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Influence of the support conditions on dynamic response
of tensegrity grids built with Quartex modules
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Abstract: The aim of this study is to prove that the dynamic behavior of tensegrity grids can be
controlled. This possibility is very important, especially for deployable structures. The impact the
support conditions of the structure on the existence of the immanent characteristics, such as self-stress
states and infinitesimal mechanisms, and consequently on the dynamic control, is analyzed. Grids
built with the modified Quartex modules are considered. A geometrically non-linear model is used,
implemented in an original program written in the Mathematica environment. The results confirm
the feasibility of controlling tensegrity structures characterized by the presence of the infinitesimal
mechanisms. In the case that the mechanisms do not exist, structures are insensitive to the change of
the initial prestress level. The occurrence of mechanisms can be controlled by changing the support
conditions of the structure. The obtained results make tensegrity a very promising structural concept,
applicable in many areas when conventional solutions are insufficient.
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1. Introduction

The paper concerns the dynamic behavior of double-layer grids called tensegrity. These
structures characterized by self-stress states and infinitesimal mechanisms. The behavior
of such grids depends not only on the geometry and material properties, but also on the
level of prestress and external load. The modification of prestress forces allows to control,
the dynamic parameters of the structure [1–5].
In the existing literature on the dynamic analysis of tensegrity structures, four main

application areas have been identified: (1) methods of designing and searching for stable
tensegrity configurations (form-finding methods); (2) algorithms changing the shape of the
structure – optimization algorithms aimed at generating new topologies; (3) shape control
methods – methods examining how the structure changes its shape under the influence of
external forces; (4) parametric analysis taking into account the influence of the self-stress
state on the dynamic behavior of structures.
Compared to the extensive literature on the first three above-mentioned dynamic analy-

sis application areas, parametric analysis is still poorly studied. In [4–6], the influence of the
self-stress state on the dynamic properties of the Simplex module was analyzed. Dynamic
parametric analysis of tensegrity has been the subject of several papers by Murakami and
Nishimura. They considered the two-module cylindrical tensegrity model [7], a tensegrity
module composed of 30 struts and 90 cables [8], cylindrical modules [9], flat structure X
and a tower made of 3 such modules [10] and planar tensegrity [11, 12].
Dynamic analysis is very important for footbridges [13]. To build footbridges, it is

possible to use double-layer grids constructed from basic tensegrity modules. The most
popular is the Quartex module. Due to the fact that these grids are similar to plates,
they are called tensegrity plates or plate strips. Many articles have considered tensegrity
plates composed of Quartex modules. The main theme of most of them was topology and
application in civil engineering. Wang and Xu [14] used semidefinite programming to
determine the optimal topology of a tensegrity plate-like nine-module structure. Faroughi
and Lee [15] used a genetic algorithm to optimize the cross-sections of cables and struts.
Sulaiman et al. [16] considered the use of tensegrity grids as a roofing. Wang, on the other
hand, proposed structures consist of Quartex modules connected in various ways [17, 18].
In the paper, the double-layer tensegrity grids built with modified Quartex modules are

considered. Themodification consists in inscribing the upper surface of themodules into the
lower one. Due to this, it is possible to easily combine single units into multi-module struc-
tures. Surface connection is considered. A basic orthotropic four-module tensegrity grid is
proposed. Due to the orthotropic properties, various ways of joining modules and different
support conditions are considered. The basic module can be used e.g. for the construction of
footbridges and plates. In the case of the construction of footbridges, the basic four-module
unit can be connected in two directions. Additionally, three different support conditions
can be applied. In case of plates, the method of connection does not matter, but, taking into
account support conditions, only structures that are simply supported behave reasonably.
The aim of considerations is to analyze the possibility of dynamic control of such struc-
tures. Only structures characterized by infinitely small mechanisms easily adapt to changing
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dynamic conditions. These tensegrities can be easily adjusted by modifying the level of
prestress. The number of natural frequencies, depending on the prestressing, is equal to the
number of infinitesimal mechanisms. In the absence of the self-stress, these frequencies are
zero, and the corresponding modes of vibration implement the mechanisms. The remaining
frequencies are practically insensitive to changes in the level of initial prestress. In turn,
tensegrity without mechanisms cannot be controlled due to their insensitivity to the level of
initial prestress. The presented considerations lead to the answers to four questions. First,
is it possible to control the occurrence of mechanisms by changing support conditions?
Second, is the behavior of tensegrities the same for models with the same number of mech-
anisms? Third, to what extent does dynamic behavior depend on the direction of support?
Finally, how does the external load affect the dynamic response? To answer these questions,
the complete qualitative and parametrical dynamic quantitative assessment is performed.
The influence of the initial stress level on the natural frequency is determined. Additionally,
the influence of the time-independent external load on the vibration frequency is taken into
account. The nonlinear analysis is used, assuming the hypothesis of large displacements.
At each stage of the calculations, the stability of the structure is analyzed.

