
1. INTRODUCTION

Today, technological advances have a profound impact on
many aspects of life and science, including healthcare. Eye
surgery, one of the most precise and demanding areas of
medicine, is benefiting from technological innovations to im-
prove the efficiency of procedures and minimize risks to pa-
tients.

In the field of ophthalmic microsurgery, we are witnessing a
growing interest and implementation of new technologies that
are expected to increase the effectiveness of surgical proce-
dures and minimize the risk of postoperative complications as
well as errors during the operation itself. In this context, sci-
entific fields such as computer vision and machine learning are
becoming more important and are increasingly being used in
ophthalmic surgery.

During ophthalmic procedures, surgeons face a variety of
challenges and potential risks. An important issue to con-
sider is the risk of intraocular hemorrhage, which can signif-
icantly complicate the precise positioning of surgical instru-
ments. Subretinal surgery demands particular attention, as in-
accurate instrument positioning can result in damage to the op-
tic nerve, with fundamental implications for the patient’s per-
ceptual abilities.

Retinal microsurgery requires extremely high levels of vi-
sual acuity and depth perception, as well as precise hand move-
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ments. The required precision for positioning the tool in the
eye is 10 µm under general conditions, and 25 µm during sub-
retinal injection [1, 2].

A person with "normal" vision, defined by the Snellen test
as 20/20, has the ability to distinguish two points in his field of
vision as separate if they are separated by an angle of at least
1 minute of arc. In practice, this means that at a distance of 1
meter, the eye can distinguish two points that are separated by
at least 0.29 mm. At a distance of 20 meters, this resolution is
approximately 5.8 mm [3].

Microscopic magnification can significantly improve visual
resolution. However, despite using a microscope, the precision
of human visual perception cannot match the accuracy of mod-
ern cameras - especially those integrated with the microscope
sharing the same optical path as the surgeon.

The resolution capability of optical systems in microscopes
greatly surpasses the visual capability of the human eye. This
offers immense potential for improving the precision of track-
ing surgical instruments and other complex tasks. The applica-
tion of such sophisticated optical technology can significantly
improve the accuracy and efficiency of medical procedures, a
critical aspect in optimizing patient outcomes.

This article focuses specifically on advancing the applica-
tion of deep learning techniques, in particular active learning,
to improve the accuracy of surgical instrument localisation and
segmentation in ophthalmic surgery. Our work builds on ini-
tial developments using the OpenCV library, which have been
instrumental in real-time tracking of the tip of surgical instru-
ments during procedures. While these traditional methods pro-
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vided valuable insights, they were limited in their scope and
adaptability to different surgical environments.

The initial program developed using OpenCV focused pri-
marily on real-time localisation and tracking of the tip and ori-
entation of the surgical tool during eye surgery. This early ap-
proach laid the foundation for understanding the dynamics of
surgical instruments in a controlled environment. However,
the method can be ineffective because of its limited abil-
ity to adapt to the varying complexity of different surgical
scenarios.

In response to these limitations, our current research ex-
plores the use of neural networks to go beyond the capabili-
ties of the OpenCV-based approach. We are focusing on using
neural networks to not only track, but also accurately localise
and segment surgical instruments within different surgical en-
vironments. By integrating active learning into this approach,
we aim to create a more flexible and robust system that can
adapt to different types of eye surgery and conditions, thereby
improving the overall precision and effectiveness of surgical
procedures.

The article is structured into the following sections:

1. Introduction: Discusses the impact of technological ad-
vances on health care, particularly in the field of ophthalmic
surgery. It highlights the challenges and potential risks sur-
geons face during ophthalmic procedures and the need for
precise instrument positioning.

2. From Traditional Methods to Active Learning in Oph-
thalmic Instrument Recognition and Localisation: This
section outlines the limitations of traditional methods for
surgical instrument recognition, setting the stage for the in-
troduction of advanced techniques such as CNNs and active
learning.

3. Convolutional Neural Networks: This section explains
how CNNs have revolutionized image processing by en-
abling accurate and efficient classification, but also high-
lights the challenge of the need for a substantial amount of
labeled training data.

4. Active Learning Methods: Active learning, a type of super-
vised learning that involves the model in selecting the most
informative samples, is covered in this section. It is intro-
duced as an effective way to reduce the need for extensive
data annotation.

