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Abstract. The  interpretation  of  breast  magnetic  resonance  imaging  (MRI)  in  the  healthcare  field  depends  on  the  good 
knowledge and experience of radiologists. Recent developments in artificial intelligence (AI) have shown advances in the field 
of radiology. However, the desired levels have not been reached in the field of radiology yet. In this study, a novel model structure 
is  proposed  to  characterize  the diagnostic  performance  of  AI  technology  for  individual  breast  dynamic  contrast  material–

enhanced (DCE) MRI sequences. In the proposed model structure, Inception-v3, EfficientNet-B3 and DenseNet-201 models 
were used as hybrids together with the Yolo-v3 algorithm to detect breast and cancer regions. In the proposed model, DCE-MRI 
sequences  (T2,  ADC,  Diffusion,  Non-Contrast  Fat  Non-Suppressed  T1,  Non-Contrast  Fat  Suppressed  T1,  Contrast  Fat 
Suppressed T1, and Subtraction T1) were evaluated separately and validation was made, thus providing a unique perspective. 
According to the validation results, the model structure with the best performance was determined as Yolo-v3 + DenseNet-201. 
With  this  model  structure,  92.41  accuracy,  0.5936  loss,  92.44%  sensitivity,  and  92.44%  specificity  rates  were  obtained.  In 
addition, it was determined that the results obtained without using contrast material in the best model were 91.53% accuracy, 
0.9646 loss, 92.19% sensitivity, and 92.19% specificity. Therefore, it is predicted that the need for contrast material use can be

reduced with the help of this model structure.
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1. INTRODUCTION 

The recent trend toward incorporating artificial intelligence 

(AI) into health care, particularly radiology, has increased 

medical physicians' expectations for the possible impact of 

AI on their everyday practice. However, AI technology is 

still evolving, and has not yet reached a stable and 

widespread acceptance level [1-3].   

Breast imaging, particularly breast magnetic resonance 

imaging (MRI), has been critical in the rapid advancement 

of breast cancer management.  Many studies showed that 

dynamic contrast material–enhanced (DCE) MRI achieved 

the highest sensitivity of any imaging modality in detecting 

breast cancer. Previous breast MRI studies have proved that 

a reliable identification of cancer (ductal carcinoma in situ 

or invasive carcinoma) was possible, regardless of 

radiographic breast density, stage, tumor type, or 

postsurgical changes. Breast MRI, by recognizing the 

prominent MRI features of benign and malignant disease, as 

well as the distinct morphologic and kinetic characteristics 

associated with various malignant tumor subtypes, enables 

radiologists to make more accurate diagnoses than other 

more conventional imaging modalities, so that beneficial 

treatment changes may occur [4, 5].   

Despite the numerous advancements in breast MRI, several 

problems remain. The expensive cost, need for contrast 

medium, and lengthy exam duration are some of the primary 

barriers preventing breast MRI from being extensively 

associated. Additionally, background enhancement can 

impair lesion identification by masking or simulating 

lesions. Furthermore, false negative examinations are 

caused by errors in perception, interpretation, and 

management [6, 7]. AI is on the verge of overcoming some 

or all of these constraints. Previous studies emphasized that 

AI architectures can efficiently detect benign and malignant 

lesions on routine DCE-MRI examinations, ultrafast DCE-

MRI, and maximum intensity projection (MIP) images of 

routine DCE-MRI [8, 9]. AI techniques was also found to be 

effective in benign-malign lesion differentiation by using 

peritumor tissue as input [10]. It also can decrease the 

number of benign/unnecessary biopsies [11]. While the 
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diagnostic accuracy of AI systems in differentiating benign 

from malignant lesions and their ability to improve 

radiologists' performance [5] have been evaluated 

previously, the diagnostic performance of AI systems for 

individual sequences and their ability to eliminate or reduce 

the need for contrast medium use have not been extensively 

studied.  

The current work aims to contribute to the growing body of 

knowledge regarding the use of AI in breast MRI by 

characterizing the diagnostic performance of AI technology 

for individual breast DCE-MRI sequences. Additionally, we 

predicted that the need for contrast media use could be 

reduced thanks to the proposed new hybrid model structures. 

The contributions of this study to the literature can be 

summarized as follows: 

1) Application of 3 new hybrid model structures for breast 

cancer detection. 

2) High detection rate with the recommended Yolo-v3 + 

DenseNet-201 model structure. 

3) Presenting a unique perspective by evaluating 7 different 

DCE-MRI sequences separately. 

4) Reducing the amount of contrast material with the 

proposed model structures. 