2. Mathematical description

The tensegrity structure is a 𝑛-element spatial lattice system with𝑚 degrees of freedom
that is in a self-stress state. In the non-linear analysis, the loaded structure (P

(
∈ R𝑚×1) –

vector of external load) is described by the displacement vector q
(
∈ R𝑚×1) , the com-

patibility matrix B (∈ R𝑛×𝑚), the linear stiffness matrix K𝐿 = BTE B (∈ R𝑚×𝑚), the
geometric stiffness matrix K𝐺 (S + N) (∈ R𝑚×𝑚), the non-linear displacement stiffness
matrix K𝑁𝐿 (q) (∈ R𝑚×𝑚) and the consequent matrix of massesM (∈ R𝑚×𝑚). The linear
part of stiffness depend on the compatibility matrix B (∈ R𝑛×𝑚) and the elasticity matrix
E (∈ R𝑛×𝑛), while the geometric part depends on the initial prestress level S and on the
axial forces N, which results from external loads. The explicit matrix forms can be found
in [3].
Dynamic analysis of tensegrity structures is a parametrical approach. This leads to

the determination of the impact of initial prestress level on the frequency of vibrations.
The first step in the analysis is to identify the immanent features, which are self-stress
states and infinitesimal mechanisms. These features depend only on the compatibility ma-
trix B (∈ R𝑛×𝑚). The spectral analysis of the matrices BB𝑇 (∈ R𝑛×𝑛) and B𝑇 B (∈ R𝑚×𝑚)
should be performed. Zero eigenvalues are respectively responsible for the occurrence of
self-stress states and infinitesimal mechanisms [2, 19]. The specificity of tensegrity lies in
the fact that the self-stress states stabilize the existing infinitesimal mechanisms. The self-
stress state is considered as an eigenvector y𝑆 related to zero eigenvalue of the matrixB B𝑇 .
The second important feature of these systems is the size of the displacements, which can
be large even if the deformations are small. To describe the dynamic behavior of tensegrity
structures, a geometrically non-linear model, is adopted [2, 4, 20]. The modification of the
level of self-stress state in tensegrity structures allows controlling their dynamic properties.
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The non-linear equation of motion is as follow:

(2.1) M¥q(𝑡) + [K𝐿 + K𝐺 (S + N) + K𝑁𝐿 (q)] q(𝑡) = P

where: ¥q(𝑡)
(
∈ R𝑚×1) – the acceleration vector.

The dynamic response of tensegrity structures can be studied using modal analysis.
At no load, (P = 0) the equation (2.1) is quasi-linear. Taking into account the harmonic
motion q(𝑡) = q̃ sin(2𝜋 𝑓 𝑡), where q̃

(
∈ R𝑚×1) is the amplitude vector, the equation (2.1)

could be written as:

(2.2)
[
K𝐿 + K𝐺 (S) − (2𝜋 𝑓 )2M

]
q̃ = 0

where: 𝑓 – the frequency of natural vibrations.
The modal analysis (2.2) leads to determination the natural frequencies of vibrations