5. Algorithms for Surgical Instrument Recognition: This
section describes the YOLOv5-based algorithm, enhanced
with active and semi-supervised learning, for surgical instru-
ment detection, using a dataset annotated via Roboflow.

6. Experimental Results: This section discusses four differ-
ent experiments that use active learning and semi-supervised
learning methods to reduce manual image labeling. It pro-
vides a detailed analysis of methods including self-training,
active learning with multiple confidence thresholds, and pro-
gressive reduction of automatic labeling thresholds.

7. Conclusions and Future Research: This section highlights
the effectiveness and potential limitations of active learning
in surgical image recognition. It also considers how this
approach can be improved by integrating semi-supervised

learning and advanced tool localization methods.

2. ADVANCED METHOD IN OPHTHALMIC INSTRUMENT
RECOGNITION AND LOCALISATION

Initially, in our attempts to develop advanced methods for sur-
gical instrument recognition in ophthalmic surgery, we started
by using traditional image processing techniques, utilising the
capabilities of the OpenCV library [4]. The purpose of this
section is to present these initial methods as a foundation for
the more advanced techniques that we have subsequently de-
veloped. By analysing the capabilities and limitations of these
conventional approaches, we highlight the need to move to-
wards machine learning-based solutions in the variable and dy-
namic conditions of surgical environments.

In our initial efforts, we focused on manipulating colour
spaces in images, using formats such as Lab* and HSV, which
allowed for improved differentiation and segmentation of ob-
jects. These colour spaces have been widely used in object
segmentation tasks, as evidenced by studies such as [5].

The starting point for these initial efforts was the develop-
ment of a classical surgical instrument segmentation algorithm
[6]. Based on our project, our research team has developed
and implemented a method that utilizes a combination of
masks from both color spaces. This method is able to effec-
tively isolate the surgical tool from the background of the
image. Additionally, we deliberately applied an edge de-
tection technique that is insensitive to shadows cast by the
surgical tool, which, combined with the mask method from
both color spaces, increases the accuracy of our algorithm.

However, these classical algorithms, while effective un-
der controlled conditions, lacked the flexibility required for
diverse operating conditions. This limitation, evidenced in
the works of Lin et al. [7], Luijten et al. [8], was apparent
in their inability to generalize across various surgical scenarios
and instruments. In particular, it could only be precisely pa-
rameterised to recognise the position of a single surgical tool
under the specific conditions of a single operation. The in-
ability to easily generalise the algorithm’s settings to different
surgeries, different lighting conditions, and different surgical
tools highlighted its limitations. This inflexibility underscored
the need for a more adaptive and versatile approach, which led
to our exploration of machine learning-based methods.

Our research also considered alternative traditional methods
for instrument tracking and localization. Studies such as those
by Allan et al. [9], Bouget et al. [10, 11], Zhou [12], Sznitman
et al. [13], and Rieke et al. [14, 15] provided insights into vari-
ous non-ML techniques like feature-based tracking and pattern
recognition, which have been instrumental in advancing surgi-
cal tool detection and tracking.

In summary, while the classical algorithm provided a solid
foundation and demonstrated potential in specific scenarios,
particularly in the case of surgical tool localisation and ori-
entation, its inability to generalise across different surgical
conditions and instruments necessitated the transition to more
robust, adaptive solutions offered by machine learning tech-
niques. This transition marks an important step in addressing
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the complexity and variability inherent in live surgical environ-
ments, paving the way for more accurate and versatile surgical
instrument recognition.

3. CONVOLUTIONAL NEURAL NETWORKS

In recent years, neural networks, particularly Convolutional
Neural Networks (CNNs), have revolutionized image process-
ing, enabling accurate and efficient classification [16]. CNNs
consist of three fundamental types of layers: convolutional lay-
ers, pooling layers, and fully connected layers. The convolu-
tional layers apply filters to detect various features, such as
edges or textures. Pooling layers downsample the data, reduc-
ing its dimensionality while retaining the essential informa-
tion. Finally, fully connected layers use the extracted features
to predict and classify the image. Automatic feature extraction
is one of the main advantages of CNNs. Unlike classical meth-
ods, which rely on predefined features, neural networks learn
to identify key elements directly from raw input data. CNNs
learn to extract increasingly complex and high-level features
and to find relationships within the image data. This process
leads to improved classification accuracy. YOLO [17] (You
Only Look Once) is an example of CNN. The algorithm has
gained significant popularity in the field of computer vision.
One of the main advantages of YOLOv5 [18] is its speed and
efficiency in real-time object detection. YOLOv5 achieves im-
pressive performance on modern hardware, enabling it to be
deployed in applications where low latency is crucial.