5) Evaluation and comparison of images taken from cancer 

and normal patients by both the specialist physician and the 

proposed new hybrid model. 

 
2. MATERIALS AND METHODS 
2.1. System Configuration 

The performance of Yolo-v3, Inception-v3, EfficientNet-B3, 

and DenseNet-201 models used in the study to detect breast 

cancer was tested using Python programming language in 

Google Colaboratory [12] environment with an NVIDIA Tesla 

K80 graphics processor. In addition, using the C# 

programming language, indexes were created automatically, 

the filenames of the patient images were encoded according to 

a certain format for patient confidentiality, and the mixed 

indexes were placed in a certain order. 

2.2. Image Data Acquisition and Preprocessing 

The dataset was obtained using breast MRI images examined 

and labeled by Erzincan Binali Yıldırım University Mengücek 

Gazi Education and Research Hospital specialist physicians to 

detect breast cancer (Clinical Research Ethics Committee 

Decision: E-22746194-025.11-458920).  

This dataset contains 73522 breast MRI images in DICOM 

format, belonging to 64 patients in total, 36853 of 32 Cancer 

patients, and 36669 of 32 Normal patients. Each patient has 

more than a thousand breast MRI images in DICOM format in 

16 folders (Topogram, T2, ADC, Diffusion, Non-Contrast Fat 

Non-Suppressed T1, Non-Contrast Fat Suppressed T1, 

Contrast Fat Suppressed T1-1, Contrast Fat Suppressed T1-2, 

Contrast Fat Suppressed T1-3, Contrast Fat Suppressed T1-4, 

Contrast Fat Suppressed T1-5, Subtraction T1-1, Subtraction 

T1-2, Subtraction T1-3, Subtraction T1-4, and Subtraction T1-

5). DICOM files consisting of 16 folders were collected under 

8 folders (Topogram, T2, ADC, Diffusion, Non-Contrast Fat 

Non-Suppressed T1, Non-Contrast Fat Suppressed T1, 

Contrast Fat Suppressed T1, and Subtraction T1).  

Images in DICOM format were coded and renamed according 

to the sequence number by taking the first two letters of the 

patient's first and last names with the help of C# programming 

language for patient confidentiality. Images in DICOM format, 

each in different sizes, were initially converted to JPG format 

at a gray level without changing their size. Using the C# 

programming language, the images in 8 different folders of 

each patient were gathered under the labels of cancer and 

normal.  

The images in the cancer and normal labels were examined in 

the presence of specialist physicians and the final version of the 

dataset was created by using the images deemed appropriate. 

Since there are more than one thousand breast MRI images of 

each patient in this dataset, 2545 images from the images of 

cancer patients, in which the cancer region is prominent, are 

labeled under the cancer class. In addition, 29757 images 

suitable for use from breast MRI images of normal patients are 

labeled under the normal class. The sample images included in 

this dataset are shown in Fig. 1. 

 

Fig. 1. Dataset sample images (a) Cancer, (b) Normal 
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2.3. Proposed AI Model Structure 

In this study, CNN model structures of Yolo-v3 [13], 

Inception-v3 [14], EfficientNet-B3 [15], and DenseNet-201 

[16] in the literature were used to create a new model structure. 

Using the breast MRI image dataset, the Yolo-v3 + Inception-

v3, Yolo-v3 + EfficientNet-B3 and Yolo-v3 + DenseNet-201 

model structures were applied and the cancer region was 

determined and classified from the breast MRI images. The 

model structure that detects and classifies the patient's 

cancerous breast area from breast MRI images is shown in Fig. 

2. 

 

 

Fig. 2. Proposed AI Model Structure 
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After pre-processing the patient data taken in DICOM format 

in the proposed model structure shown in Fig. 2, the images in 

the dataset were labeled in JPG format under the Cancer and 

Normal class and turned into a dataset. Then, images of 50 

patients out of 64 patients in this dataset were divided into the 

training dataset, and images of 14 patients were divided into the 

validation dataset. For breast region cross-section training with 

Yolo-v3, breast regions in all topogram images (304) of 50 

patients in the training dataset were manually selected and their 

coordinates were labeled. These labeled coordinates were 

trained at 2000 epochs using the Yolo-v3 algorithm and “breast 

area cross-section weights” were obtained.  

By using these weights, the breast regions in the topogram 

images were determined with Yolo-v3, and the breast regions 

were cut. Then, for cancer region cross-section training from 

these cut breast regions, 155 images containing the cancer 

region were selected manually and their coordinates were 

labeled. These labeled coordinates containing the cancer region 

were trained at 1500 epochs using the Yolo-v3 algorithm and 

"cancer region cross-section weights" were obtained. 