𝑓𝑖 (𝑃 = 0). In the case of a tensegrity structure characterized by mechanisms, the omission
of the influence of prestress (K𝐺 (S) = 0) in the equation (2.2) leads to zero natural
frequencies. These zero values correspond to the vibrations patterns that implement the
mechanisms. If the mechanism is infinitesimal, the eigenvalues of the stiffness matrix
(K𝐿 + K𝐺 (S)) are positive numbers – the prestress forces S stabilize a structure. If the
eigenvalue still remains zero, then the corresponding mechanism is not infinitesimal.
Taking into account the time-independent external load 𝑃, the frequencies 𝑓𝑖 (𝑃) are

considered. The load is treated as the initial disturbance of the equilibrium state, i.e. as the
imposition of the initial conditions. Hence, in the further part of the paper, the frequencies
𝑓𝑖 (𝑃) are called free. Considering the external load, the modal analysis is non-linear. The
calculations are carried out in five steps:
– Step 1 – determination of the displacements from the non-linear system of equilibrium
equations:

(2.3) [K𝐿 + 𝑡𝑒𝑥𝑡𝑏 𝑓 𝐾𝐺 (S) + K𝑁𝐿 (q)] q = P

Note! In this step, the structure stability should be verified. The eigenvalues of the tangent
stiffness matrix [K𝐿 + K𝐺 (S) + K𝑁𝐿 (q)] must be positive numbers.
– Step 2 – determination of deformation of elements Y𝑒 (a finite element 𝑒 (Fig. 1)
described by the Young’s modulus 𝐸𝑒, the cross-sectional area 𝐴𝑒 and the length 𝑙𝑒):

(2.4) Y𝑒 =
1
2

(
𝑙𝑒1
)2 − (𝑙𝑒)2

(𝑙𝑒)2

where:

(2.5) 𝑙𝑒1 =
(
Δ𝑢2

)2√︃(
Δ𝑢2

)2 + (
Δ𝑢3

)2 + (
𝑙𝑒 + Δ𝑢1

)2; Δ𝑢𝑖 = 𝑞
2
𝑖 − 𝑞1𝑖 ; 𝑖 = 1, 2, 3

– Step 3 – determination of the real normal forces in elements 𝑁𝑒:

(2.6) 𝑁𝑒 = 𝐸𝑒𝐴𝑒Y𝑒
√
1 + 2Y𝑒
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Fig. 1. Spatial finite tensegrity element

– Step 4 – determination of the geometric stiffness matrix of the structure depending on
the initial prestress level S and normal forcesN, caused by the external load –K𝐺 (S+N).
Note! In this step, the prestress range should be determined. The lowest level of initial
prestress 𝑆min must ensure the appropriate identification of the element type (cables or
struts). Additionally, 𝑆min must provide the positive definite matrix [K𝐿 + K𝐺 (S + N)].
In turn, the maximum 𝑆max cannot cause the exceedance of the load-bearing capacity of
elements.

– Step 5 – determination of the free frequencies 𝑓 (𝑃) from the equation:

(2.7)
[
K𝐿 + K𝐺 (S + N) − [2𝜋 𝑓 (𝑃)]2M

]
q̃ = 0

3. Results
The article presents dynamic parametric analyzes of tensegrity grids. The structures

built from the modified Quartex modules are considered. Due to the fact that the upper
surface of the module is inscribed into the lower one, it is possible to easily combine
individual units into multi-module structures. Adjacent modules can be connected in var-
ious configurations. In the considerations, the lower surfaces are connected edge-to-edge,
whereas the upper surfaces are connected node-to-node. The proposed four-module struc-
ture has orthotropic properties [21] and has practical application in civil engineering, i.e.
can be used to build footbridges and plates. Therefore, it is treated as the basic orthotropic
module (BM1). Next, footbridges built of four basic modules (BM4) and plate built of
sixteen (BM16) ones are analyzed.
Firstly, the immanent features are determined. The values of the self-stress forces y𝑆

are normalized in such a way that the maximum compression force in struts is equal to −1.
In all figures, cables are marked in red (bottom), green (top) and blue (diagonal), whereas
the struts – in black. Different cable colors correspond to different values of the self-stress
state.
Next, the influence of initial prestress 𝑆 (S = y𝑆𝑆) on the natural 𝑓𝑖 = 𝑓𝑖 (0) and free

