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ARL-Wavelet-BPF optimization using PSO algorithm
for bearing fault diagnosis

Muhammad AHSANo , Dariusz BISMORo and Muhammad Arslan MANZOOR

Rotating element bearings are the backbone of every rotating machine. Vibration signals
measured from these bearings are used to diagnose the health of the machine, but when the
signal-to-noise ratio is low, it is challenging to diagnose the fault frequency. In this paper,
a new method is proposed to enhance the signal-to-noise ratio by applying the Asymmetric
Real Laplace wavelet Bandpass Filter (ARL-wavelet-BPF). The Gaussian function of the ARL-
wavelet represents an excellent BPF with smooth edges which helps to minimize the ripple
effects. The bandwidth and center frequency of the ARL-wavelet-BPF are optimized using the
Particle Swarm Optimization (PSO) algorithm. Spectral kurtosis (SK) of the envelope spectrum
is employed as a fitness function for the PSO algorithm which helps to track the periodic spikes
generated by the fault frequency in the vibration signal. To validate the performance of the
ARL-wavelet-BPF, different vibration signals with low signal-to-noise ratio are used and faults
are diagnosed.

Key words: signal-to-noise ratio, asymmetric real Laplace wavelet, bandpass filter, particle
swarm optimization, spectral kurtosis, fault frequency.

1. Introduction

The vibration signal measured from a rotating element bearing contains a
background noise which results in decreasing the signal-to-noise ratio. When
a fault occurs in the bearing, the power of the fault frequency is very low in
the beginning. The power then exponentially increases and the rotating element
bearing finally gets damaged. Therefore, it is crucial to diagnose the faults in
their early stages to save the rotating machines from the sudden shutdown, which
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causes both financial and health problems [7,17]. In [13], a mixed𝐻2/𝐻∞ control
design is proposed for the augmented observer-based fault estimation.
The faults in rotating element bearings produce a periodic impact in the vibra-

tion signal which can be diagnosed using different signal processing techniques
in the time-domain, the frequency-domain, and the time-frequency-domain [16].
Health diagnosis of the rotating element bearing means to determine these pe-
riodic impulses and if the vibration signal has these periodic impulses, take the
necessary steps for predictive maintenance. But this is a challenging task because
of the low signal-to-noise ratio and hence traditional methods fail to diagnose the
faults.
The following equation represents the periodic impulses in frequency-domain

representation:

𝑆 𝑓 =
∑︁
𝑘

𝑋𝑘ℎ(𝑡 − 𝜏𝑘 ), (1)

where 𝑋𝑘 is the Fourier transform of the time-domain vibration signal 𝑥(𝑡) and
ℎ(𝑡) represents the impulse response with random time of the impacts 𝜏𝑘 and
a random sequence of amplitudes 𝑋𝑘 . 𝑘 is the set of real numbers. The rolling
elements of a bearing possess random slips and random pulses, and hence it is
known as a stochastic process. The resulting signals are pseudo-cyclostationary
instead of cyclostationary due to the lack of memory of the previous slips but are
usually treated as cyclostationary [15, 20].
It is important to increase the signal-to-noise ratio of the faulty signal before

applying signal processing techniques and for that, a bandpass filter (BPF) can
be applied which enhances the signal power, and then the faults are easily diag-
nosed. In the literature, different techniques are used to find the faults in rotating
element bearing such as envelope spectrum, kurtosis, spectral kurtosis (SK), and
so on [11, 22].
Antoni [4,6] proposed a kurtogram using the SK to detect the frequency loca-

tion of non-stationary transients in vibration signals and then further enhanced the
performance of the kurtogram by introducing the fast kurtogram in which binary
tree was employed to design the BPF [5]. In literature, the fast kurtogramwas used
by many researchers to diagnose the faults in rotating element bearings [10, 12].
However, the BPF constructed using the fast kurtogram has constant bandwidth
and center frequency because the binary tree divides the frequency spectrums at
the specific frequency. Therefore, it is highly possible that the constructed BPF
using a fast kurtogram possesses diverted bandwidth and center frequency from
the fault frequency spectrum. To solve optimized bandwidth and center frequency
problems, optimization methods such as the harmony search (HS) algorithm are
also employed [2, 3]. Another problem with the fast kurtogram is that it uses the
kurtosis of the time-domain signal. The kurtosis fails to determine the periodicity
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in the signal because its value depends on the spikes in the signal which could be
due to noise. Wang [23] employed the kurtosis based on the envelope spectrum
of the signal and proposed an enhanced kurtogram. But similar to the binary tree,
in an enhanced kurtogram, the vibration signal is decomposed to different depths
that result in a bank of different filters. In [14], the wavelet packet transform
(WPT) is used to divide the frequency band and the bank of BPF is constructed.
In [19], a fast neural network and genetic algorithm are used to design the smooth
orthogonal wavelet.
The continuous wavelet transform (CWT) efficiently divides the frequencies