Using the "breast region cross-section weights" obtained with 

Yolo-v3, the breast regions in 73522 (36853 cancer, 36669 

normal) breast MRI images in the whole dataset were detected 

and cut, and 58946 (36853 cancer, 36669 normal) breast region 

images were has been obtained. Of the 29189 images in the 

cancer class, 2545 breast images containing the cancer region 

were determined in the presence of a specialist physician, and 

the final form of the cancer class was obtained. All of the breast 

region images of 29757 normal patients were used under the 

normal labeled class. Thus, a total of 32302 image data was 

obtained and the final version of the dataset was created. Then, 

images under cancer/normal classes were resized to 192×96×1 

for model training. 

After the other images (T2, ADC, Diffusion, Non-Contrast Fat 

Non-Suppressed T1, Non-Contrast Fat Suppressed T1, 

Contrast Fat Suppressed T1, and Subtraction T1) except the 

topogram of 50 patients in the training dataset were gathered 

together, they were divided into 80% training and 20% test 

dataset. In addition, 10 validation datasets were created by 

using images other than the topogram of 14 patients included 

in the validation dataset. Validation-1 for T2, Validation-2 for 

ADC, Validation-3 for Diffusion, Validation-4 for Non-

Contrast Fat Non-Suppressed T1, Validation-5 for Non-

Contrast Fat Suppressed T1, Validation-6 for Contrast Fat 

Suppressed T1, Validation-7 for Subtraction T1, Validation-8 

for T2 + ADC + Diffusion + Non-Contrast Fat Non-Suppressed 

T1 + Non-Contrast Fat Suppressed T1 combination, 

Validation-9 for Contrast Fat Suppressed T1 + Subtraction T1 

combination, and Validation-10 datasets for all images except 

topogram were created. Inception-v3, EfficientNet-B3, and 

DenseNet-201 model training were carried out according to the 

training-test dataset, and with the validation datasets that were 

not used in the model training, the model was final tested and 

its cancer/normal classification was verified.  

The number of images belonging to the training-test datasets is 

given in Table 1, and the image numbers of the validation 

datasets are given in detail in Table 2. 

Table 1. Number of images in the training-test dataset belonging to 
50 patients 

 

 
Training 

(%80) 

Test 

(%20) 

Total 

(%100) 

Number of 

Images 
20373 5094 25467 

 

Table 2. Number of images in the validation dataset belonging to 14 
patients 

 

Validation 

Dataset 
Explanation 

Number of 

Images 

Validation-1 T2 218 

Validation-2 ADC 23 

Validation-3 Diffusion 23 

Validation-4 Non-Contrast Fat Non-Suppressed T1 236 

Validation-5 Non-Contrast Fat Suppressed T1 575 

Validation-6 Contrast Fat Suppressed T1 2954 

Validation-7 Subtraction T1 2806 

Validation-8 Validation-1 – Validation-5 1075 

Validation-9 Validation-6 – Validation-7 5760 

Validation-10 Validation-1 – Validation-7 6835 

Total  6835 

 

Using the training-test datasets given in Table 1, Inception-v3, 

EfficientNet-B3, and DenseNet-201 models were trained with 

30 epochs, 64 batch size, Adamax optimization algorithm, and 

Sigmoid activation function parameters. 

 
3. RESULTS AND DISCUSSION 

In the study, to detect the cancer region from breast MRI 

images, firstly the breast region was cross-sectioned with the 

Yolo-v3 algorithm and then the cancer region was detected. In 

the study, the Yolo-v3 algorithm was run for 2000 epochs to 

get the breast region cross-section, and a loss value of 0.020 

and an average loss value of 0.033 were obtained. Similarly, to 

detect the cancer region, the Yolo-v3 algorithm was run at 1500 

epochs, and a loss value of 0.220 and an average loss value of 

0.180 were obtained. These low loss values show that the Yolo-

v3 model trainings are successful. 