𝑓𝑖 (𝑃) frequencies of the structures is considered. In the quantitative analysis, it is necessary
to determine the minimum and maximum levels of prestress. The lowest level of initial
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prestress 𝑆min must ensure the appropriate identification of the element type (cables or
struts), while maximum 𝑆max cannot cause the exceedance of the load-bearing capacity of
elements.
It is assumed that the cables in tensegrity plates are made of steel S460N. The type A

cables with Young modulus 210 GPa [22] are used. The struts are made of hot-finished
circular hollow section (steel S355J2)with theYoungmodulus 210GPa. The density of steel
is 𝜌 = 7860 kg/m3. As cables, rods with diameter 𝜙 = 20 mm and load-bearing capacity
𝑁𝑅𝑑 = 110.2 kN are assumed, whereas as struts – pipes with diameter 𝜙 = 76.1 mm,
thickness 𝑡 = 2.9 mm and load-bearing capacity 𝑁𝑅𝑑 = 193.9 kN. The calculations were
made with the use of a geometrically non-linear model implemented in a proprietary
program written in the Mathematica environment.

3.1. Single modified Quartex module

The first structure under consideration is a single modified Quartex module (Fig. 2).
This module consists of sixteen elements (𝑛 = 16) and eight nodes (𝑤 = 8). The considered
dimensions of the module allow it to fit into a unit cube. Four models of support are
considered:
– model Q1 – 8 displacements of bottom nodes are blocked (𝑚 = 16),
– model Q2 – 12 displacements of bottom nodes are blocked (𝑚 = 12),
– model Q3 – 8 displacements of top nodes are blocked (𝑚 = 16),
– model Q4 – 12 displacements of top nodes are blocked (𝑚 = 12).

Fig. 2. Single modified Quartex module: a) 3D view, b) top view, c) front view

All models are characterized by one infinitesimal mechanism, which is implemented
by the displacements of the top nodes (Fig. 3a) or bottom ones (Fig. 3b). The models
differ in the number of the self-stress states. In the case of the Q1 and Q2 models, one
self-stress state y𝑆 (Fig. 3c) is identified, while in the case of the Q3 and Q4 models – five
self-stress state are identified. Only the superposition of all states correctly identifies the
type of elements and leads to the state obtained for the Q1 and Q3 models.
The dynamic behavior is then investigated. The natural frequency 𝑓𝑖 (0) and the free

frequency ( 𝑓𝑖 (𝑃) are calculated. The concentrated force applied vertically in 6th node is
considered. Three load variants are taken into consideration: 𝑃118 = −10 kN, 𝑃218 = −20 kN
and 𝑃318 = −30 kN. The minimum prestress level is assumed as 𝑆min = 0.01 kN, whereas
the maximum – 𝑆max = 110 kN (the maximum effort of the structure is equal 0.91).
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Fig. 3. Results of the qualitative analysis: a) mechanism for models Q1 and Q2, b) mechanism
for models Q3 and Q4, c) normalized self-stress state y𝑆

The first natural frequency is the most depended on the prestress level (Fig. 4). In the
case of 𝑆 = 0, the frequency is zero, which corresponds to the infinitesimal mechanism. The
first natural and free frequency depends on the support conditions. In the case of supporting
the bottom nodes (Fig. 4a), the frequency is 40% higher than for the case of supporting the
top nodes (Fig. 4b). It does not matter how many displacements are blocked. Additionally,
the influence of prestress on the free frequency decreases with the increase of the load

Fig. 4. Influence of the initial prestress 𝑆 on the first frequency: a) models Q1, Q2, b) models Q3, Q4

Table 1. Second frequency for models 𝑄𝑖 (𝑖 = 1, 2, 3, 4)

Models Q1, Q3 Models Q2, Q4

𝑃 [kN] 𝑓2 (𝑆 = 0) [Hz] 𝑓2 (𝑆 = 110 kN) [Hz] 𝑃 [kN] 𝑓2 (𝑆 = 0) [Hz] 𝑓2 (𝑆 = 110 kN) [Hz]
0 193.4 193.8 0 200.8 201.2

–10 193.4 193.7 –10 200.8 201.1

–20 193.5 193.7 –20 200.9 201.1

–30 193.5 193.7 –30 200.9 201.1
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value. The second frequency is insensitive to both the change of the level of prestress and
the level of external loads – the free frequency is equal of natural one (Table 1). In this
case, the influence of the support conditions is practically insignificant. The same applies
to the following frequencies.

