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Abstract

The Job Shop scheduling problem is widely used in industry and has been the subject of
study by several researchers with the aim of optimizing work sequences. This case study
provides an overview of genetic algorithms, which have great potential for solving this type of
combinatorial problem. The method will be applied manually during this study to understand
the procedure and process of executing programs based on genetic algorithms. This problem
requires strong decision analysis throughout the process due to the numerous choices and
allocations of jobs to machines at specific times, in a specific order, and over a given duration.
This operation is carried out at the operational level, and research must find an intelligent
method to identify the best and most optimal combination. This article presents genetic
algorithms in detail to explain their usage and to understand the compilation method of
an intelligent program based on genetic algorithms. By the end of the article, the genetic
algorithm method will have proven its performance in the search for the optimal solution to

achieve the most optimal job sequence scenario.
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Introduction

The present article will address a widespread prob-
lem in the industrial sector, and its solution will en-
able industry professionals to withstand and thrive in
their field of activity. The problem concerns the opti-
mization of a set of production processes in terms of
time, quality, and deadlines.

Firstly, this article will provide a detailed explana-
tion of genetic algorithms. Then, it will explore the job
shop scheduling problem, which involves a set of jobs
that are completed on machines through operations
that can have multiple scenarios for completion. The
most optimal scenario is equivalent to the minimum
makespan.

The objective of this article is to minimize the
makespan of the job shop scheduling problem using
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the genetic algorithm method. Genetic algorithms are
based on the principle of natural phenomena, where
the process starts with an initial population (in the
case of the job shop scheduling problem, the initial
population represents the first iteration or the series
of operations among several other iteration configura-
tions), then seeks out individuals with a higher chance
of survival and reproduction through the Gantt chart,
integrates them into the population, and selects two
parents to cross and mutate their individuals to gen-
erate two child, who will be the future parents. The
process repeats in the same manner until the iteration
generates the most optimal configuration.

The Job Shop Scheduling (JSS) problem dealt with
in the rest of this article will consider the following
elements: a set of 6 jobs carried out on the 6 machines
available to manufacture products in a minimum time
while optimizing the sequences of the job.

The problem consists of searching for the most op-
timal iteration that represents the sequence configu-
ration of operations using an algorithm that employs
an evolutionary method known as genetic algorithms.
The goal is to generate a model that can be applied
in any situation, with the objective of generating the
minimal possible makespan.
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The rest of this paper is structured as follows: In
Section 2, literature review providing an overview of
different articles that have studied the same subject
using various methods. In Section 3, the steps involved
in genetic algorithms in a general manner. In Sec-
tion 4, the steps of theoretical algorithm, then the
case study in Section 5 and solution methodologies
are discussed in Section 6 by giving the details of each
step of the algorithm. Finally Section 7, provides re-
sults, conclusion and some research directions to be
investigated in future research work in Section 8.

Literature review

The job shop scheduling problem is a widely studied
optimization problem, in which multiple jobs are pro-
cessed on several machines. Each job consists of a se-
quence of tasks, which must be performed in a given
order, and each task must be processed on a specific
machine. In this section we will first perform a lit-
erature review about algorithms resolving Job shop
scheduling problem.

The job shop scheduling problem has been tack-
led by several researchers, including Asadzadeh & Za-
manifa (2010) in their article “An agent-based parallel
approach for the job shop scheduling problem with ge-
netic algorithms”. The authors describe a method to
solve the production scheduling problem in produc-
tion workshops, also known as the job shop problem.
This problem involves determining the order in which
tasks should be performed on different machines while
respecting time and resource constraints.

The authors propose an approach based on genetic
algorithms, which is a metaheuristic search technique
inspired by the theory of evolution. They also use an
agent-based approach, where each task is represented
by an autonomous agent that can communicate with
other agents to exchange information and collaborate
on problem-solving.

The proposed approach is designed to be parallel,
meaning that multiple processes can be executed si-
multaneously to speed up the search for the optimal
solution. The authors tested their approach on several
instances of the job shop problem and found that it
yielded better results than other conventional solving
methods.

In the article “Hybrid genetic algorithm with vari-
able neighborhood search for flexible job shop schedul-
ing problem in a machining system,” authors Sun et
al. (2023) present a solution method for the flexible
job shop scheduling problem in a machining system.

The authors propose a hybrid algorithm that com-
bines a genetic algorithm and variable neighborhood
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search to improve solution efficiency. The algorithm
uses genetic operators to explore the search space and
neighborhood search strategies to improve existing so-
lutions.

Experimental results show that the proposed hy-
brid algorithm is capable of providing high-quality so-
lutions and significantly reducing processing time for
large-scale problem instances. The authors conclude
that their algorithm is effective in solving the flexible
job shop scheduling problem in a machining system.

In summary, the experimental results suggest that
the proposed hybrid algorithm is effective in solving
the flexible job shop scheduling problem in a machin-
ing system, providing high-quality solutions with im-
proved processing efficiency. The authors also show
that the use of variable neighborhood search in their
hybrid algorithm improves the efficiency of the search
space exploration, enabling faster and better-quality
solutions.

The article “Neural network and genetic algorithm-
based hybrid approach to expanded job-shop schedul-
ing” authors Yu & Liang (2001), propose a hybrid res-
olution approach for the extended job-shop scheduling
problem. The authors combined an artificial neural
network and a genetic algorithm to improve the effi-
ciency and quality of scheduling solutions. The neu-
ral network is used to predict the processing times of
tasks, while the genetic algorithm is used to optimize
the assignment of tasks to machines.