Thanks to the training-test dataset (50 patient images) obtained 

as a result of the Yolo-v3 model training, Inception-v3, 

EfficientNet-B3, and DenseNet-201 model structures were 

trained to classify cancer/normal. The accuracy, loss, 

sensitivity, and specificity performance metric values obtained 

as a result of the training are given in Table 3, Table 4, Table 

5, and Table 6, respectively. 
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Table 3. Accuracy values obtained as a result of the training-test of 
the models 

 

 Inception-v3 EfficientNet-B3 DenseNet-201 

Epoch Train Test Train Test Train Test 

1 0.9626 0.9246 0.9116 0.9246 0.9624 0.9246 

2 0.9849 0.9580 0.9219 0.9246 0.9844 0.9548 

3 0.9898 0.9804 0.9267 0.9256 0.9900 0.9831 

4 0.9924 0.9847 0.9388 0.9433 0.9919 0.9831 

5 0.9924 0.9925 0.9551 0.9564 0.9932 0.9912 

6 0.9939 0.9921 0.9654 0.9556 0.9937 0.9815 

7 0.9958 0.9894 0.9739 0.9641 0.9937 0.9943 

8 0.9965 0.9878 0.9803 0.9704 0.9954 0.9943 

9 0.9966 0.9935 0.9848 0.9729 0.9969 0.9947 

10 0.9979 0.9953 0.9857 0.9753 0.9966 0.9959 

11 0.9991 0.9953 0.9881 0.9688 0.9975 0.9963 

12 0.9971 0.9963 0.9888 0.9808 0.9977 0.9798 

13 0.9985 0.9963 0.9910 0.9819 0.9979 0.9923 

14 0.9991 0.9961 0.9930 0.9853 0.9986 0.9955 

15 0.9989 0.9976 0.9937 0.9839 0.9989 0.9974 

16 0.9998 0.9971 0.9934 0.9845 0.9985 0.9753 

17 0.9988 0.9973 0.9948 0.9845 0.9990 0.9973 

18 0.9992 0.9982 0.9963 0.9863 0.9994 0.9949 

19 0.9989 0.9941 0.9965 0.9870 0.9997 0.9976 

20 0.9989 0.9971 0.9963 0.9872 0.9999 0.9976 

21 0.9998 0.9980 0.9978 0.9814 0.9998 0.9927 

22 1.0000 0.9980 0.9971 0.9825 0.9991 0.9967 

23 1.0000 0.9980 0.9973 0.9886 0.9997 0.9971 

24 1.0000 0.9980 0.9974 0.9829 0.9993 0.9973 

25 1.0000 0.9980 0.9979 0.9892 0.9993 0.9982 

26 1.0000 0.9980 0.9984 0.9853 0.9998 0.9986 

27 1 0,9982 0,9975 0,9892 1.0000 0,9982 

28 1 0,9982 0,9985 0,9804 1.0000 0,9982 

29 1 0,9980 0,9979 0,9876 1.0000 0,998 

30 1 0,9980 0,9983 0,9906 1.0000 0,9982 
 

Table 4. Loss values obtained as a result of the training-test of the 
models 

 

 Inception-v3 EfficientNet-B3 DenseNet-201 

Epoch Train Test Train Test Train Test 

1 0.1290 0.3641 0.5234 0.2883 0.1296 0.3729 

2 0.0484 0.1884 0.3789 0.2780 0.0505 0.1804 

3 0.0338 0.0636 0.3124 0.2228 0.0343 0.0577 

4 0.0238 0.0483 0.2555 0.2173 0.0260 0.0572 

5 0.0212 0.0313 0.1653 0.4024 0.0212 0.0335 

6 0.0189 0.0244 0.1225 0.3183 0.0198 0.0655 

7 0.0137 0.0483 0.0909 0.1490 0.0197 0.0207 

8 0.0103 0.0459 0.0656 0.1149 0.0132 0.0214 

9 0.0111 0.0239 0.0497 0.0919 0.0106 0.0197 

10 0.0064 0.0182 0.0446 0.1177 0.0100 0.0146 

11 0.0035 0.0287 0.0365 0.1337 0.0071 0.0201 

12 0.0084 0.0237 0.0390 0.0715 0.0080 0.0638 

13 0.0055 0.0215 0.0267 0.0708 0.0055 0.0344 

14 0.0029 0.0297 0.0222 0.0598 0.0040 0.0218 

15 0.0039 0.0164 0.0201 0.0608 0.0046 0.0124 

16 0.0014 0.0175 0.0190 0.0762 0.0041 0.0748 

17 0.0046 0.0188 0.0164 0.0676 0.0031 0.0156 

18 0.0021 0.0118 0.0127 0.0569 0.0028 0.0228 

19 0.0042 0.0234 0.0120 0.0541 0.0014 0.0168 

20 0.0040 0.0159 0.0116 0.0564 0.0006 0.0184 

21 0.0003 0.0157 0.0085 0.0853 0.0006 0.0334 

22 0.0000 0.0164 0.0097 0.0832 0.0028 0.0164 

23 0.0000 0.0170 0.0098 0.0581 0.0011 0.0176 

24 0.0000 0.0176 0.0079 0.0931 0.0025 0.0136 

25 0.0000 0.0179 0.0074 0.0513 0.0024 0.0114 

26 0.0000 0.0184 0.0047 0.0720 0.0009 0.0110 

27 0.0000 0.0166 0.0076 0.0466 0.0000 0.0142 

28 0.0000 0.0168 0.0055 0.0972 0.0000 0.0146 

29 0.0000 0.0179 0.0062 0.0526 0.0000 0.0149 

30 0.0000 0.0181 0.0052 0.0515 0.0000 0.0153 

Table 5. Sensitivity values obtained as a result of the training-test of 
the models 