Despite these advantages, neural networks also have disad-
vantages - CNNs require a substantial amount of labeled train-
ing data to achieve optimal performance. Acquiring and anno-
tating massive datasets can be time-consuming and challeng-
ing.

4. ACTIVE LEARNING METHODS

Active learning is a specific type of supervised learning, which
implies the control of a person over the process of teaching
[19, 20, 21]. Instead of passively relying on a fixed, labeled
dataset, active learning actively involves a model in the process
of selecting the data.

Initially, the neural network model is trained on a small
labelled dataset, typically consisting of randomly selected or
expert-labelled examples. Then, in the active learning phase,
our algorithm selects unlabelled instances from a larger dataset
where the classifier exhibits high uncertainty regarding
their classification. These newly labelled instances are then
added to the training dataset, and the model is retrained to
improve its accuracy and generalisation ability. This iterative
process of selecting informative samples based on classifier
uncertainty and retraining the model is the essence of active
learning.

In the following step, the active learning algorithm selects a
subset of instances from the unlabeled dataset based on their
estimated uncertainty. The goal is to choose the most informa-
tive samples that can improve the model’s performance. The
samples can be chosen using metrics such as entropy or mar-
gin sampling. The query strategies are described in section 4A.

Figures 1a-1c present the idea behind the method. Fig. 1a
shows an example dataset divided into two classes. Fig. 1b
presents the initial, randomly selected set of examples used
in the learning process and the generated discrimination func-
tion. In Fig. 1c, the red highlighted examples are those se-
lected close to the decision boundary due to their high infor-
mative value for retraining the model. Not all examples near
the decision boundary are highlighted because the selection is
strategic, not random, focusing on instances where the model’s
uncertainty is highest. These selected samples are then labeled
by human annotators and included in the training dataset to
improve the model’s accuracy. This selective process is a crit-
ical aspect of active learning, aimed at efficiently using data to
refine the model.

The stopping criteria of the algorithm depends on the ap-
plication. Usually, one of the following methods is used:

• Budget-based criteria - a limit on the number of samples or
annotations is defined.

• Model performance criteria - the process terminates when
the model reaches a satisfactory performance level or per-
formance improvement falls below a certain threshold.

• Convergence criteria - the process stops when the perfor-
mance stabilizes or when there is no significant improve-
ment in the model’s performance after a certain number of
iterations.

Sometimes, stop criteria can be customized based on spe-
cific requirements or domain knowledge.

The key premise of active learning is the ability to train a
classifier, such as a neural network, using less data and without
the need for tedious, hours-long labeling.

In addition, in the context of our research on surgical tool
recognition, active learning is used not only to make efficient
use of a limited data set, but also to improve the model under
more diverse surgical conditions. As the previously developed
OpenCV-based model was limited in scope, our active learning
approach aims to extend the model’s ability to work in different
surgical scenarios and with different surgical tools.

A. Query strategies

The common goal of all query strategies is to select the most
relevant, information-rich data that will provide the model with
the fastest growth.

Typically, one of the approaches is employed:

• Uncertainty Sampling - selects instances based on the
model’s uncertainty in its predictions.

• Least Confidence - the instances where it is least confident
about its predictions are chosen. It selects data points
where the predicted probability of the chosen class is low-
est.

• Margin Sampling - the model focuses on instances close to
the decision boundary, which are likely more informative.
Margin sampling is similar to least confidence sampling,
but it considers the probability difference between the
top two predicted classes. It selects instances with the
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(a) Example dataset

(b) Random selection of data points

(c) Uncertainty sampling

Fig. 1. Figure represents the results of selecting data points in a ran-
dom fashion and using uncertainty sampling strategy [19]

smallest margin between the top two predicted probabil-
ities.

• Entropy - the entropy of the predicted class probabilities is
calculated, and instances with high entropy (i.e., higher un-
certainty) are selected.

• Query by Committee - this strategy involves training an en-
semble of multiple models on the labeled dataset and select-
ing instances where the models disagree or are uncertain.
The disagreement can be measured using various techniques,
such as vote entropy or KL-divergence [22].