of the vibration signal [21, 24] by producing different filters possessing different
bandwidths and center frequencies. In this process, the mother wavelet of a
specific wavelet basis function is stretched and translated. The fault frequency is
diagnosed using the produced filters but for that, the parameters of the wavelet
are selected precisely. There are two challenges in the CWT method, the first one
is the selection of step size for bandwidth and center frequency, and the second
one is the computational time to determine a suitable filter.
Motivated by the aforementioned literature review, this paper proposes an

alternative approach to design the BPF for fault diagnosis for low signal-to-noise
ratio vibration signals. In the proposed approach, a bank of different BPF is
not required, thus lowering the computational time. The center frequency and
bandwidth of the BPF are optimized using an optimization algorithm. The main
contributions of this paper include:

• Involvement of the Asymmetric Real Laplace (ARL) wavelet as the wavelet
base function to construct the CWT and diagnose the fault frequency. The
ARL-wavelet is more efficient than the Morlet wavelet for vibration fault
diagnosis due to its asymmetric geometric shape.

• Optimization of the bandwidth and center frequency of the CWT-wavelet-
BPF using the Particle Swarm Optimization (PSO) algorithm. The PSO
algorithmminimizes the computational time and filters bank is not required
to construct.

• Use of the SK of the envelope spectrum of vibration signal as the fitness
function to evaluate the strength of the fault frequency in the filtered signal.

The rest of the paper is organized as follows: Section 2 consists of ARL-
wavelet-BPF in which the model of the proposed filter is constructed. Section 3
discusses the fitness function. Section 4 presents the PSO algorithm and its main
steps for the implementation of the optimization problem. Section 5 shows the
results of the proposed method for different vibration signals having low signal-
to-noise ratios.
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2. Asymmetric real Laplace wavelet bandpass filter

The continuous wavelet transform𝑊 (𝛼, 𝛽) of a signal 𝑥(𝑡) is given by [18]:

𝑊 (𝛼, 𝛽) = |𝛼 |1/2
+∞∫

−∞

𝑥(𝑡)𝜙∗
(
𝑡 − 𝛽
𝛼

)
d𝑡, (2)

where 𝛼 and 𝛽 represent scale and shift parameters, respectively; 𝜙(.) is wavelet
function; and ∗ shows the conjugate. In the frequency domain, it can be written
as follow:

𝑊 (𝛼, 𝛽) = |𝛼 |1/2𝐼𝐹𝑇 [𝑋 ( 𝑓 )𝜓∗(𝛼 𝑓 )] , (3)

where 𝑋 ( 𝑓 ) and𝜓( 𝑓 ) are the Fourier transformof the signal andwavelet function,
respectively; and 𝐼𝐹𝑇 represents the inverse Fourier transform.
The wavelet function in Equation (2) is composed of a sine wave with a

Gaussian function. This sine wave could be real or complex. For ARL-wavelet
the sine wave is a real sine function with the frequency 𝑓𝑐. The wavelet function
𝜙(𝑡) for ARL-wavelet filter can be written as follow:

𝜙(𝑡) = exp(−𝜋𝜎 |𝑡 |) sin(2𝜋 𝑓𝑐𝑡), (4)

where 𝑓𝑐 and 𝜎 represent the center frequency and bandwidth of the ARL-
wavelet-BPF. In the frequency domain, it can be written as follow:

𝜓( 𝑓 ) = 𝜎

𝑗𝜋
[
𝜎2 + 4( 𝑓 − 𝑓𝑐)2

] − 𝜎

𝑗𝜋
[
𝜎2 + 4( 𝑓 + 𝑓𝑐)2

] . (5)