 

 Inception-v3 EfficientNet-B3 DenseNet-201 

Epoch Train Test Train Test Train Test 

1 0.9603 0.9250 0.9035 0.9250 0.9619 0.9250 

2 0.9851 0.9584 0.9188 0.9250 0.9843 0.9559 

3 0.9898 0.9809 0.9251 0.9273 0.9900 0.9832 

4 0.9923 0.9848 0.9354 0.9441 0.9920 0.9832 

5 0.9925 0.9924 0.9534 0.9557 0.9932 0.9912 

6 0.9939 0.9922 0.9648 0.9563 0.9936 0.9815 

7 0.9958 0.9895 0.9736 0.9641 0.9938 0.9939 

8 0.9964 0.9877 0.9805 0.9709 0.9954 0.9942 

9 0.9966 0.9936 0.9844 0.9730 0.9969 0.9947 

10 0.9979 0.9953 0.9858 0.9771 0.9966 0.9959 

11 0.9991 0.9953 0.9880 0.9680 0.9976 0.9961 

12 0.9971 0.9963 0.9886 0.9805 0.9977 0.9797 

13 0.9985 0.9963 0.9908 0.9814 0.9979 0.9924 

14 0.9991 0.9961 0.9928 0.9854 0.9986 0.9955 

15 0.9989 0.9977 0.9939 0.9840 0.9989 0.9975 

16 0.9998 0.9971 0.9937 0.9846 0.9984 0.9754 

17 0.9987 0.9973 0.9946 0.9848 0.9990 0.9973 

18 0.9992 0.9982 0.9963 0.9865 0.9993 0.9949 

19 0.9990 0.9941 0.9965 0.9873 0.9997 0.9977 

20 0.9989 0.9971 0.9963 0.9871 0.9999 0.9977 

21 0.9998 0.9980 0.9977 0.9811 0.9998 0.9928 

22 1.0000 0.9980 0.9970 0.9826 0.9991 0.9967 

23 1.0000 0.9980 0.9972 0.9887 0.9997 0.9971 

24 1.0000 0.9980 0.9974 0.9832 0.9993 0.9973 

25 1.0000 0.9980 0.9979 0.9893 0.9993 0.9982 

26 1.0000 0.9980 0.9985 0.9854 0.9998 0.9986 

27 1.0000 0.9982 0.9975 0.9893 1.0000 0.9982 

28 1.0000 0.9982 0.9984 0.9807 1.0000 0.9982 

29 1.0000 0.9980 0.9978 0.9875 1.0000 0.9980 

30 1.0000 0.9980 0.9983 0.9906 1.0000 0.9982 

 

Table 6. Specificity values obtained as a result of the training-test of 
the models 

 