• Expected Model Change - the method selects instances that
are expected to cause the most significant change in the
model’s parameters or predictions when added to the labeled
dataset. This can be measured by computing the gradient of
the model’s parameters with respect to the instance’s input

4

or  using  heuristic  approaches  like  uncertainty  change  or  loss
change.

   Besides  query  strategies,  there  are  also  query  scenarios  that
dictate  the  way  the  model  receives  the  data.  There  are  three
common  query  scenarios  [19]:

•  Query  synthesis  -  in  this  case,  the  algorithm  can  simply  send
   a  query  for  an  existing  instance  in  the  database,  but  it  also

has  the  ability  to  create  a  new  data  sample  based  on  the  avail-
able  data  and  on  the  known  constraints.  It  is  most  desirable
to  create  samples  that  lie  around  the  decision  boundary  of
the  algorithm.  Query  synthesis  can  be  useful  in  some  cases,
but  generally  cannot  be  used  effectively,  especially  in  issues
related  to  images  [23].  This  is  because  generating  new  im-
ages  that  make  sense  and  are  interpretable  by  humans  is  an
extremely  difficult  task,  for  which  the  generative  adversarial
networks  (GANs)  are  used.  It  is  useful  to  refer  to  Lang  and
Baum’s  work  [24],  in  which  this  approach  was  used  to  teach
a  neural  network  to  recognize  handwritten  digits  in  order  to
visualize  the  problem.

•  Pool-based  sampling  -  this  approach  assumes  the  presence  of
   a  large  dataset  containing  mostly  unlabeled  data  and  a  small

portion  of  labeled  data.  Due  to  the  fact  that  it  is  the  most
frequent  data  format  when  working  with  machine  learning,
it  is  the  most  common  type  of  query  scenario.  The  data  is
sent  to  the  algorithm  in  the  form  of  a  batch  or  all  at  once.

•  Sequence-based  selective  sampling  -  as  the  name  suggests,
   this  scenario  implies  that  a  sequence  of  input  data  is  avail-

able.  The  algorithm  takes  data  samples  from  the  sequence
one  at  a  time,  one  by  one,  and  for  each  one,  it  decides
whether  to  accept  the  sample  for  labeling  or  reject  it.  The
decision-making  process  is  based  on  query  strategies.  This
approach  assumes  that  the  acquisition  of  unlabeled  data  has
no  cost.

   The  strategy  used  in  this  research  paper  is  a  variant  of  the  un-
certainty  sampling  strategy  called  Least  confidence.  In  the  case
of  unbalanced  data,  the  Least  Confidence  strategy  can  help  ad-
dress  the  issue  by  actively  selecting  samples  from  the  minority
class  that  the  model  is  least  confident  about.

5. ALGORITHMS  FOR  SURGICAL  INSTRUMENT  RECOG-
NITION

 strument  recognition  algorithm  we  developed is  an  active  
learning  method  applied  to  the  Yolov5  neural network.  
The  algorithm  is  further  enhanced  with  a  semi-supervised  
learning  method.  In  the  following  subsections,  the steps  of  
our  proposed  method  will  be  described  in  detail.

A. Dataset  Collection

Our  dataset  was  collected  at  the  ICTER  –  International  Centre
for  Translational  Eye  Research,  where  we  recorded  images  of
several  laboratory  and  surgical  instruments.  The  data  belongs
to  five  classes.  The  names  of  the  instruments  are  presented  in
tab.  1.  Fig.  2  is  the  photo  of  instruments  used  in  our  system.
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Table 1. Class balance

number of photosclass

CURVED_CANNULA 750
ILM_FORCEPS 675

DALK_CORNEAL_DISSECTOR 650
TITANIUM_FORCEPS 647
PEELING_SPATULA 600

Fig. 2. Surgical instruments used in our system. *ILM: Retinal Internal
Limiting Membrane

Data was collected with a mirrorless camera - Sony A7III
and an iPhone 13 pro. In order to vary the data as much as pos-
sible, lighting conditions and backgrounds were changed dur-
ing the shooting. Photos needed to be reformatted and com-
pressed. In total, there were 3476 images, including frames
extracted from the recorded videos, of which 211 had no sur-
gical instrument, only the background. The table below shows
the distribution of the number of photos per class.

B. Dataset Annotation

The photos were labeled using the Roboflow tool. We chose
the Bounding Box method because of the ability to accurately
contain the entire tool in the bounding box, the speed and ease
of labeling, and the fact that YOLO detection algorithm sup-
ports such a format. Other methods, such as polygonal anno-
tation and semantic segmentation, could fail to capture a small
piece of the tool which would have a harmful effect on the ac-
curacy of the predicted bounding boxes.