Experimental results show that the proposed hy-
brid approach is capable of providing high-quality
solutions for large-scale problem instances, particu-
larly for cases where task processing times are uncer-
tain and variable. The authors also demonstrated that
the hybrid approach is more effective than traditional
methods for solving this problem.

By using a test dataset to evaluate the performance
of their approach, the authors showed that their hy-
brid approach improved the efficiency and quality of
solutions compared to traditional methods, especially
for cases with a large number of machines and tasks.

In summary, the proposed hybrid approach in this
article, which combines a neural network and a genetic
algorithm, is effective in solving the extended job-shop
scheduling problem by providing high-quality solu-
tions with improved processing efficiency.

Vilcot & Billaut (2008) in their article “A tabu
search and a genetic algorithm for solving a bicrite-
ria general job shop scheduling problem” they describe
two metaheuristic algorithms, namely tabu search and
genetic algorithm, for solving a production scheduling
problem in a job shop environment. The problem in-
volves finding a sequence of operations for each pro-
duction task that minimizes two performance criteria:
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total production time and task tardiness. The prob-
lem is NP-hard, meaning that it is very difficult to find
an optimal solution in a reasonable amount of time.

To solve this problem, the authors developed two
metaheuristic algorithms: a tabu search algorithm and
a genetic algorithm. Both algorithms are based on an
iterative approach that starts with an initial solution
and improves this solution at each iteration.

The tabu search algorithm is designed to explore
the solution space by avoiding solutions that have al-
ready been explored. It uses a tabu list to record re-
cently visited solutions and to avoid revisiting these
solutions. The algorithm explores the search space by
modifying the sequence of operations for each produc-
tion task.

The genetic algorithm is based on a natural selec-
tion and evolution approach. It uses crossover and mu-
tation operators to create new solutions by combin-
ing existing solutions. Solutions are evaluated using
a multicriteria objective function that takes into ac-
count the two performance criteria.

Both algorithms were tested on a set of increas-
ingly sized production scheduling problems. The re-
sults showed that both algorithms were able to find
good solutions in a reasonable amount of time. The
genetic algorithm generally produced better solutions
than the tabu search algorithm, but it was also slower
due to the high number of operations required to cre-
ate new solutions.

The article titled “Hybrid genetic algorithms for
minimizing makespan in dynamic job shop scheduling
problem”, authors Kundakc: & Kula (2016) present
a hybrid approach to solve the scheduling problem
in a dynamic workshop. This problem is known to be
NP-hard. The authors propose a hybrid approach that
combines a genetic algorithm (GA) with a local search
(LS) method. The GA is used to explore the search
space, while the LS is used to improve the quality
of solutions obtained. This approach yields superior
quality solutions while reducing computation time.

The scheduling problem in a dynamic workshop is
defined as follows: there is a set of tasks to be per-
formed, each of which must be processed on a specific
machine. Each task has a start and end date, as well as
a specific execution time. The objective is to minimize
the makespan, which is the time required to complete
all tasks.

The authors also propose a specific mutation oper-
ator to address the dynamic nature of the scheduling
problem. This operator modifies the task execution
order to adapt to changes in time constraints.

Experimental results show that the proposed hybrid
approach has better performance in terms of solution
quality and computation time compared to traditional
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methods such as standard GAs and LS. The authors
also conducted sensitivity tests to evaluate the impact
of different algorithm parameters on performance.

In conclusion, the proposed hybrid approach can be
useful for solving complex real-time scheduling prob-
lems with dynamic data. Experimental results show
that this approach yields superior quality solutions
while reducing computation time.

In the article by Shen et al. (2021), the two-phase
genetic algorithm (CTGA) is applied to the case of
a generalized flexible flow shop problem (GFFS) while
introducing mixed-integer multi-objective mixed-in-
teger programming (MIP) for the GFFS, then the
observation that the CTGA is efficient for the multi-
objective optimization due to the flexibility provided
by the Genetic algorithm.

The work of Baez et al. (2019) have the same objec-
tive as our article, it aims to study a machine schedul-
ing problem and the criterion used to assess the qual-
ity of the planning is the makespan, except that the
method used to solve this problem is based on hy-
brid algorithms which combines GRASP and variable
neighborhood search metaheuristics unlike our work
which will mainly focus on genetic algorithms.

Chien & Lan (2021) discuss the case of dynamic
planning for semiconductor manufacturing while de-
veloping an agent-based approach that integrates
deep reinforcement learning and hybrid genetic algo-
rithm for independent parallel machine planning.

Swan et al. (2022) talk in their article about meta-
heuristic which is based on an iterative process that
guides and modifies the operations of subordinate
heuristics to efficiently produce high quality solutions.
At each iteration, it manipulates either a unique com-
plete (or partial) solution, or a set of such solutions.

The Job Shop scheduling problem is one of the most
difficult combinatorial optimization problems where
research has not yet been able to develop a performing
algorithm to generate a satisfying optimal sequence.

Wein & Chevalier (1992) define a job shop schedul-
ing problem with three dynamic decisions: assign due
dates to jobs arriving exogenously, release jobs from
a backlog to the job shop, and sequence jobs to each
of two shifts workshop work.