 Inception-v3 EfficientNet-B3 DenseNet-201 

Epoch Train Test Train Test Train Test 

1 0.9627 0.9250 0.9031 0.9250 0.9593 0.9250 

2 0.9851 0.9582 0.9173 0.9250 0.9844 0.9549 

3 0.9899 0.9807 0.9243 0.9246 0.9902 0.9832 

4 0.9925 0.9848 0.9373 0.9434 0.9919 0.9832 

5 0.9927 0.9926 0.9545 0.9567 0.9932 0.9910 

6 0.9941 0.9922 0.9642 0.9553 0.9937 0.9813 

7 0.9958 0.9893 0.9737 0.9650 0.9937 0.9945 

8 0.9963 0.9883 0.9800 0.9707 0.9956 0.9942 

9 0.9966 0.9936 0.9844 0.9729 0.9969 0.9947 

10 0.9979 0.9953 0.9857 0.9748 0.9967 0.9959 

11 0.9991 0.9953 0.9880 0.9703 0.9976 0.9963 

12 0.9971 0.9963 0.9891 0.9811 0.9977 0.9799 

13 0.9985 0.9963 0.9905 0.9822 0.9979 0.9924 

14 0.9991 0.9961 0.9928 0.9854 0.9986 0.9955 

15 0.9989 0.9977 0.9935 0.9840 0.9989 0.9975 

16 0.9998 0.9971 0.9934 0.9844 0.9984 0.9756 

17 0.9988 0.9973 0.9946 0.9838 0.9990 0.9973 

18 0.9992 0.9982 0.9963 0.9855 0.9993 0.9949 

19 0.9989 0.9941 0.9964 0.9869 0.9997 0.9977 

20 0.9989 0.9971 0.9963 0.9877 0.9999 0.9977 

21 0.9998 0.9980 0.9976 0.9816 0.9998 0.9928 

22 1.0000 0.9980 0.9971 0.9824 0.9991 0.9967 

23 1.0000 0.9980 0.9971 0.9887 0.9997 0.9971 

24 1.0000 0.9980 0.9973 0.9830 0.9993 0.9973 

25 1.0000 0.9980 0.9979 0.9895 0.9993 0.9982 

26 1.0000 0.9980 0.9983 0.9854 0.9998 0.9986 

27 1.0000 0.9982 0.9975 0.9895 1.0000 0.9982 

28 1.0000 0.9982 0.9985 0.9801 1.0000 0.9982 

29 1.0000 0.9980 0.9978 0.9883 1.0000 0.9980 

30 1.0000 0.9980 0.9982 0.9904 1.0000 0.9982 
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In addition, accuracy, loss, sensitivity, and specificity graphs 

for each model are shown in Fig. 3. When the results are given 

in Table 3 and Fig. 3a are examined, it is seen that, after 30 

epochs, the highest test success accuracy in classifying breast 

cancer was achieved with DenseNet-201 (99.81%) and the 

lowest test success accuracy with EfficientNet-B3 (99.06%). It 

is seen that the 99.80% test success accuracy achieved with the 

Inception-v3 model is very close to the result obtained in the 

DenseNet-201 model. 

 

 

 

 

Fig. 3. Graphs obtained as a result of the training-test of the models 
(a) accuracy, (b) loss, (c) sensitivity, (d) specificity. 

 

Similarly, when the results are given in Table 4 and Fig. 3b are 

examined, it is seen that the lowest test loss value was reached 

with DenseNet-201 (0.0153) and the highest test loss value was 

reached with EfficientNet-B3 (0.0515). It is seen that the test 

loss value of 0.0181 reached with the Inception-v3 model is 

close to the result obtained in the DenseNet-201 model. When 

the sensitivity results given in Table 5 and Fig. 3c and the 

specificity results given in Table 6 and Fig. 3d are examined, it 

is seen that the results obtained are very close to the success 

accuracy rates. This shows that model trainings have been 

carried out successfully. In addition, confusion matrix was 

obtained according to the test dataset used in the training of 

Inception-v3, EfficientNet-B3, and DenseNet-201 models, and 

the results are given in Table 7.  

 
Table 7. Confusion matrix values of the models 

 

Models 

Cancer Normal 

True 

Positive 

False 

Negative 

True 

Negative  

False 

Positive 

Inception-v3 375 9 4709 1 

EfficientNet-B3 339 45 4707 3 

DenseNet-201 375 9 4710 0 

 

When Table 7 is examined; It was observed that DenseNet-201 

model achieved the most successful classification rate by 

classifying 375 as true, 9 as false of 384 cancerous breast 

images, and all 4710 normal breast images as true. Unlike the 

DenseNet-201 model, the Inception-v3 model was found to be 

the second-best model by misclassifying 1 of the normal breast 

images. It was observed that the most misclassification of 

cancerous and normal breast images was made in the 

EfficientNet-B3 model. Therefore, it has been observed that the 

DenseNet-201 model has superior classification performance 

in cancer/normal classification compared to other models. In 

addition, to test the model performance, the validation success 

rates of the Inception-v3, EfficientNet-B3, and DenseNet-201 

model structures were tested by using the images of 14 patients 

in the validation dataset (10 subsets). The obtained validation 

test results are given in Table 8. 
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 Table 8. Validation dataset final test results of 14 patients

 
Validation 

Dataset 
Explanation Number of Images Accuracy (%) Loss Sensitivity (%) Specificity (%) 