C. YOLOv5 algorithms for Surgical Instrument Recogni-
tion

We have decided to use YOLOv5 (You Only Look Once) ob-
ject detection algorithm because of its popularity and excellent
performance. Its full name derives from the innovative way
the algorithm works. Detection and classification of objects
are done with a single image pass through the network. Such
single-shot algorithms have a bit worse quality of detection,
but they work faster than double-shot detectors. The network
consists of the following layers:

• Backbone - refers to the initial part of the network responsi-
ble for feature extraction from the input image. This task is
done using CSPDarknet53 (CSP stands for Cross-Stage Par-
tial) artificial neural network pre-trained on the ImageNet
dataset that extracts relevant features from an image. It is
used to reduce the spatial resolution and to increase the res-
olution of image features (higher number of channels).

• Neck - includes the SPP (Spatial Pyramid Pooling) and
PANet (Path Aggregation Network) layers. Thanks to the
SPP layer, the artificial neural network can operate effec-
tively on input data of different dimensions [25]. PANet has
been used because of its ability to preserve spatial informa-
tion, making it possible to accurately locate pixels belonging
to a particular class. PANet can ensure the efficient flow of
spatial information from the lower layers to the final layers
of the network.

• Detection Head - is responsible for predicting bounding
boxes and class probabilities for detected objects. Each de-
tection layer is associated with a specific scale of the feature
map from the neck.

• Predictions - consist of bounding boxes for detected objects
along with their corresponding class labels and confidence
scores. Non-maximum suppression (NMS) is applied to re-
move duplicate and low-confidence detections.

YOLO uses Swish activation functions in the hidden layers
and a sigmoidal function in the output layer.

Since YOLO returns three output values - class prediction,
bounding box, and confidence score, the total loss can be ex-
pressed by the formula:

loss = λ1Lcls +λ2Lloc +λ3Lob j (1)

where: λi - the weight of a particular type of loss, i = 1,2,3
Lcls- class prediction loss,
Lloc - bounding box loss,
Lob j - prediction confidence loss.

For the class prediction and confidence score, Binary Cross-
Entropy was used as the loss function. For the prediction
of bounding box location, Complete Intersection over Union
(CIoU) was used as the loss function [26].

Yolo offers several sizes of its yolov5 algorithm. The biggest
one - yolov5x has the most parameters. It is the most computa-
tionally intensive, takes the longest to train and detect, but has
the best performance.

We have tested mAP metric and the average time of training
and detection for each yolov5 model. We did not use active
learning at this stage. While mAP (mean Average Precision) is
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Table 2. Yolov5 models performance comparison

Detection time (avg)Trainig time (avg)YOLOv5 model

9.9ms1.07hYOLOv5s
17.1ms2.05hYOLOv5m
30.5ms3.67hYOLOv5l
41.2ms5.10hYOLOv5x

typically associated with segmentation models, in the context
of this study, we use it to evaluate the object detection perfor-
mance of YOLOv5. This is because mAP effectively measures
the model’s accuracy in localizing and classifying surgical in-
struments across various IoU (Intersection over Union) thresh-
olds. It’s a comprehensive metric that captures both the preci-
sion and recall of the model, making it suitable for assessing
the performance of YOLOv5 in our specific case of surgical
instrument detection.

The mAP metric is based on PR-curve (curve that shows
precision and recall for different confidence thresholds) and it
is an AP (weighted average of precision for different confi-
dence thresholds, with weight being the change in recall be-
tween those thresholds) averaged over different IoU (intersec-
tion over union) thresholds and all classes. Below is the for-
mula for mAP metric:

mAP =
1
N ∑

N

(
1
M ∑

M

(
1

∑i wi
∑

i
Piwi

))
(2)

where:

N −number of classes,
M−number of IoU thresholds,
Pi −precision for the i-th prediction confidence threshold,
wi −weight for the i-th prediction confidence threshold

(weight being the change in recall relative to the
previous threshold (i-1)).

The mAP_0.5:0.95 takes into account the average AP for
IoU values from 0.5 - 0.95 with a step of 0.05.

Training set consisted of 80% of our dataset. Obtained re-
sults are shown in table 2.

The figure 3 is a comparison of mAP metrics for different
YOLOv5 models throughout the learning process and it clearly
shows the dominance of YOLOv5 m, l and x over the s model.