Several researchers have worked on this subject
while using different methods including:

The use of Lagrangian relaxation to schedule job
shops Wein & Chevalier (1992) offer a general two-
step approach to solving this problem: release and
sequence work to minimize inventory of work in
progress, subject to completion of work at a speci-
fied rate, and given the policies of set deadlines dates
that attempt to minimize the lead time to the due
date, subject to the late work constraint.
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Cheng et al. (1996) discuss in their article: A tu-
torial survey of job-shop scheduling problems using
genetic algorithms—I the representation on genetic
algorithms and the different representation schemes
proposed for JSP in part I of his article and various
hybrid approaches of genetic algorithms and conven-
tional heuristics in the second part.

Ritwik & Deb (2011) in their paper: A genetic
algorithm-based approach for optimization of schedul-
ing in job shop environment develops a genetic algo-
rithm based approach to solve the scheduling opti-
mization problem in Job Shop manufacturing envi-
ronment.

The following table collects all the articles described
above while classifying them by date and method (Ta-
ble 1).

According to our analysis, it has been found that
recently the handling of challenging issues is being
addressed by the majority of researchers using artifi-
cial intelligence methods, particularly through meta-
heuristic, agent based approaches, neural networks,
hybrid algorithms. These methods have demonstrated
high efficiency and performance in terms of the gen-
erated results especially, the hybrid algorithm has
demonstrated its effectiveness in rapidly solving NP-
hard problems with an optimal solution.

Table 1

Classification of articles and methods used by year

Article

Year

Field

A Broader View of the Job-Shop Scheduling Problem (Wein et al.,
1992)

1992

Dynamic decisions

A practical approach to job-shop scheduling problems
(Hoitomt, et al., 1993)

1993

Lagrangian relaxation

A tutorial Survey of job-shop scheduling problems (Cheng et al., 1996)

1996

Genetic algorithms and conventional
heuristics

Neural network and genetic algorithm-based hybrid approach to ex-
panded job-shop scheduling (Yu & Liang, 2001)

2001

Artificial neural network and a genetic
algorithm

A tabu search and a genetic algorithm for solving a bicriteria general
job shop scheduling problem (Vilcot & Billaut, 2008)

2008

Tabu search and genetic algorithm

An agent-based parallel approach for the job shop scheduling problem
(Asadzadeh & Zamanifar, 2010)

2010

Genetic algorithms
Agent-based approach

A genetic algorithm-based approach for optimization of scheduling in
job shop environment (Ritwik & Deb, 2019)

2011

Based approach

A hybrid metaheuristic algorithm for a parallel machine scheduling
problem with dependent setup times (Béaez et al., 2019)

2019

Hybrid algorithms

Hybrid genetic algorithms for minimizing makespan in dynamic job
shop scheduling problem (Kundake1 & Kulak, 2016)

2016

Hybrid approach

Agent-based approach integrating deep reinforcement learning and
hybrid genetic algorithm for dynamic scheduling for Industry 3.5
smart production (Chien & Lan, 2021)

2021

Agent-based approach: deep reinforce-
ment learning and hybrid genetic algo-
rithm

A parallel genetic algorithm for multi-objective flexible flowshop
scheduling in pasta manufacturing. Computers & Industrial Engi-
neering (Shen et al., 2021)

2021

Genetic algorithm

Metaheuristics “In the Large” (Swan et al., 2022)

2022

Metaheuristic

Hybrid genetic algorithm with variable neighborhood search for flex-
ible job shop scheduling problem in a machining system (Sun et al.,
2023)

2023

Hybrid algorithm that combines a ge-
netic algorithm and variable neighbor-
hood
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Genetic algorithm steps

Initialization: The first step in a genetic algorithm
is to create an initial population of potential solutions
to the problem at hand. Each solution is represented
as a string of bits or chromosomes.

Fitness Evaluation: The fitness of each solution in
the population is evaluated using an objective func-
tion that measures how well each solution solves the
problem. The objective function should be carefully
designed to ensure that the best solutions receive
a higher fitness score.

Selection: After evaluating the fitness of each solu-
tion, the genetic algorithm selects the best solutions to
be used as parents for the next generation. This is usu-
ally done using a selection method, such as roulette
wheel selection, tournament selection, uniform selec-
tion or rank selection.

Crossover: The selected parents are combined us-
ing a crossover operator to create new solutions for
the next generation. The crossover operator takes two
parent solutions and combines them to create one or
more new child solutions.

Mutation: To introduce new genetic material into
the population, the genetic algorithm applies a muta-
tion operator to some of the new child solutions. The
mutation operator randomly modifies one or more
genes in the solution to create a new solution that
has not been seen before.

Termination: The genetic algorithm continues to
create new generations of solutions until a termina-
tion criterion is met. The termination criterion could
be a maximum number of generations, a minimum
fitness score, or a convergence of the population to
a specific solution.

Solution: When the genetic algorithm terminates,
the best solution found during the entire process is
returned as the final output.