3.2. Basic orthotropic module – four-module tensegrity grid

The second considered structure is the basic orthotropicmodule built from fourmodified
Quartex modules (Fig. 5). This structure consists of fifty-six elements (𝑛 = 56) and twenty-
one nodes (𝑤 = 21). First of all, simply supported grids are considered. Two models are
analyzed, including the support of top (BM1-1t) and bottom nodes (BM1-1b). Due to the
orthotropic properties, different in 𝑥- and 𝑦-direction, the support in these directions is
additionally taken into account. The dynamic behavior is investigated taking into account
concentrated forces 𝑃 = −5 kN applied in the bottom nodes (if top nodes are supported)
or top nodes (if bottom nodes are supported). The minimum prestress level depends on the
support conditions and on the load, whereas the maximum level is taken as 𝑆max = 60 kN
(the maximum effort of the structure is equal 0.83).

Fig. 5. Basic orthotropic model: a) view 3D, b) top view, c) support conditions

The obtained results provide the answer for the first question from introduction and
proved that it is possible to control the occurrence of mechanisms by changing support
conditions. In the case when top nodes are supported (BM1-1t), the mechanism is not
identified and the control of dynamic behavior is impossible (Table 2). The natural (BM1-
1t (0)) and free (BM1-1t (–5 kN)) frequencies practically do not depend on the level
of prestress. Mechanisms only exist when lower nodes are supported. The number of
mechanisms depends on the method and direction of the support.
To answer two next questions, the influence of the initial prestress level 𝑆 on the frequen-

cies is investigated. For all models, many self-stress states are identified. Unfortunately,
none of them correctly identify the type of elements. Thus, in the quantitative analyzes, the
normalized self-stress state of the single modified Quartex module (Fig. 3c) is taken into
account.
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Table 2. Frequencies for the BM1-1t model

BM1-1t (0) BM1-1t (–5 kN)
𝑖 𝑓𝑖 (𝑆 = 0) [Hz] 𝑓𝑖 (𝑆 = 60 kN) [Hz] 𝑖 𝑓𝑖 (𝑆 = 0) [Hz] 𝑓𝑖 (𝑆 = 60 kN) [Hz]
1 115.96 116.86 1 116.02 116.92
2 129.45 130.29 2 129.51 130.35
3 146.99 147.72 3 146.98 147.71

In Figs. 6 and 7, the frequencies corresponding to the infinitesimal mechanisms are
showed. In the case of simply supported models, the last natural frequency correlated to the
mechanism is the same. These frequencies for 𝑆max are respectively: 𝑓1 = 18.6 Hz for BM1-
1b (Fig. 6a), 𝑓2 = 18.6 Hz for BM1-1y (Fig. 6b) and 𝑓3 = 18.8 Hz for BM1-1x (Fig. 6c).
However, the dynamic behavior of these models is different. Themost susceptible to control
is the BM1-1y model – there are three frequencies depending on the initial prestress. For
models with the same number of mechanisms, i.e. BM1-1x (Fig. 6c), BM1-2y (Fig. 6d)
and BM1-2x (Fig. 7a), the dynamic behavior is also different. For the BM1-2y model, the
frequencies are less sensitive to the change in prestressing.
Taking into account the time-independent external load 𝑃, the initial conditions change

and the influence of initial prestress decreases. The load causes additional stress in the
system and it is necessary to determine the initial prestress 𝑆min. 𝑆min must ensure the
appropriate identification of the element type and provide the positive define matrix
[K𝐿 + K𝐺 (S + N)]. In the cases of four models 𝑆min depend on values of external load and
equal respectively: 𝑆min = 2 kN for BM1-1b (Fig. 6a), 𝑆min = 2 kN for BM1-1y (Fig. 6b),
𝑆min = 3 kN for BM1-2y (Fig. 6d) and 𝑆min = 55 kN for BM1-2x (Fig. 7b). Due to fact
that the BM1-2x model is most susceptible to the change of the load, the variant of loaded
only two top nodes (14 and 19) is additionally considered. For this case, the lowest level
of initial prestress is 𝑆min = 34 kN. In the calculation of free frequencies for BM1-1x,
the matrix [K𝐿 + K𝐺 (S + N)] is positive defined only for 𝑆 ≥ 10 kN. In summary, the
dynamic behavior of the basic model BM1 depends on the direction of support, which
proves its orthotropic properties. This conclusion raises the question, how will the struc-
tures composed of these models behave? To answer this question, structures built from 4
and 16 basic modules will be considered.