Fig. 1 shows the ARL-wavelet in the time and frequency domains. The shape
of the Gaussian function depends on the 𝜎 which is also known as the “number
of cycles” or the bandwidth of the Gaussian function. A wider Gaussian function
leads to an increase of the spectral precision and decrease of the temporal preci-
sion. In the same time, the center frequency 𝑓𝑐 is also important for the optimized
BPF such that it could detect the fault frequency. In Fig. 1a and 1b, the center
frequency 𝑓𝑐 is 20 Hz, and the bandwidth 𝜎 is 5 Hz. When the bandwidth is
increased to 10 Hz as shown in Fig. 1c and 1d, the spectral precision is increased.
TheARL-wavelet is an efficient BPF for vibration signals due tomany reasons

such as:

• In the frequency-domain, the ARL-wavelet has a Gaussian shape and
smooth edges help to minimize the ripple effects.

• The ARL-wavelet convolution with a vibration signal retains the temporal
resolution of the original signal.
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(a) (b)

(c) (d)

Figure 1: ARL-wavelet: a) time plot with 𝑓𝑐 = 20 and 𝜎 = 5, b) frequency plot with
𝑓𝑐 = 20 and 𝜎 = 5, c) time plot with 𝑓𝑐 = 20 and 𝜎 = 10, d) frequency plot with 𝑓𝑐 = 20
and 𝜎 = 10

• The computational time and complexity are small for the ARL-wavelet
convolution with vibration signal.

The convolution of the vibration signal and the ARL-wavelet can be written
as follow:

𝑊𝑥 ( 𝑓𝑐, 𝜎) = 𝐼𝐹𝑇 [𝑋 ( 𝑓 )𝜓∗( 𝑓 )] . (6)
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The bandwidth and center frequency of the ARL-wavelet-BPF must be selected
carefully to diagnose the fault frequency in the rotating element bearing. Because
of the unknown noise and fault frequency, it is challenging to find these parame-
ters. Therefore, the PSOoptimization algorithmwith SKof the envelope spectrum
of the vibration signal is employed in this paper to estimate these parameters.

3. Fitness function

The strength of the spikes in the vibration signal can be measured using the
kurtosis and hence it is an effective indicator to determine the fault frequency
components in rotating element bearing. For a vibration signal 𝑥(𝑡) with 𝑁
number of samples, the kurtosis is defined as the expected value of the fourth
power of the random signal 𝑥(𝑡) centralized using the mean and standardized
using the standard derivative and is defined as follow:

𝐾 =

1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 (𝑡) − 𝑥(𝑡))4(
1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 (𝑡) − 𝑥(𝑡))2
)2 . (7)

In the equation (7), 𝑥(𝑡) is the mean of the 𝑁 samples.
The kurtosis is measured over the whole frequency band whereas SK is

measured over each frequency band and hence ismore effective to track the hidden
transients. Antoni in [4, 6] applied the signal and system theory to represent the
SK as the fourth-order spectral cumulant and it can be represented as follow:

𝐾𝑥 ( 𝑓 ) =
〈𝑋4(𝑡, 𝑓 )〉
〈𝑋2(𝑡, 𝑓 )〉2

− 2, (8)

where 〈.〉 represents the time averaging operator, and 𝑋 (𝑡, 𝑓 ) is the time-
frequency envelope spectrum of the vibration signal 𝑥(𝑡). 𝑋 (𝑡, 𝑓 ) is a complex
envelope that is associated with the vibration signal 𝑥(𝑡) as follows:

𝑥(𝑡) =
−1/2∫

+1/2

𝑋 (𝑡, 𝑓 )𝑒 𝑗2𝜋 𝑓 𝑡 d𝑍𝑡 ( 𝑓 ). (9)

The following equation represents the SK formula for a non-stationary vibration
signal subjected to noise 𝑛(𝑡):

𝐾𝑥+𝑛 ( 𝑓 ) =
𝐾𝑥 ( 𝑓 )

[1 + 𝜌( 𝑓 )]2
, (10)
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where 𝜌( 𝑓 ) is the function of frequency representing the noise-to-signal ratio. In
this paper, the SK of the envelope spectrum of the vibration signal is used as the
fitness function because it is an excellent indexing tool to determine the periodic
spikes in the vibration signal.