Theoretical algorithms

Initial population generation:

a. Define the number of chromosomes (potential
solutions) in the initial population, denoted
as N_pop.

b. Each chromosome represents a job scheduling se-
quence. Each job is represented by a letter, and
the scheduling sequence is a string of these letters.
For example, if we have 3 jobs to schedule, chromo-
somes could be “011/014/015”, “014/011/015",
“015/014/011”, “O15/011/014”, “O11/015/014",
“014/015/011".

c. Generate N_pop chromosomes randomly.
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Evaluation of the initial population:

a. For each chromosome in the population, calculate
fitness function which corresponds to the total pro-
cessing time (makespan) using the corresponding
scheduling sequence;

While (fitness value! = termination criteria);

{

a. Selection: choose parent chromosomes for the next
generation using a Uniform selection (for our
case);

b. Crossover: apply a crossover operator to create
new chromosomes;

c. Mutation: apply a mutation operator to each new
chromosome with a certain probability. A common
mutation operator is inversion, where a random
section of a chromosome is reversed;

d. Evaluation: evaluate the new chromosomes by
calculating the corresponding makespan (fitness
function);

e. Replacement: replace the least performing chro-
mosomes of the current population with the newly
generated chromosomes;

f. Check stopping criteria: if a stopping criterion
is met (e.g., a maximum number of iterations is
reached), stop the algorithm and return the best
solution found. Otherwise, return to step a;

}

Return the best solution found;

Job shop scheduling problem

“Scheduling”, is a research field that aims to deter-
mine the order and timing of tasks to be executed
while respecting a set of constraints. In the context of
the “job shop scheduling problem”, there are two im-
portant constraints: resource constraints and prece-
dence constraints.

Resource constraints refer to the limited availabil-
ity of certain equipment or machines necessary to per-
form certain tasks. In a manufacturing workshop, for
example, some machines can only process one task at
a time or require preparation time before they can be
used. It is therefore important to plan the use of these
resources to avoid scheduling conflicts.

Precedence constraints, on the other hand, refer
to the dependency relationships between tasks. Some
tasks can only be performed once others have been
completed, or must be performed in a certain order
for the process to work correctly. In the context of
the “job shop scheduling problem”, each task must be
performed on a specific machine, and some tasks can
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only be performed after others have been completed
on the same machine.

The job shop scheduling problem consists of find-
ing an optimal sequence of tasks to be executed on
each machine while respecting resource and prece-
dence constraints. The goal is to minimize the to-
tal time required to complete all tasks. This prob-
lem is NP-complete, which means that there is prob-
ably no exact and efficient algorithm to solve large
instances. However, many heuristics and approxima-
tion algorithms have been proposed to find acceptable
solutions within reasonable timeframes.

In their article, Ghasemi et al. (2021) state that
there are various parameters that affect production,
particularly in the case of products that require ad-
vanced decision-making. For instance, an increase in
production speed or load can lead to difficulties in
the decision-making process. This problem has led to
a line of research for artificial intelligence researchers
who are interested in developing decision support
tools. Planning is also a critical component of the
decision-making process. Therefore, it is essential to
develop an algorithm that can seek the optimal solu-
tion to resolve the original problem.

Regarding Tamssaouet et al. (2022), they find it
challenging to optimize a global scheduling model due
to the difficulties that arise in scheduling work ar-
eas locally while ensuring coordination between local
schedules.

The analysis of JSS problems provides valuable in-
sights into solving scheduling problems encountered
in complex and realistic systems. Therefore, heuristics
and metaheuristics are preferred methods for job shop
scheduling. The Genetic Algorithm is considered the
most well-known optimization technique for a class of
combinatorial problems.

In this article we consider a matrix of order 6 x 6
which corresponds to 6 Jobs and 6 machines.

— The machines are subjected to the operations be-
low:

It is supposed that:

e The machine setup time is 0 for all machines,

e Each machine is a unique and we have only one
machine from each type,

e The execution time of the operations is the same
on each machine,

e For each job, the sequence of operations is prede-
termined,

e Each machine executes only one operation at
a time,

e The order of the machine is fixed as shown in Ta-
ble 2, because what really influences the makespan
is the job sequences.

Volume 14 e Number 3 e September 2023

Table 2

Distribution of operation on machines

M, Ma M3 My M Ms
J1 O11 021 051
Ja 022 | 032
Ja 033 063
Ja 014 034 | 044 | Ob4
Js 015 025 045 065
Js 036 | 046 066

The following symbols are defined:
J= {Jl, Jo, Iz, 7Jn} represents the job set.
M= {Ml, My, Mg, ..., M;, ...
machine set.
0ij — O: Operation, i: corresponds to the machine
number and j: to the job number.
The first step to resolve a combinatorial problem
by genetic algorithm is to establish population initial.
According to Loukil et al. (2005) population ini-
tialization is an important task in evolutionary al-
gorithms because it can affect both the convergence
speed and the quality of the final solution. If no infor-
mation about the solution is available, then random
initialization is the most commonly used method to
generate candidate solutions.
There is two ways to construct the initial popula-
tion which are:

, Mm} represents the

e Random Initialization:

Initial population contains only random solutions.

e Heuristic Initialization:

Initial population contains solutions founded by
heuristic method.

— In this article the random initialization is pre-
ferred as a method in order to avoid premature con-
vergence.

e The coding of the genetic algorithm is also part
of the first step that is carried out to create our
population and it is a crucial step to succeed in
finding the optimal solution.

e The coding step consists on representing a solution
as a string that conveys the necessary information.

e It consists also in modeling each solution by
a chromosome, we consider:

P = 011,014,015,022,021, 025,033,032, 034,
036, 044, 045,046, 051, 054, 063, 065, O66.

The initial population corresponds to the set of fea-
sible solutions to solve this problem.

The priority order or what we call the sequence
of operations that we randomly chose at the level
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of the first generation representing the initial popu-
lation, Figure 1 illustrates the random choice of the
first iteration.

Machine
Mé J3 J5 J6
M5 J1 J4
M4 4 | s [ e ]
M3 J3 J2 J4 J6
M2[ )2 J1 J5
M1| )1 J4 J5
T T T T T > Temps

20 40 60 80 100 120 140 160 180

Fig. 1. Gantt chart of the first iteration

After selecting the initial population, a Gantt chart
is developed too, on one hand, fix the order of oper-
ations with the same sequence to avoid violating re-
source constraints and, on the other hand, determine
the value of the fitness function that represents the
makespan.