Validation-1 T2 218 86.70 1.3121 87.05 87.05 

Validation-2 ADC 23 72.29 2.0149 78.05 78.05 

Validation-3 Diffusion 23 75.32 1.4136 80.98 80.98 

Validation-4 Non-Contrast Fat Non-Suppressed T1 236 91.53 0.9646 92.19 92.19 

Validation-5 Non-Contrast Fat Suppressed T1 575 85.57 1.3518 85.58 85.58 

Validation-6 Contrast Fat Suppressed T1 2954 89.98 0.8567 90.05 90.05 

Validation-7 Subtraction T1 2806 92.41 0.5936 92.44 92.44 

Validation-8 Validation-1 – Validation-5 1075 86.23 1.3299 86.40 86.40 

Validation-9 Validation-6 – Validation-7 5760 91.16 0.7285 91.16 91.16 

Validation-10 Validation-1 – Validation-7 6835 89.36 0.9892 89.55 89.55 

The validation dataset was compared by dividing it into 10 

subsets as shown in Table 8. When Table 8 is examined, it is 

seen that the highest accuracy, sensitivity, and specificity rates 

and the lowest loss value were obtained from Subtraction T1 

images in the Validation-7 subset, while the lowest accuracy, 

sensitivity, and specificity rates and the highest loss value were 

obtained from ADC images in the Validation-2 subset. When 

Table 8 is viewed from a wide perspective, an accuracy of 

86.23% was achieved in the Validation-8 subset containing 

breast MRI images taken without contrast, and 91.16% in the 

Validation-9 subset containing breast MRI images taken with 

contrast. This remarkable situation shows that the results 

obtained from the images taken without contrast given in 

Validation-8 are close to the results obtained from images taken 

with contrast in Validation-9. Also noteworthy is that the 

accuracy rate (91.53%) obtained from Non-Contrast Fat Non-

Suppressed T1 images in the Validation-4 cluster is close to the 

Subtraction T1 accuracy rate (92.41%) in the Validation-7 

cluster, which has the highest rate. This shows that with the 

proposed model structure used in the study, successful results 

can be obtained in non-contrast-applied breast MRI images. It 

is thought that obtaining successful results using non-contrast 

breast MRI images with the proposed model structure will 

bring a great innovation to the literature and the field of health. 

3.2. Performance Test Results 

With the proposed model structure, the performance test was 

applied to detect the cancer region from the breast MRI images 

taken from 14 patients who were not used in the study. The 

performance test applied is shown in the model diagram in Fig. 

4.

 

Fig. 4. Performance test model diagram.

When Fig. 4 is examined, breast MRI images taken in DICOM 

format of each patient were converted to JPG format for use in 

the model network. Then, the breast region was determined by 

using the breast region cross-section weights obtained with the 

Yolo-v3 algorithm and converted to 192×96×1 pixel 

dimensions. The resulting breast region was classified as 

cancer/normal using Inception-v3, EfficientNet-B3, and 

DenseNet-201 models. As a result of the classification, the 

cancerous region on the breast image was determined using the 

Yolo-v3 cancer region cross-section weights and framed. The 

performance test results performed on 14 patients using the 

Yolo-v3 + DenseNet-201 model, where the best results were 

obtained, are given in Table 9.
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Table 9. Performance test results of 14 patients 

 

Patient No. Cancer/ Normal 
Total Number 

of Images 

Number of Images Determined as 

Cancer/Normal by the Specialist 

Physician 

Number of Images Detected 

Cancer/Normal with Yolo-v3 + 

DenseNet-201 

Success Rate 

(%) 

1 

Cancer 

1169 35 33 94.29 

2 1169 83 81 97.59 

3 1169 14 10 71.43 

4 1164 47 38 80.85 

5 933 12 10 83.33 

6 1164 62 50 80.65 

7 1169 116 82 70.69 

Total 7939 369 304 82.38 

8 

Normal 

1081 1081 1081 100 

9 1169 1169 1169 100 

10 1169 1169 1169 100 

11 1169 1169 1155 98.80 

12 1169 1169 1169 100 

13 981 981 981 100 

14 1152 1152 1152 100 

Total 7890 7890 7876 99.82 

When Table 9 is analyzed on a patient basis, the cancer region 

was correctly identified with different success rates in all 7 

cancer patients. Incorrect cancer detection was made in only 1 

of 7 normal patients. Therefore, 13 out of 14 patients were 

correctly identified and a success rate of 92.86% was achieved. 

When Table 9 is analyzed in terms of the number of images, 

304 images of 369 cancer regions belonging to 7 patients with 

cancer were correctly detected and a success rate of 82.38% 

was achieved. Of the 7890 images of 7 normal patients, only 

14 were incorrectly detected as cancer. The success rate of 

normal patients was found to be 99.82%. According to the 

performance test results made with the proposed model 

structure, high accuracy determinations were made and the 

sample images obtained from the test results are shown in Fig. 

5. In Fig. 5b, a sample image of the patient (Patient No: 11) 

who was wrongly diagnosed with cancer is also included.