Finally, we decided to choose the largest yolov5x model.
The decision was made upon the fact that in medical situations,
detection performance is absolutely crucial, and yolov5x deliv-
ered that. It could also run in 24 frames per second which is
sufficient it real-time detection.

6. EXPERIMENTAL RESULTS

Our objective was to test active learning methods supported
by the model self-learning technique to reduce the number
of images that have to be labeled manually. Additionally,
the self-training algorithm has been implemented and tested.
Self-training is a very basic type of semi-supervised learning

Fig. 3. mAP-0.5:0.95 metric for yolov5 models

[27]. This method involves teaching a model on a tiny number
of labeled data, then taking the data which the model is most
confident about and creating a new model using both the
original set and the one the model has labeled itself. This
process is repeated iteratively until no further significant
improvement is visible.

As a reference point for our experiments with active learn-
ing, we trained a baseline model using a conventional approach
and employing the entire manually labeled dataset, without
the assistance of active learning techniques. For this baseline
model, we primarily utilized a confusion matrix to evaluate
its performance in classifying various types of surgical instru-
ments, focusing on precision and recall for each category. This
detailed, category-specific analysis is crucial for understanding
the model’s strengths and weaknesses in classifying manually
labeled images. The performance of this baseline model, in-
cluding its confusion matrix, is illustrated in the figure 4.

In contrast, for other experiments involving active learning,
we employed the mean Average Precision (mAP) metric. This
choice was driven by mAP’s capability to provide a broader
overview of model performance across different classes. It is
particularly effective for comparing the efficacy of various ac-
tive learning strategies, offering a holistic view of model accu-
racy in a more dynamic learning context.

Four experiments were performed:

1. High Confidence Self-Training Experiment: In the first
experiment, the self-training method was applied. Any de-
tection with a confidence score higher than 0.95 was au-
tomatically assigned the predicted label and added to the
dataset.

2. Integrated Active Learning Experiment: The second ex-
periment, integrated the self-training method with the base-
line active learning approach. Here, uncertainty sampling
played a key role, with a specified confidence interval be-
tween 0.1 and 0.4. This specified threshold helped us to
identify images that were problematic for our model, exclud-
ing any noise or arbitrary detections. Such images were then
manually labeled. This strategy resulted in the additional an-
notation of 2110 images, of which 323 were manually anno-
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iment number four. The results achieved for the other two
methods were slightly worse, with the third experiment taking
a great many iterations.

As one can see, the fourth experiment succeeded in labeling
the largest number of photos automatically, with a very small
number of photos additionally marked manually. Experiment
one and experiment four are the most interesting cases and are
worth paying the most attention.

Although we did not give a single photo to be labeled by
a human, the first experiment allowed additional labeling of
1,689 photos automatically, which is almost half of the avail-
able dataset in this case. This approach has its pros and cons.
On one hand, it may overlook photos that could be highly rele-
vant to the model since automatic tagging is limited to those
with the fewest errors above the 95% confidence threshold.
However, on the other hand, it enables us to efficiently label
a vast number of images quickly. So does experiment num-
ber four, and it does it even faster. The fourth experiment
also involved the automatic labeling of images above a certain
threshold, with the difference being that with each successive
iteration, we trusted the model more and more. In the begin-
ning, we assumed that the confidence threshold for the auto-
matic labeling of a photo was 95%, and with each iteration, it
is dropped by one percent. This allows us to automatically la-
bel a much larger amount of data, but unfortunately, it comes
with the consequences of less accurate labeling. The bound-
aries of the bounding rectangle in such cases happen to be less
precise than in the case of experiment one. This method can
be applied in cases where a model can afford to make more er-
rors than in medical applications. For example, to detect cars
in order to study traffic volume.

Experiment two investigated the impact of active learning,
specifically additional labeling of a small number of poorly
recognized images, on the subsequent automatic labeling of
the remaining photos. By manually labeling 323 photos (9.3%
of the total set), we enabled the automatic labeling of an addi-
tional 98 photos.

In experiment three, the same approach as in experiment two
was taken, but with a modification. Each iteration was divided
into 20 percent batches, aiming to accelerate the automatic la-
beling process by frequently using smaller portions of man-
ually labeled photos. Unfortunately, after 19 iterations, this
expected behavior was not observed, and further iterations be-
came infeasible due to the prolonged learning time of a single
model.