Table 3 of sequences matrix represents the set of
feasible solutions in initial population iteration in or-
der to lead the program to an optimal sequences in
the following steps.

Table 3
Table of sequences matrix

M1 Mg M3 M4 M5 MG

Ja 1 2
Js 1 1

Ja

Js

Je

The order of job operations is represented by ran-
dom sequence numbers. The objective is to run a pro-
gram based on an evolutionary method to generate
multiple iterations that will subsequently modify this
initial order, in order to search for the most optimal
order that will lead to the minimum makespan.

In Table 3: the red number 1 corresponds to the
first operation order of job 1 in machine 1 and in ma-
chine 5, meaning that the job can be carried out in
the first place either in machine 1 or in machine 5.
However, there are multiple scenarios or iterations to
consider.

The initial population is chosen randomly, but it
must be feasible. Therefore, it is necessary to assign
only one operation to each machine and maintain the
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order. The algorithm must account for this condition
to prevent overlapping in the execution of certain op-
erations. As shown in the matrix sequence table, the
sequence of the job 1 can be executed on either ma-
chine 1 or machine 5 simultaneously, which is not per-
missible in the programming. Similarly, job 3 can be
executed on either M3 or Mg, and job 4 can be exe-
cuted on M; or Ms, etc. (Table 2).

The number of iteration in this case of each machine

is equal to:
N=(N.!), i={1,23,4,56}

with: N,,; — the number of iteration of job on each

machine mi.

Therefore, there are 50 possible iterations between
jobs for each machine.

Let’s defining the priority of job execution on ma-
chines:

Let’s consider the bellow order of sequences: My,
Msy, M3, My, M5, and Mg (the order of machines is
fixed).

To evaluate each chromosome, it is necessary to cal-
culate the weight of each chromosome. The value of
makespan can use Gantt diagram.

Problem statement

a. Population initialization

The initial population is formed based on the Ta-
ble 2 that illustrates the execution of operations for
each job on each machine.

The initial population corresponds to the set of fea-
sible solutions to solve this problem.

P = 011, 014, 015, 022, 021, 025, 033, 032, 034,
036, 044, 045, 046, 051, 054, 063, 065, O66.

b. Fitness function

The fitness function measures the sum of the pro-
cessing times for each task, taking into account the
machine changeover times between tasks.

Thus, the goal of JSSP optimization is to mini-
mize the fitness function, which means finding the
task schedule that minimizes the total time required
to complete all tasks.

Cmax = max(Cl, 027 ceey Cn)
where, C; is the completion time of job j which cor-
responds to the release time of job j.
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c. Selection

This step involves selecting the parents:

We chose uniform selection to avoid premature con-
vergence and to respect the natural reproduction phe-
nomenon that occurs randomly.

Cohan (1984) says that Uniform selection is gener-
ally supposed to cause convergence between popula-
tions while drift has the effect of causing divergence.
— We select parents from the existing population by
randomly choosing two values of the fitness function
to define the new parents.

The following parents can be considered as two
feasible solutions:

P1 = [011,014, 015,022,021, 025,033,032, 034,
036,044, 045,046,051, 054, 063, 065, O66]

P2 = [011, 015,014, 022,021, 025, 033,032, 036,
034,045,044, 046, 051, 054, 063, 065, O66]

d. Crossover

The OX (Order Crossover) method works by select-
ing two random cut points on the parent sequences.
The genes between the two cut points are preserved
in the order they appear in the first parent. Then, the
remaining genes are copied in order from the second
parent, avoiding copying any gene already present in
the first part of the child sequence. Finally, any miss-
ing genes are inserted into the child sequence in the
order they appear in the second parent. This method
was first introduced by Davis in 1985.

This step involves crossing two parents to create
two children or offspring which refers to the new in-
dividuals created by applying genetic operators (OS1
and OS2).

We will use the Order-based Crossover (OX)
method.

Here is a step-by-step explanation of the OX
Crossover:

1. Select two parent individuals from the population.

2. Choose a random range or section within the par-
ent chromosomes.

3. Copy the selected section from the first parent to
the corresponding positions in both offspring.

4. Starting from the end of the selected section in the
first parent, iterate through the second parent, and
for each element that is not already present in the
first offspring, add it to the offspring in the order
it appears.

5. Repeat step 4 for the second offspring, starting
from the end of the selected section in the second
parent.

The crossover of the first iteration of our problem
is illustrated in Figure 2.
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P1=[011,014, 015 022, 021, 025, I033, 032,
034, 036, 044,045, JO46, 051, 054, 063, 065,066]

\
p S\ \

022, 021,025, 1033032,

a,
034,036, 044, 045i 046 051, 054, 063, 065, 065]

Y
P2=1011._015.014, 022, 021, ozs@_
036,034, 045,044, a6, 051, 054, 063, 065, 066}

\

022, 021, 025,533 , 032,

46, 051, 054, 063, UB5,066]
J
v

036,034, 045, 044 IE

\

Fig. 2. Crossover of the first iteration

e. Mutation

Concerning the OS1 (we chose not to apply the
mutation). Below the Gantt chart of the new job se-
quences (Figure 3):
OS1 = [011, 015, 014, 022, 021, 025, 033, 032,
034, 036, 044, 045, 046, O51, 054, 063, 065, O66|

