot be
directly compared with those of Alimardani and Moor, Chatterjee and Jana and Gurrala et. al,
since in those studies the apnea and hypopnea classes were considered separately. Nevertheless,
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it was there noticed that for the central type, the accuracy for apnea/hypopnea classes was higher
than for separated classes, while for the combined obstructive type it was higher than for apnea,
but lower than for hypopnea alone [21].

There are also studies in which the detection of apnea was made based on features extracted
from two symmetrical EEG channels, achieving accuracy from 94.33% to 99.68% [17, 28, 31]
for binary classification (NB vs. apnea) and from 70.30% to 88.99% [2, 15] for multinomial
classification (NB, OSA, CSA). Using this approach, Zhao et al. obtained a classification accuracy
of 88.99% for the same three classes [32], which is higher than accuracy obtained in this study
using a single channel (83.26%). This confirms the hypothesis from previous research [15, 30]
that exploiting both symmetrical channels (instead of one) improves the accuracy of classifiers
applied in automated sleep apnea diagnostics. On the other hand, that research was conducted
with unbalanced learning subsets to the benefit of the well-recognized NB class, which had to be
translated into an increase in average accuracy. Two of the classifiers analyzed there, kNN and
SVM, were tested also in this study, yielding the accuracy 3% lower for kNN and 14% higher
for SVM. The accuracy of distinction between apnea and NB epochs in this study (accuracy and
precision of 100%, see Tables 3 and 5) is also higher than the accuracy achieved by others using
two symmetrical EEG channels: 94.33% [17], 95.10% [31] and 99.68% [28].

Some limitations of the proposed methodology were identified and should be considered in
future research. First of all, the study used signals from one public database [33] and only one
EEG channel (C3–A2). The size of the analyzed dataset was limited, particularly by the number
of epochs identified as apnea or hypopnea of the central type. To be able to obtain a greater
generalization of the classifier, it would be necessary to enlarge the dataset of signal segments
from various types of apnea and hypopnea, and from subjects with different severity of the SAS.
Moreover, during this study, processing was performed for the 30-second epochs in which the
episodes of the respiratory events were in the middle of these time intervals, and therefore it is
not known how such learned classifiers would work e.g., in the online analysis of consecutively
transmitted signal samples. Lastly, the classical scheme of machine learning, with the separate
stages of feature extraction and selection, was applied in this work, and it seems worthwhile to
extend the study to the use of models enabling deep learning, which made it possible to achieve
the accuracy of apnea detection from 76.70% to 95.90% [2,19, 20, 23, 25, 29].

5. Conclusions

The main attempt at this work was to systematically review and test the methods used in
the automatic detection of sleep apnea in order to identify the best of them at each stage of the
single-channel EEG processing. The flawless differentiation between normal breathing and sleep
apnea/hypopnea as well as the accuracy of differentiation of the apnea type higher than in the
previous studies confirm the validity of the proposed methodology. Thus, the main conclusion is
that by appropriate extracting and selecting features from 30-second EEG epochs, it is possible
to reliably detect sleep apnea epochs when analyzing only a single-channel EEG signal. Among
the tested methods, the most effective approaches to EEG processing turned out to be: low-
pass filtering and standardization of the overnight signals as preprocessing, the Hilbert–Huang
transform (HHT) and the DWT combined with the Hilbert transform at the feature extraction
stage, as well as the ReliefF algorithm for features selection. Nevertheless, all the extraction
methods, selected primarily from the literature, had a significant impact on these remarkable
outcomes. Moreover, the possibility of achieving very accurate results only on the basis of
one EEG channel should motivate the technological development of simple and cheap portable
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electroencephalographs with only a few channels. Most importantly, these encouraging results,
achieved on a relatively large database (4119 EEG epochs), show the potential of the proposed
methodology not only in the diagnostics of sleep apnea, but also of other diseases affecting brain
function.

In summary, the highlights of this work are as follows:
– the most effective methods were selected in the single-channel EEG processing chain used

to detect obstructive or central sleep apnea;
– normal breathing was distinguished from apnea with 100% accuracy using the 𝑘NN method

and the ANN, and 99.98% using the SVM;
– the proposed methodology may also be fruitful in the detection of other diseases affecting

the brain function, and in general – in other biosignals processing used for decision making.
Further research is needed to improve the accuracy of discriminating the type of apnea. The

first idea, which will not significantly increase the complexity of measurements, is to include
the second or more additional EEG channels (depending on the available hardware solution),
because even symmetrical channels have been shown to contain additional information increasing
the accuracy of classification. It seems also beneficial to use a larger database in future research,
with a greater number of respiratory events, in particular central type sleep apnea, the number of
which (assuming balanced classes) limited the amount of analyzed epochs. Finally, a hierarchical
approach to classification is considered: after accurately distinguishing between apnea and normal
breathing, to repeat the process of selecting the appropriate features (from the same originally
extracted set) that will best differentiate between the apnea types. These aforementioned directions
for further research should lead to full automation of apnea detection and differentiation, taking
into account a single- or few-channel EEG dedicated device, processing the last segment of the
recorded signal in accordance with the procedure developed in this work, and using the learned
model.
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