At the end of the experiment, the model took about 4-5 hours
to learn one iteration, and there was a frequent timeout error
in the Colab notebook. This made it very time-consuming to
continue the experiment, and after early results, approach did
not promise satisfactory results.

Analysis of the results is presented in Table 3, which
summarises the quantitative ratio of manually labelled to
automatically labelled images in each experiment, and in
the more detailed tables: Table 4 for Experiment 1, Table
5 for Experiment 2, Table 6 for Experiment 3, and Table 7
for Experiment 4, it can be concluded that active learning
methods show a significant effectiveness in accelerating the
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Fig.  4.  Confusion  Matrix  of  the  Model  Trained  on  Manually  Labeled  Im-
ages  of  Surgical  Tools.  This  matrix  depicts  the  model’s  ability  to  classify
different  types  of  surgical  instruments,  emphasizing  its  precision  and
recall  for  each  category

tated  and  the  remaining  1787  were  annotated  by  automated
processes.

3.  Subset  Iterative  Refinement  Experiment:  The  third  ex-
  periment,  integrated  the  self-training  method,  baseline  ac-
  tive  learning  approach  and  batch  split  of  images.  Uncertainty
  sampling  remained  with  confidence  interval  between  0.1  and
  0.4.  Additionally  we  implemented  splitting  the  set  of  images
  we  worked  on  to  only  20%  of  the  test-set  and  performed  de-
  tection  on  it.  The  intention  was  to  reduce  the  number  of
  images  labeled  manually  by  doing  iterations  more  often.  If
  we  had  many  similar  images  in  the  test  set  with  which  the
  model  performs  below  expectations,  it  makes  no  sense  to  la-
  bel  each  of  these  cases  manually.  Tagging  just  one  of  these
  images  manually  will  improve  the  detection  results  for  the
  remaining  ones.  During  this  experiment,  we  managed  to  ad-
  ditionally  label  1486,  of  which  375  photos  were  manually
  labeled  and  1111  were  automatically  labeled.
4.  Dynamic  Confidence  Threshold  Experiment:

  The  fourth  experiment  is  based  on  the  second  experiment,
  except  that  at  each  iteration,  the  threshold  for  which  we  la-
  beled  images  automatically  decreased  by  one  percent.  The
  idea  behind  this  method  is  that,  as  the  learning  dataset  grew
  larger  and  larger,  the  model  no  longer  confused  similar  sur-
  gical  instruments  as  often.  It  has  learned  to  distinguish  de-
  tails  better,  meaning  the  model  can  be  trusted  more.  So  you
  can  reduce  its  automatic  approval  threshold  to  allow  more
  images  to  go  through  to  the  next  iteration.

During  the  experiment,  we  managed  to  additionally  label
2510,  of  which  268  photos  were  manually  labeled  and  2242
automatically.

  Table  3  presents  the  results  of  the  experiments.  In  the  ta-
ble,  the  designation  "(+696)"  means  that  in  each  experiment,
20%  of  the  set  was  manually  labeled  at  the  beginning,  of  which
10%  were  training  images  and  10%  were  verification  images,
accounting  for  696  manually  labeled  images.

  In  summary,  experiment  number  two  achieved  the  best  per-
formance  in  the  confusion  matrix,  closely  followed  by  exper-
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model training process with a limited amount of data. In
particular, Experiment 4, the results of which are detailed
in Table 7 and illustrated in Figure 5, shows the highest
auto-labelling efficiency. Similarly, Experiment 2, shown
in Table 5, demonstrates how strategic manual labelling of
selected images can help to improve the classification ef-
ficiency of the model, confirming the usefulness of active
involvement in the algorithm training process.
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Table 3. Number of detected images in each experiment

Exp no. Auto. Hand labeled Ratio of hand/auto
lables

Hand labeled per-
cent

labeledAuto
percent

Exp. 1 1689 0 (+696) 41,2% 20,0% 48,6%
Exp. 2 1787 323 (+696) 57,0% 29,3% 51,4%
Exp. 3 1111 375 (+696) 96,4% 30,8% 32,0%
Exp. 4 2242 268 (+696) 43,0% 27,7% 64,5%

Table 4. Comparison of classification error for experiment number one

Surgical tool 9-th8-th7-th6-th5-th4-th3-rd2-nd1-st
DALK_CORNEAL_D. 0.950.960.950.960.930.950.930.85 0.89