Machine

/
M6 13 5 [ 6 |
M5 I 14
M4 4 | s e ]
M3[ 13 ] 12 14 | 6
M2[ 2 ] n | 55
Mi[ J1 | 14 | )5

T T T T T Temps

20 40 60 80 100 120 140 160

Fig. 3. Gantt chart after mutation

Fitness function: T = 160 seconds

Mutation by exchange at the OS2 (Figure 4)

011 «+ 015

015 «+ 011

0S2 = [015, 014, 011, 022, 021, 025, 033, 032,
036, 034, 045, 044, 046, 051, 054, 063, 065, O66]

Machine

1

M6 13| 15 16|
M5 )1 14

M4 )55 | 4| 6

m3[ 3 | 2 | 6 | 14

M2| )2 J1 J5
M1| )5 J4 J1
T T T T T 14

20 40 60 80 100 120 140 160 180

Temps

Fig. 4. Gantt chart after mutation

Fitness function: T = 140 seconds

The new population:

P1=[011, 015, 014, 022, 021, 025, 033, 032, 034,
036, 044, 045, 046, 051, 054, 063, 065, O66]

o1
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P2 =[015, 014, 011, 022, 021, 025, 033, 032, 036,
034, 045, 044, 046, 051, 054, 063, 065,066]
The fitness function for OS2 has the lowest value.
However, we will select two offspring to be the future
parents in the new population as we have chosen to
use uniform selection in the selection step.
The new population (second iteration):
Where:
P1 =[011, 015, 014, 022, 021, 025, 033, 032, 034,
036, 044, 045, 046, 051, 054, 063, 065, O66]
P2 =[015, 014, 011, 022, 021, 025, 033, 032, 036,
034, 045, 044, 046, 051, 054, 063, 065,066]
The cross between the two parents P1 and P2 is
shown in Figure 5.
Crossover:

P1=[011, 015, 014, 022, 021,025, |033, 032,
4,036, 044,045, P46, 051,054, 063, 065, 066]

A
= 1, 022, 021,025)033, 032,
034, 036, 044,04 946, 051, 054, oss,m_}
P2= 015, 014, 011, 022, 021, 3(251033,032,
036,034, 045,044 ]oas 051, 054, 063, 065,066

A
A
0s2- D11, 015, 014, 022, 021,025, pI3. 0%z
'Bm , 046, 051, 054, 063, 065, 066
\ J

Y

o’ ’

Fig. 5. Crossover of the second iteration

Mutation:

— Mutation by exchange at the OS1:

021 + 025

044 + 045

0S1 = 015, 014, 011, 022, 025, 021, 033, 032,

034, 036, 045, 044, 046, O51, 054, 063, 065, 066
Below the Gantt chart of the new job sequences

after mutation at the OS1 (Figure 6)

Machine
M6 [13] [ 5 16
M5 J1 J4
M4 J5 J4 J6
M3| J3 J2 J4 J6
M2| )2 J5 J1
M1] J5 J4 J1
T T T T T 1”74 Temps

20 40 60 80 100 120 140 160 180

Fig. 6. Gantt chart after mutation

T = 120 seconds

— Mutation by exchange at the 0S2: 044 <+ 046
0582 = 011, 015, 014, 022, 021, 025, 033, 032,
036, 034, 045, 046, 044, O51, 054, 063, 065, 066

52

Below the Gantt chart of the new job sequences
after mutation at the OS2 (Figure 7):

Machine

M6 [3 )5 | J6

M5 11 4|
M4 )55 [ 6 [ 14

M3| J3 J2 Jé J4
M2| )2 J1 J5
M1| )1 J5 J4

T T T T T Temps

20 40 60 80 100 120 140 160

Fig. 7. Gantt chart after mutation

T = 140 seconds

The details of the iterations are in the appendix. We
skip directly to iteration number 7 where the result
appeared.

The new population (7" iteration) is:
P1 =014, 015, 011, 022, 025, 021, 036, 034, 033,
032, 046,044, 045, 054, 051, 063, 066, 065
P2 =014, 015, 011, 022, 025, 021, 033, 032,
036,034, 045, 046, 045, O51, 054, 063, 066, O65

The cross between the two parents P1 and P2 is
shown in Figure 8.

Crossover:

P1=014, 015, 011, 022, 025,021, 03?034,033
, 032, 046,044, 049 054, 051, 063, 066,065

il (o |
1- ¢ 11, 022, 025,021, b3 03

033, 032, 046, 045, 051, 054, 063, 066, 065
—_— Y J| P2

- 022, 025, 021,533 , 032

036,034, 045, 046}, 045, 051. 054, 063, 055, 0B

. 1, 022, 025, 0210337032

036,034, 045, 046}, 045, 054, 051, 063, 066,065
Y

Fig. 8. Crossover of the seventh iteration

Mutation: At the OS1 (Figure 9):

063 < 066

051 < 054

P1 = 014, 015, 011, 022, 025, 021, 036, 034, 033,
032, 046, 044, 045, 054, 051, 066, 063, 065

Machine
Mé 6 13] 15
M5 J4 J1
M4 J6 J4 J5
M3| Jé J4 J3 J2
M2| )2 J5 J1
M1| )4 J5 J1
T T T T T rd Temps

20 40 60 80 100 120 140 160

Fig. 9. Gantt chart
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T = 100 seconds

Mutation: At the OS2 (Figure 10):

032 < 036

045 + 046

054 + 051

P2 = 014, 015, 011, 022, 025, 021, 033, 036, 032,
034, 046, 045, 044, O51, 054, 063, 066, O65

Machine
M6 [137] [16 T 15
M5 [ e
M4 6 | 5 | 4
M3l 3 | J6 | 12 | 14
M2| )2 I T
M1 4 | U5 | 1
T T T T T Temps

20 40 60 80 100 120 140 160

Fig. 10. Gantt chartafter mutation at the OS2

The best fitness function value corresponds to this
scenario:

Pc =014, 015, 011, 022, 025, 021, 036, 034, 033,

032, 046, 044, 045, 054, O51, 066, 063, 065
with: Fitness function T = 100 seconds, where: Pc:
optimal scenario.