4. The PSO algorithm

The PSO algorithm [9, 25] consists of 𝑚 number of particles (the swarm
size), and each particle is considered as the potential solution of the complex
problem. Each particle 𝑖 ∈ {1, 2, 3, . . . , 𝑘} has position 𝑃 = [𝑝𝑚1, 𝑝𝑚2, . . . , 𝑝𝑚𝐷]
and velocity 𝑉 = [𝑣𝑚1, 𝑣𝑚2, . . . , 𝑣𝑚𝐷] vectors of 𝐷-dimension, where 𝐷 is the
number of variables to be optimized in the search space. During the optimization
process, the flight trajectory of the particles moves toward the optimized solution.
The vectors 𝑃 and 𝑉 are said to be the candidate solution of the optimization
problem and search direction, respectively. At each epoch, the PSO algorithm
updates position and velocity vectors using the following relations:

𝑣𝑚𝑑 (𝑘 + 1) = 𝑊𝑣𝑚𝑑 (𝑘) + 𝑐1𝑟1 (𝑝best(𝑘) − 𝑝𝑚𝑑 (𝑘))
+ 𝑐2𝑟2 (𝑔best(𝑘) − 𝑝𝑚𝑑 (𝑘)) ,

𝑝𝑚𝑑 (𝑘 + 1) = 𝑝𝑚𝑑 (𝑘) + 𝑣𝑚𝑑 (𝑘 + 1),
(11)

where 𝑘 is the number of epochs; 𝑊 is the inertia weight associated with the
previous velocity preservation; 𝑟1 and 𝑟2 are two random numbers in the in-
terval [0 1]; 𝑐1 and 𝑐2 are two acceleration coefficients determining the rel-
ative learning weights for 𝑝best and 𝑔best. 𝑝𝑚𝑑 (𝑘) and 𝑣𝑚𝑑 (𝑘) are the posi-
tion and velocity of the 𝑚-th particle, 𝑑-th dimension at 𝑘-th epoch, respec-
tively. Moreover, 𝑃best = [𝑝best(1), 𝑝best(2), . . . , 𝑝best(𝑘)] is the particle best
solution within each epoch also known as a historical best population while
𝐺best = [𝑔best(1), 𝑔best(2), . . . , 𝑔best(𝑘)] is the global best solution after each
epoch.
Generally, the PSO algorithm is divided into the following steps:
Step 1: In step 1, the fitness function is defined. In this paper, the SK of the

envelope spectrum of the vibration signal is utilized as a fitness function. The
value of the proposed fitness function varies with the fault frequency strength.
The strength of the spikes representing fault frequency improves if the signal-to-
noise ratio is enhanced. Consequently, the value of the fitness function increases
and faults are diagnosed.
Step 2: In step 2, the parameters of the PSO algorithm are defined. Table 1

includes these parameters.
The lower bound and the upper bound of the variables (bandwidth and cen-

ter frequency) depends on fault types. The lower bound and upper bound for
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Table 1: Parameters of PSO algorithm

Variable Value Description
𝐷 2 number of variables
𝑚 50 swarm size
𝑐1 1.25 acceleration factor
𝑐2 1.75 acceleration factor
𝑤min 0.5 minimum inertia weight
𝑤max 0.9 maximum inertia weight
𝑠𝑙𝑏 – lower bound of variables
𝑠𝑢𝑏 – upper bound of variables
epoch 50 total number of epoch

bandwidth are given by [𝜎𝑙𝑏 𝜎𝑢𝑏] = [2 𝑓 𝑓 1
2 𝑓𝑠] and for the center frequency,

[ 𝑓𝑐𝑙𝑏 𝑓𝑐𝑢𝑏] = [ 𝑓 𝑓 12 𝑓𝑠 − 𝑓 𝑓 ], where 𝑓 𝑓 is the fault characteristic frequency which
can be calculated using the equation (13), given in the next section and 𝑓𝑠 is the
sampling frequency of the vibration signal.
Step 3: In this step, the initial position and velocity vectors are generated for

the whole swarm size. The size of each position and velocity matrix is 𝐷 × 𝑚.
The values of the initial swarm are random and within the bound limits such as:

𝑠𝑙𝑏 ¬ 𝑠𝑚𝑑 ¬ 𝑠𝑢𝑏 , (12)

where 𝑠𝑙𝑏 and 𝑠𝑢𝑏 are the lower bound and upper bound of the swarm and 𝑠𝑚𝑑 is
the generated particle.
After generating the initial swarm, the fitness value of each potential solution

is calculated using the proposed fitness function described above. The initial
𝑝best is determined using the fitness values of each potential solution where the
potential solution with the maximum fitness value represents the initial 𝑔best.
Step 4: In step 4, 𝑝best and 𝑔best are updated. For that, the initial or previous