3.3. Four basic orthotropic modules

The structure consisting of four basic orthotropic module (Fig. 8) is considered. This
structure consists of two hundred and twelve elements (𝑛 = 212) and sixty-nine nodes
(𝑤 = 69). Two joining variants BM1 are studied. As first, modules are connected in
the 𝑦-direction (BM4-𝑖y – Fig. 8a), whereas as second – in the 𝑥-direction (BM4-𝑖x –
Fig. 8b). Three support conditions are considered, i.e. simply supported on four edge
(BM4-1x, BM4-1y), simply supported on two opposite edge (BM4-2x, BM4-2y) and
cantilever (BM4-3x, BM4-3y). The dynamic behavior is investigated taking into account
the concentrated forces 𝑃 = −1 kN applied in top nodes. The minimum prestress level is
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Fig. 6. Influence of the initial prestress 𝑆 on the frequencies for models: a) BM1-1b, b) BM1-1y,
c) BM1-1x, d) BM1-2y

assumed as 𝑆min = 1 kN, whereas the maximum – 𝑆max = 60 kN (the maximum effort of
structure is equal 0.83).
In the case of cantilever models (BM4-3x, BM4-3y), the mechanism is not identified.

This means that the control of dynamic behavior is impossible. The natural and free
frequencies are equal and practically do not depend on the level of prestress – 𝑓1 (0) =

𝑓1 (𝑃) = 57.2 Hz÷57.5 Hz for BM4-3x and 𝑓1 (0) = 𝑓1 (𝑃) = 46, Hz÷46.2 Hz for BM4-
3y. In the case of the plate simply supported on four edges (BM4-1x, BM4-1y), one
mechanism is identified, while in the case of the plate simply supported on two opposite
edges, the number of mechanisms depends on the direction of the connection of basic
modules. In all models, multiple self-stress states are identified. As in the basic module,
none of them identifies correctly the type of elements. Thus, in the quantitative analyzes
the normalized self-stress state for the single modified Quartex module (Fig. 3c) is taken
into account. The results are shown in Fig. 9.
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Fig. 7. Influence of the initial prestress 𝑆 on the frequencies for BM1-2x model: a) natural, b) free

Fig. 8. Four-basic orthotropic modules: a) BM4-𝑖y, b) BM4-𝑖x

In analyzed examples, there is a similarity between the results obtained for the BM4-1y,
BM4-1x and BM4-2x models (all characterized by one mechanism). The values of the first
natural and free frequencies of vibrations are equal to the third frequencies identified for
the BM1-2y model. The most susceptible to control is the model BM4-1y – there are two
frequencies depending on the level of initial prestress.

3.4. Sixteen basic orthotropic module

Finally, the structure composed of sixteen basic orthotropic modules was considered
(Fig. 10). This structure consists of eight hundred elements (𝑛 = 800) and two hundred and
twenty-five nodes (𝑤 = 225). Three support conditions are considered, i.e. plate simply
supported on four edge (BM16-1b), simply supported on two opposite edge in the 𝑥-
direction (BM16-1x) and the 𝑦-direction (BM16-1y). The dynamic behavior is investigated
taking into account the concentrated forces 𝑃 = −1 kN applied in top nodes. The maximum
prestress level is assumed as 𝑆max = 60 kN – the maximum effort of structure is equal 0.92.
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Fig. 9. Influence of the initial prestress 𝑆 on the frequencies for models: a) BM4-1y (1y), BM4-1x
(1x), BM4-2x (2x), b) BM4-2y

Fig. 10. Sixteen basic orthotropic modules: a) top view, b) support

The dynamic behavior of all models can be controlled, but only one frequency depends
on prestress (one mechanism is identified (Fig. 11)). However, the BM16-1b model is more
sensitive to the change in prestressing (Fig. 11a). The load causes too much disturbance of
the equilibrium state and the lowest level of initial prestress equals 𝑆min = 21 kN for BM16-
1b (Fig. 6a), and 𝑆min = 56 kN for BM16-1x. For the BM16-1y model it is impossible
to obtain the minimal prestress (𝑆min > 𝑆max). For sixteen basic orthotropic modules, the
profiles of elements must be changed.