ILM_FORCEPS 0.960.940.950.950.940.960.900.84 0.88
CURVED_CANNULA 0.970.970.970.960.960.960.950.96 0.96
PEELING_SPATULA 0.890.920.900.900.920.910.880.88 0.89

TITANIUM_FORCEPS 0.990.990.990.980.990.990.990.98 0.97

Table 5. Comparison of classification error for experiment number two

Surgical tool 11-th10-th9-th8-th7-th6-th5-th4-th3-rd2-nd1-st
DALK_CORNEAL_D. 0.950.960.980.990.970.970.960.940.950.900.85

ILM_FORCEPS 0.950.960.960.950.960.970.940.960.950.910.84
CURVED_CANNULA 0.980.980.990.980.990.990.970.980.970.960.96
PEELING_SPATULA 0.970.960.970.970.970.980.940.970.930.930.88

TITANIUM_FORCEPS 0.991.000.990.991.001.000.990.990.990.990.98

Table 6. Comparison of classification error for experiment number three

Surgical tool 19-th18-th..12-th11-th10-th9-th8-th7-th6-th5-th4-th3-rd2-nd1-st
DALK_CORNEAL_D. 0.950.91..0.920.900.870.880.930.840.890.830.860.850.790.85

ILM_FORCEPS 0.930.95..0.950.930.970.930.910.920.910.900.920.870.870.84
CURVED_CANNULA 0.980.98...0.980.970.960.970.970.980.980.960.970.960.950.96
PEELING_SPATULA 0.930.93...0.940.920.930.930.950.920.880.940.900.890.900.88

TITANIUM_FORCEPS 1.000.99...1.001.001.001.000.991.000.990.980.960.970.950.98

Table 7. Comparison of classification error for experiment number four

Surgical tool 7-th6-th5-th4-th3-rd2-nd1-st
DALK_CORNEAL_D. 0.960.950.960.930.960.900.85

ILM_FORCEPS 0.950.950.950.930.960.910.84
CURVED_CANNULA 0.980.990.970.980.970.960.96
PEELING_SPATULA 0.950.950.950.960.960.930.88

TITANIUM_FORCEPS 0.990.990.991.000.990.990.98
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Table 8. Summary of Experiments up to the 7th Iteration of Active Learning Training

Tool
Average

Tool Tip
Experiment DALK_CORNEAL.D ILM_FORCEPS CURVED_CANNULA PEELING_SPATULA TITANIUM_FORCEPS

1 0.96 0.95 0.97 0.92 0.99 0.958
2 0.97 0.95 0.99 0.97 1.00 0.976
3 0.91 0.93 0.98 0.94 1.00 0.952
4 0.96 0.95 0.98 0.95 1.00 0.968

Fig. 5. Illustrates the ratio of manually to automatically labeled images across the experiments, with the red line denoting the trajectory of auto-
labeling efficiency, peaking significantly in Experiment 4.
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7. CONCLUSIONS AND FUTURE RESEARCH

In the rapidly advancing technology era, machine learning has
become an indispensable tool in various domains, including
medical imaging. Among the different machine learning ap-
proaches, active learning has garnered significant attention due
to its potential to optimize the learning process while mini-
mizing data acquisition costs. This is particularly useful when
dealing with a limited dataset, such as medical images.

However, it is essential to thoroughly investigate the trade-
offs associated with active learning compared to classic super-
vised learning methods, particularly concerning performance
effects. Our research focuses on exploring the usefulness of ac-
tive learning in the context of surgical image detection. While
active learning offers the advantage of utilizing a smaller train-
ing set, there may be compromises in achieving optimal re-
sults compared to traditional supervised learning. We have
undertaken a novel approach to address this challenge by in-
tegrating semi-supervised learning techniques to improve the
model. Furthermore, we recognize the significance of the ini-
tial selection of the training data in the model’s performance.
The set is currently chosen randomly, but we believe that in-
corporating clustering methods can lead to more diverse and
informative training data and improve the model’s generaliza-
tion ability. In the subsequent stages of our research, we delve
into the specific task of surgical tool localization within medi-
cal images. The accurate detection and precise positioning of
surgical instruments are pivotal in ensuring successful surgical
outcomes. To achieve this, we plan to apply classical image
processing methods after detecting the relevant region in the
image containing the surgical tool. This two-step approach en-
ables us to achieve both efficiency and accuracy in the tool
localization process.
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