𝑝best is compared with the current 𝑝best evaluated by the updated swarm. The
maximum fitness value of the resultant 𝑝best represents the current 𝑔best which is
compared to the previous 𝑔best to determine the resultant 𝑔best in each epoch.
Step 5: In step 5, the position and velocity vectors are updated using the

equation (11). The updated position and velocity must be within the bound limits
according to the equation (12).
Step 6: In the final step, the optimized value among the 𝐺best vector is deter-

mined. This 𝑔best value corresponds to the maximum fitness value and determines
the optimized parameters for the proposed Morlet wavelet filter for the faulty vi-
bration signal.
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5. Simulations and results

The Machinery Failure Prevention Technology (MFPT) data set is used as
a benchmark to perform the simulations and verify the performance of the pro-
posed the ARL-wavelet-BPF. The MFPT data set consists of different vibration
signals with baseline conditions, inner race fault conditions, and outer race fault
conditions. The data set was recorded at various loads and can be accessed from
their website [1]. To record the data set, the test rig was equipped with a NICE
bearing with the following parameters:

• Roller diameter: 𝑑 = 0.235.

• Pitch diameter: 𝐷 = 1.245.

• Number of elements: 𝑛 = 8.

• Contact angle: 𝛼 = 0.

Fault frequencies in rotary bearings can be classified as (1) outer race ball
pass fault frequency (BPFO), (2) inner race ball pass fault frequency (BPFI),
(3) fundamental train fault frequency (FTF), and (4) fault frequency due to ball
spin (BSF) [17]. All these fault frequencies can be calculated using the bearing
specification that includes the number of rolling elements in the bearing (𝑛),
the diameter of the rolling elements (𝑑), the pitch diameter of the bearing (𝐷),
the bearing contact angle (𝛼), and the shaft frequency ( 𝑓𝑠). The formulae to
calculate these faults frequencies using the selected bearing specifications are
given below [8, 16, 17]:

𝐵𝑃𝐹𝑂 = 0.5𝑛 𝑓1
(
1 − 𝑑 cos(𝛼)

𝐷

)
,

𝐵𝑃𝐹𝐼 = 0.5𝑛 𝑓1
(
1 + 𝑑 cos(𝛼)

𝐷

)
,

𝐹𝑇𝐹 = 0.5 𝑓1
(
1 − 𝑑 cos(𝛼)

𝐷

)
,

𝐵𝑆𝐹 =
0.5𝐷
𝑑

(
1 −

(
𝑑 cos(𝛼)

𝐷

)2)
.

(13)

In this paper, two data files with outer race fault conditions and two data files
with baseline conditions are considered. These data files have a low signal-to-
noise ratio and their fault frequencies are not visualized using frequency-domain
representation such as envelope spectrum. Each of these vibration signals is
recorded for 6 seconds with 270 lbs of load, an input shaft rate of 25 Hz, and a
sampling rate of 97,656 samples per second (sps).
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Following is the time-dome representation of the first vibration signal with
outer race fault. Fig. 2a shows the original signal and Fig. 2b shows the filtered
vibration signal. The envelope spectrum of both time-domain signals is shown in
Fig. 2c and Fig. 2d, respectively. It can be observed from Fig. 2d that the signal-
to-noise ratio is high and periodic outer race fault conditions are prominent.
Similar to the first vibration signal, the second vibration signal is shown in

Fig. 3. The results from Fig. 2d and Fig. 3d verify the performance of the proposed
filtration method.
Next, two more vibration signals with baseline conditions are considered.

These vibration signal also have a low signal-to-noise ratio and their envelope
spectrum do not visualize the fault frequency. When the proposed ARL-wavelet-
BPF is applied to these faulty signals, the signal-to-noise ratio is improved and
baseline conditions can be visualized. The first vibration signal with baseline
condition is shown in Fig. 4. Fig. 4a and 4b show the original time-domain signal
and filtered time-domain vibration signal, respectively. The envelope spectrum
of both vibration signals is shown in Fig. 4cand 4d, respectively.
Similarly, the second vibration signal with baseline condition is shown in