4. Conclusions

The article examines the possibility of controlling the dynamic behavior of tensegrity
built from modified Quartex modules. Although the single module is not orthotropic,
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Fig. 11. Influence of the initial prestress 𝑆 on frequency: a) BM16-1b, b) BM16-1x, BM16-1y

the proposed four-module basic tensegrity has orthotropic properties and has practical
applications in civil engineering, i.e. it can be used to build footbridges and slabs. The
paper develops the idea of ??using the orthotropic modulus by considering the behavior
of structures built of this module. Due to the orthotropic properties, support conditions
(including different directions of support) are of great importance.
The conclusions are divided into general (qualitative) and specific (quantitative). The

qualitative conclusions answer to four questions from introduction. Support conditions
play a prominent role in initiating the presence of infinitesimal mechanisms. The behavior
depends on the direction of support, wherein the influence of the direction of support
depends on the number of connected modules. The behavior of tensegrities is not the same
for models with the same number of mechanisms. The dynamic response of tensegrity
structures is also influenced by external load, which causes additional prestress in the
system; the impact of loads is greater at a lower level of self-stress state.
Moving on to the specific conclusions, the examples considered in the text will be

discussed in turn. Starting from the single module, the first natural frequency of this
structure depends on the support conditions. The first natural frequency is correlated to
the level of self-stress, not on the number of blocked degrees of freedom. All considered
cases are characterized by one mechanism, and one frequency depending on the self-stress.
When supporting the unmodified surface of the single module, the frequency is 40% higher
when supporting the modified surface. In addition, the structure behaves more non-linearly
when the unmodified surface of the module is supported. By supporting the unmodified
surface, the structure is also more susceptible to the change of the level of self-stress, and
thus provides greater controllability. Similar conclusions can be drawn for the first free
frequency.
For the basic orthotropic module, consisting of four modules, the direction of support

significantly affects the behavior of the structure, even resulting in a different number of
mechanisms for the plates supported on the two opposite edges – the support in the 𝑥 direc-
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tion provides two mechanisms (and therefore two frequencies correlated with them), while
in the 𝑦 direction – three mechanisms. This fact confirms that this structure has orthotropic
properties. Supporting four edges provides one mechanism when the unmodified surface
is supported. For these structures, the frequencies vary from to 20 Hz. When the modified
surface is supported, the structure is characterized by nomechanism and its behavior cannot
be controlled. In the case of cantilever structures, both examples are characterized by two
mechanisms, but differ in the range of the frequency. For the support in the 𝑥 direction, the
frequencies change from 0 to 13 Hz, for the support in the y direction – from 0 to 7 Hz.
The influence of the direction of support is clearly visible in the case of footbridges. In the
case of plate structures, the structure supported on four edges is more controllable due to
the greater range of frequency changes.
The obtained results prove that tensegrities are an auspicious structural system. The

feasibility of the dynamic control of these structures makes them applicable in many areas,
i.e. as footbridges or roofing, especially as temporary and deployable structures.
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Wpływ warunków podparcia na dynamiczną odpowiedź kratownic
tensegrity zbudowanych z modułów Quartex

Słowa kluczowe: częstość drgań, kratownice tensegrity,mechanizm infinitezymalny,modułQuartex,
stan samonaprężenia

Streszczenie:

Powszechnie wiadomo, że tylko konstrukcje charakteryzujące się nieskończenie małymi mecha-
nizmamimożna łatwo dostosować do zmieniających się warunków dynamicznych poprzez modyfika-
cję poziomuwstępnego naprężenia. Liczba częstotliwości drgańwłasnych, w zależności od sprężenia,
jest równa liczbie nieskończenie małych mechanizmów.W przypadku braku sprężenia częstotliwości
te wynoszą zero, a odpowiednie postacie drgań realizują mechanizmy. Pozostałe częstotliwości są
praktycznie niewrażliwe na zmiany poziomu naprężenia wstępnego. Z kolei, konstrukcje bez me-
chanizmów są niewrażliwe na poziom naprężenia wstępnego, dlatego kontrola ich zachowania jest
niemożliwa.
W artykule rozpatrzono dwuwarstwowe kratownice tensegrity zbudowane ze zmodyfikowanych