The research space contains 50 iterations. We man-
ually proceeded with 7 iterations and obtained the
best solution. The next step is to develop an algo-
rithm and program that can automatically generate
the optimal solution.

Results and discussion

The fitness function value of the new parents is min-
imal.

Genetic algorithms produce high-quality results
that optimize problems classified as NP difficult.

These algorithms rely heavily on randomness; start-
ing the iteration process with random methods en-
ables us to explore a larger range of solutions in the
search space and increases our chances of finding the
global optimal solution.

The limitations of the genetic algorithm method are
mainly evident in the size of the search space: The
number of possible solutions for a job shop problem
can be very large, making it difficult for genetic al-
gorithms to search for the optimal solution. Genetic
algorithms may require a lot of computation time to
explore the entire search space as well as in determin-
ing the parameters: Genetic algorithms require the
determination of several parameters such as popula-
tion size, mutation and crossover probability, selec-
tion method, etc. Determining these parameters can

Volume 14 e Number 3 e September 2023

be difficult and can have a significant impact on the
quality of the solution obtained.

This case study provides a detailed explanation of
the functioning of genetic algorithms and their ap-
proach to exploring a search space through iterations
in order to find the most optimal scheduling in a job
shop scheduling problem, allowing for a reduction in
total manufacturing time.

Conclusion and perspective

The present case study provided a detailed expla-
nation of the functioning of genetic algorithms in the
job shop scheduling problem, ultimately leading to the
desired result of finding the most optimal production
time, allowing for the following achievements:

e After completing only seven iterations, the pro-
gram was able to find the most optimal population
that represents the minimal makespan.

e The search time for the optimal solution is opti-
mized.

The next step is to develop an algorithm and pro-
gram that can automatically generate the optimal so-
lution.

Annex

The new population (third iteration):
P1 =015, 014, 011, 022, 025, 021, 033, 032, 034,
036, 045, 044, 046, O51, 054, 063, 065, O66
P2 = 011, 015, 014, 022, 021, 025, 033, 032, 036,
034, 045, 046, 044, 051, O54, 063, 065, O66
The third iteration is:
The cross between the two parents P1 and P2 is
shown in Figure 11.

Crossover:

P1=015, 014, 011, 022, 025,021, 03',032, 034
! 051, 054, 063, 065,066

o lm] [Tl

0s1- 011, 015, 014, 022, 021,025 b33, 032
034, 036, 045,044, 046, 051, 054, 063, 065, 0B

p2= O1d 14, 022, 021,025[033, 032,
036,034, 045, 046|, 044, 051, 054, 063U, UBE"
Pl P2
0s2= D15, 014, 011, 022025, 021[033, 03%
036,034, 045, 046}, 044, 051, 054, 063, 065,066 |

Y

' g v

J

Fig. 11. Crossover of the third iteration
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Mutation:

— Mutation by exchange at the OS1 (Figure 12):

015+ 014

045 « 044

P1 = 011, 014, 015, 022, 021, 025, 033, 032, 034,
036, 044, 045, 046, 051, O54, 063, 065, 066

Machine
/
M6 3 5 | 6
M5 [ 2 14
M4 1 |5 | 6 |
M3l U3 | J2 | 4 | 6
M2 2 | i1 )5
M1 1 | 4 [ )5
T T T T T T Temr

20 40 60 80 100 120 140 160 180

Fig. 12. Gantt chart after mutation

T = 140 seconds

— Concerning OS2 (we chose not to apply the muta-

tion (Figure 13)):

P2 =015, 014, 011, 022, 025, 021, 033, 032, 036,
034, 045, 046, 044, 051, 054, 063, 065, 066

Machine
M6 [13] [55 ] 6
M5 [ 4
M4 5 [ 16 | 14
M3 13 [ 2 | 6 [ 14
M2 12 | J5 15
M1 5 | 4 | 1
T T T T T T T

20 40 60 80 100 120 140 160 180 200

Fig. 13. Gantt chart after mutation at the OS2

T = 120 seconds
The new population (fourth iteration) is as follows:
P1 =011, 014, 015, 022, 021, 025, 033, 032, O34,
036, 044, 045, 046, O51, 054, 063, 065, O66
P2 = 015, 014, 011, 022, 025, 021, 033, 032, 036,
034, 045, 046, 044, 051, 054, 063, 065, 066
The cross between the two parents P1 and P2 is

shown in Figure 14

Crossover:
P1= 011 014, 015, 022, 021,029 033, 032

—_—
034, 036, 044,043, 046, 051, 054, 063, 065, 066

A

{
_0s1- 015014011, 022, 025,021)033 032,
034, 036, 044,041I 046, 051, 054, 063, 065,066 /

(_I_I_J

= 1, 022, 025, oz:l 033, 032,

036,034, 045, j , 044, 051, 054, 063, 065,066
A

' Y\
- 15, 022, 021,024 033,032,
036,034, 045,04, 044, 051, 054, 063, 065, 066
A4

Fig. 14. Crossover of the fourth iteration
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Mutation:

— Mutation by exchange at the OS1 (Figure 15):

044 + 045

P1 = 015, 014, O11, 022, 025, 021, 033, 032, 034,
036, 045, 044, 046, 051, 054, 063, 065, 066

Machine

¥V
M6 [ 3] [ 55 16|
M5 TR
M4 5 [ 4] 6
M3 13 [ 12 ] 14 ] 36
M2[ 2 | 15 1
Mi[ 5 | )4 | 1

T T T T T T 2 Tem

20 40 60 80 100 120 140 160 180

Fig. 15. Gantt chart after mutation at the OS1

T = 120 seconds

— Mutation by exchange at the OS2 (Figure 16):
011 «+ 015

021 + 025
046 + 044
Machine
M6 [137] )5 [ 16 |
M5 J1 J4
M4 J5 J4 )6
M3| J3 J2 J6 J4
M2| )2 J5 J1
M1| )5 J4 J1
T T T T T Temps

20 40 60 80 100 120 140 160

Fig. 16. Gantt chart mutation at the OS2

T = 140 seconds
P2 = 015, 014, 011, 022, 025, 021, 033, 032, 036,
034, 045, 044, 046, O51, O54, 063, 065, O66
The new population (fifth iteration):
P1 =015, 014, 011, 022, 025, 021, 033, 032, 034,
036, 045, 044, 046, O51, O54, 063, 065, O66
P2 = 015, 014, 011, 022, 025, 021, 033, 032, 036,
034, 045, 044, 046, O51, O54, 063, 065, O66
The cross between the two parents P1 and P2 is
shown in Figure 17.

Crossover:
P1= 015, 014, 011, 022, 025,021, 03§,032,034
, 036, 045,044, 04¢ 051, 054, 063, 065,066

0s1= 015, 014, 011, 022, 025, 021, 033, 032,
034, 036, 045,044, 046, 051, 054, 063, 065, 066

p2- 015, 014, 011, 022, 025, 021]033,032,
036,034, 045,044 | 046, 051, 054, 063, 065, 066

0S2= 015, 014, 011, 022, 025,021, 033,032,
036,034, 045,044, 046, 051, 054, 063, 065,066

Fig. 17. Crossover of the fifth iteration
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Mutation:

— Mutation by exchange at the OS1 (Figure 18):

015 + 014

033 + 036

032 + 034

045 < 046

065 + 066

P1 = 014, 015, 011, 022, 025, 021, 036, 034, 032,
033, 046, 044, 045, 051, 054, 063, 066, 065

Machine
Mé B3] 16 | 15 |
M5 J1 J4
M4 J6 J4 J5
M3| J6 J4 J2 J3
M2| )2 J5 J1
M1| J4 J5 J1
T T T T T 2 Temps

20 40 60 80 100 120 140 160

Fig. 18. Gantt chart after mutation

T = 140 seconds

— Mutation by exchange at the OS2 (Figure 19):

044 + 046

P2 = 015, 014, O11, 022, 025, 021, 033, 032, 036,
034, 045, 046, 044, 051, 054, 063, 065, 066

Machine
M6 [13] [55T s6
M5 J1 J4
M4 J5 J6 J4
M3| J3 J2 J6 J4
M2| J2 J5 J1
M1| J5 J4 J1
T T T T T Temps

20 40 60 80 100 120 140 160

Fig. 19. Gantt chart after mutation

T=120 seconds
The new population (6" iteration):
P1 = 014, 015, 011, 022, 025, 021, 036, 034, 032,
033, 046, 044, 045, 051, 054, 063, 066, 065
P2 = 015, 014, 011, 022, 025, 021, 033, 032, 036,
034, 045, 046, 044, 051, 054, 063, 065, 066
Crossover:

P1= 014, 015, 011, 022, 025,021)036,034, 032
, 033, 046,044 045, 051, 054, 063, 066, 065

6th

0S1= 015, 014, 011, 022, 025, 021, 036, 034,
032, 033, 046,044, 045, 051, 054, 063, 065,066

P2= 015, 014, 011, 022, 025, 021] 033, 032,
036,034, 045, 046 I 044, 051, 054, 063, 065,066

0S2= 014, 015, 011, 022, 025, 021, 033,032,
036,034, 045, 046, 045, 051, 054, 063, 066, 065

Fig. 20. Crossover of the sixth iteration
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The cross between the two parents P1 and P2 is
shown in Figure 20.
Mutation:
At the OS1 (Figure 21):
015+ 014
032 «+ 033
051 + 054
065 + 066
P1 = 014, 015, 011, 022, 025, 021, 036, 034,
033, 032, 046, 044, 045, 054, 051, 063, 066,
065

Machine
Mé J3 J6 J5
M5 J4 J1
M4 J6 J4 J5
M3| J6 J4 J3 J2
M2 J2 J5 J1
M1| J4 J5 J1
T T T T T Temps

20 40 60 80 100 120 140 160

Fig. 21. Gantt chart after mutation

T = 120 seconds

At the OS2 = [014, 015, 011, 022, 025, 021, 033,
032, 036,034, 045, 046, 045, 051, O54, 063, 066,
065]

We choose to not proceed by a mutation, so we
obtain:
P2 = 0S2 = 014, 015, 011, 022, 025, 021,
033, 032, 036, 034, 045, 046, 045, 051, 054,
063, 066, 065
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