Fig. 5. Fig. 5a, 5b, 5c, and 5d show the time-domain vibration signal, filtered
vibration signal in the time-domain, envelope spectrum of the unfiltered signal,
and envelope spectrum of the filtered vibration signal, respectively. The results
from these experiments show the performance of the proposed method and indi-
cate that the proposed method is efficient for faulty vibration signals with a low
signal-to-noise ratio (SNR).
Furthermore, SNR is also calculated for all the experiments for quantitative

comparison. Table 2 shows the relationship between SNR for unfiltered signals
and filtered signals. For the filtered signal, SNR is calculated using the following
formula:

SNRfiltered signal =

𝑠∑︁
𝑛=1
max
𝑛∈𝑉peaks

(𝐸𝑆 𝑓 [𝑛]2)/𝑠

𝑙∑︁
𝑛=1

𝐸𝑆𝑠 [𝑛]2/𝑙
, (14)

where 𝑠 is the number of spikes in the envelope spectrum of the filtered signal that
is taken to compute the SNR, 𝑉peaks is a vector containing all the spikes, 𝐸𝑆 𝑓 [𝑛]
is the envelope spectrum of the filtered signal. 𝑙 is the number of spikes in the
envelope spectrumof the unfiltered signal, and 𝐸𝑆𝑠 [𝑛] is the envelope spectrumof
the unfiltered signal. Note that we have considered the whole unfiltered vibration
signal to calculate the SNR, hence, 𝑙 is equal to the total number of samples in
the envelope spectrum of the unfiltered vibration signal.
To calculate the SNR for an unfiltered signal, the same number of spikes are

taken from the envelope spectrum of the vibration signal with the same position
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(a)

(b)

(c)

(d)

Figure 2: First vibration signal with outer race fault: a) time plot of the unfiltered signal,
b) time plot of the filtered signal, c) envelope spectrumof the unfiltered signal, d) envelope
spectrum of the filtered signal
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(a)

(b)

(c)

(d)

Figure 3: Second vibration signal with outer race fault: a) time plot of the unfiltered
signal, b) time plot of the filtered signal, c) envelope spectrum of the unfiltered signal,
d) envelope spectrum of the filtered signal
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(a)

(b)

(c)

(d)

Figure 4: First vibration signal with baseline condition: a) time plot of the unfiltered
signal, b) time plot of the filtered signal, c) envelope spectrum of the unfiltered signal,
d) envelope spectrum of the filtered signal
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(a)

(b)

(c)

(d)

Figure 5: Second vibration signal with roller element fault: a) time plot of the vibration
signal, b) time plot of the filtered vibration signal, c) envelope spectrum of the vibration
signal, d) envelope spectrum of the filtered vibration signal
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Table 2: Quantitative comparison of SNR

Experiment SNRunfiltered signal SNRfiltered signal SNR𝑑𝑏𝑢 SNR𝑑𝑏 𝑓

1 4.4814 96.3686 6.5141 19.8394
2 3.7846 155.2415 5.7802 21.9101
3 2.9334 19.1820 4.6737 12.8289
4 1.9944 19.9933 2.9982 13.0089

as the envelope spectrum of the filtered signal. To visualize the chosen spikes
from the envelope spectrum, we will consider the first experiment again. Fig. 6a
shows the taken spikes from the envelope spectrum of the filtered signal which
was computed for the first experiment with outer race fault and given in Fig. 2d.
To compute the SNR for the unfiltered signal, the spikes were taken from the same
position which is depicted in Fig. 6b. Similar to the above, other signals were
processed in the same way to find the spikes for SNR. Furthermore, Table 2 shows
that the proposed method is efficient to enhance the SNR and hence effective to
determine the fault conditions for the vibration signals having high noise.

(a)

(b)

Figure 6: Envelope spectrum of the outer race fault condition: a) spikes from the filtered
signal, b) spikes from the unfiltered signal
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6. Conclusion

This paper proposes a new method to enhance the signal-to-noise ratio by
applying the ARL-wavelet-BPF to diagnose the fault frequencies in bearing vi-
bration signals. The Gaussian function of the ARL-wavelet used in this paper is
an excellent BPF because of its smooth edges which helps to minimize the ripple
effects. The ARL-wavelet is symmetric in its geometric shape and hence can
diagnose the vibration fault more efficiently compared to other wavelets such as
the Morlet wavelet. Furthermore, the PSO algorithm is used to optimize the filter
parameters such as the bandwidth and center frequency. From the experimental
results, it is concluded that the proposed method enhances the signal-to-noise
ratio and detects the fault frequencies efficiently.
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