 

 

Fig. 5. Sample images of the performance test (a) Cancer, (b) Normal.

4. Discussion 

In recent years, the results obtained on medical images using 

deep learning methods have shown more successful 

performances than traditional methods [8, 17]. In this study, a 

model structure based on artificial intelligence technology was 

developed to characterize diagnostic performance in individual 

breast DCE-MRI sequences. In addition, it is predicted that the 

need for contrast material can be reduced in breast MRI with 

the help of artificial intelligence technology. 

Our proposed approach has been compared with many studies 

based on deep learning using MR images for breast cancer 
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classification. Our suggested approach is with 92.41% 

accuracy rate outperformed many studies [9, 10, 18-24]. 

Although there are studies showing a higher success rate than 

our model [25-27], the sensitivity and specificity of 92.44% in 

our model were found to be higher than these studies (Table 

10).

Table 10. Comparison of the proposed model with existing methods in breast cancer 

 

References Model Number of patients Accuracy Sensitivity Specificity 

[9] 3D RetinaNet 462 90.00% 95.00% - 

[10] Random Forest + ResNet-50 133 89.00% 95.00% 74.00% 

[18] 3D ResNet-50 536 85.00% 66.70% 93.20% 

[19] VGG-19 + SVM 1979 91.00% 90.00% 76.00% 

[20] 

DenseNet-121 

DenseNet-169 

InceptionResNet-V2 

Inception-V3 

NasNetMobile 

Xception 

286 89.50% 74.50% 96.00% 

[21] ResNet-50 903 85.90% 76.90% 81.40% 

[22] CNN 130 87.70% 86.10% 91.20% 

[23] Transfer Learning 60 85.00% 89.00% - 

[24] 
DenseNet 

ResNet 
1794 85.80% 90.00% 82.60% 

[25] VGG-19 273 92.80% 89.50% 94.30% 

[26] Resnet-101 438 94.20% 74.40% 95.30% 

[27] Proposed approach + SVM 448 93.70% 95.60% 87.20% 

Proposed approach 

Yolo-v3 + Inception-v3 

Yolo-v3 + EfficientNet-B3 

Yolo-v3 + DenseNet-201 

64 92.41% 92.44% 92.44% 

 

In our study, unlike other studies, DCE-MRI sequences (T2, 

ADC, Diffusion, Non-Contrast Fat Non-Suppressed T1, Non-

Contrast Fat Suppressed T1, Contrast Fat Suppressed T1, and 

Subtraction T1) were evaluated separately and a unique 

perspective was presented. Therefore, in our study, 

characterization of diagnostic performance in individual breast 

DCE-MRI sequences was emphasized rather than the accuracy 

rate directly obtained in other studies. Although the highest 

success rate was 92.41% with the Subtraction T1 sequence in 

our study, a high accuracy of 91.53% was also achieved in the 

Non-Contrast Fat Non-Suppressed T1 sequence. In this way, it 

was concluded that the correct diagnosis can be made in the 

images obtained without contrast application. 

5. CONCLUSIONS 

In this study, a total of 32302 breast MRI images taken from 64 

(32 normal and 32 cancer) patients were used to detect breast 

cancer regions. A novel model structure has been created to 

detect breast area and cancer on the breast. In the model 

structure, Yolo-v3 algorithm was used for region detection, and 

Inception-v3, EfficientNet-B3, and DenseNet-201 model 

structures were used for classification. To validate the models, 

DCE-MRI sequences (T2, ADC, Diffusion, Non-Contrast Fat 

Non-Suppressed T1, Non-Contrast Fat Suppressed T1, 

Contrast Fat Suppressed T1, and Subtraction T1) were 

evaluated separately. 

The best detection and classification according to these model 

structures were performed with the Yolo-v3 + DenseNet-201 

model, and 92.41 accuracy, 0.5936 loss, 92.44% sensitivity, 

and 92.44% specificity rates were obtained, respectively. In 

addition, the proposed best model structure was subjected to 

performance testing with 14 patients who were never used. The 

correct diagnosis was made in 13 of 14 (7 cancer, 7 normal) 

patients, and a success rate of 92.86% was achieved. 

As a result, an artificial intelligence model structure based on 7 

different DCE-MRI sequences has been developed for breast 

cancer detection and classification. The proposed artificial 

intelligence model may be useful in increasing the diagnostic 

confidence and efficiency of radiologists in breast cancer 

detection and classification. In future studies, different CNN 

models can be used to determine the cancer region in real-time 

in breast cancer detection and classification. 
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