modułów Quartex. Modyfikacja powoduje, że górna powierzchnia modułu jest wkomponowana
w dolną i możliwe jest łatwe łączenie poszczególnych jednostek w konstrukcje wielomodułowe.
Uwzględniane jest połączenie powierzchniowe. W pracy zaproponowano czteromodułowy model
o właściwościach ortotropowych. Podstawowy modułmożna wykorzystać do budowy np. pasm lub
płyt. Ze względu na właściwości ortotropowe i możliwość zastosowania rozważane są różne sposoby
łączenia modułów oraz różne warunki podparcia. Te podstawowe moduły można wykorzystać m.in.
do budowy kładek i płyt. W przypadku budowy kładek podstawowe czteromodułowe modele można
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łączyć na dwa sposoby. Dodatkowo można zastosować trzy różne sposoby podparcia. Inaczej jest
w przypadku płyt. Można powiedzieć, że płyta składa się z kilku kładek, więc sposób połączenia nie
ma znaczenia. Natomiast, jeżeli chodzi o sposób podparcia, to sens ma tylko swobodne podparcie.
W artykule przeanalizowano możliwość kontrolowania dynamicznego zachowania kratownic

tensegrity uwzględniając wpływ warunków podparcia konstrukcji na istnienie mechanizmów, a co
za tym idzie na aktywne sterowanie. Rozważania zawarte w tym artykule odpowiadają na cztery
pytania. Czymożna kontrolowaćwystępowaniemechanizmówpoprzez zmianęwarunkówpodparcia?
W jakim stopniu zachowanie konstrukcji zależy od kierunku podparcia? Czy zachowanie jest takie
samo dla modeli z tą samą liczbą mechanizmów? W jaki sposób obciążenie zewnętrzne wpływa
na odpowiedź dynamiczną? Aby odpowiedzieć na te pytania, przeprowadza się pełną jakościową
i parametryczną dynamiczną ocenę ilościową. Wyznaczono wpływ poziomu naprężeń początkowych
na częstotliwość drgańwłasnych. Dodatkowo uwzględnionowpływ niezależnego od czasu obciążenia
zewnętrznego na częstotliwość drgań. Zastosowano analizę nieliniową, przy założeniu hipotezy
dużych przemieszczeń.
Po pierwsze, potwierdzono, że warunki podparcia odgrywają istotną rolę w inicjowaniu obec-

ności mechanizmów infinitezymalnych i kontrolowaniu zachowania struktury tensegrity. Po dru-
gie, najważniejszy jest kierunek podparcia, przy czym wpływ kierunku podparcia zależy od liczby
podłączonych modułów. W przypadku podstawowego modułu ortotropowego, kierunek podparcia
znacząco wpływa na zachowanie konstrukcji, powodując nawet różną liczbę mechanizmów dla płyt
podpartych na dwóch przeciwległych krawędziach. Fakt ten potwierdza, że struktura ma właściwości
ortotropowe, różne w kierunku 𝑥 i 𝑦. Po trzecie, nie tylko liczba zidentyfikowanych mechanizmów
wpływa na zachowanie dynamiczne. Zachowanie modeli z tą samą liczbą mechanizmów może być
różne.
Dodatkowo na dynamiczną odpowiedź konstrukcji tensegrity wpływa również obciążenie ze-

wnętrzne, które powoduje dodatkowe naprężenie. Wpływ obciążeń jest większy przy niższym pozio-
mie wstępnego sprężenia. W przypadku wyznaczania częstotliwości swobodnych najniższy poziom
wstępnego sprężenia musi zapewniać nie tylko odpowiednią identyfikację typu elementu, ale także
dodatnią określoność macierzy sztywności uwzględniającej oddziaływanie wstępnego sprężenia i sił
osiowych powstałych od obciążeń.
Uzyskane wyniki dowodzą, że tensegrity to obiecujący system konstrukcyjny. Możliwość kon-

troli parametrów dynamicznych tych konstrukcji powoduje, że znajdują one zastosowanie w wielu
dziedzinach, przykładowo jako kładki dla pieszych, zadaszenia czy też tymczasowe konstrukcje
składane.
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