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DETERMINATION OF STRESS-STRAIN RELATIONSHIP OF SHEET METAL IN UNIAXIAL
AND BIAXIAL TENSION

WYZNACZANIE ZALEŻNOŚCI NAPRĘŻENIE-ODKSZTAŁCENIE W PRÓBIE
JEDNOOSIOWEGO ORAZ DWUOSIOWEGO ROZCIĄGANIA BLACH

The strain hardening parameters of steel, aluminium and brass sheets were determined by
uniaxial and balanced biaxial (hydraulic bulging) tensile tests. Sheet thickness gradation in
different points of hemisphere formed in bulge test was analysed. The Ho 11 om o n equation
was used to described uniaxial and biaxial strain hardening curves, and a comparison of strain
hardening exponent was performed. Both the mean value of strain hardening exponent n (which
describe the strain hardening of the whole strain range) and differential n,-value were
determined on the base of the results of uniaxial and biaxial testing. The influence of the
stress-state on the strain hardening behaviour of the material, as well as strain localization
process, under both deformation modes are analysed.

Parametry krzywej umocnienia blach stalowych, aluminiowych oraz mosiężnych zos­
tały wyznaczone w próbach jednoosiowego i dwuosiowego (wybrzuszanie hydrauliczne)
rozciągania. Przeprowadzona została analiza rozkładu grubości blachy w różnych punk­
tach uformowanej czaszy. Równanie Hollomona zostało zastosowane do opisu zależności
naprężenie-odkształcenie przy jedno- oraz dwuosiowym rozciąganiu, i porównowartości
wykładnika krzywej umocnienia. Zarówno wartość średnia wykładnika krzywe umocnie­
nia 11 (opisująca skłonność do umocnienia w całym zakresie odksztalcenia), jak i jego wartość
chwilowa 11,, zostały wyznaczone na podstawie wyników prób jedno- oraz dwuosiowego
rozciągania. Przeanalizowano wpływ stanu naprężenia na skłonność do umocnienia materia­
łów, jak również na proces lokalizacji odksztalcenia, dla obydwu rodzajów testów.
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1. Introduction 

The stress-strain relation and hardening behaviour of a material are very important 
in determining its resistance to plastic instability. In sheet forming operation biaxial as 
well as uniaxial stress state exists. Thus, one must know and understand material 
hardening behaviour as a function of stress state. 

Satisfactory modeling of sheet forming is dependent on availability of accurate data 
for plastic behaviour to the high strain level in such operations. Routine forecasts of 
formability could also benefit from this information. However, for some reasons, 
standard uniaxial tension tests cannot provide this data [ 1]: 

- the range of stable uniform strain is restricted to less than half that sustainable 
under biaxial stress, 

- observable stress-strain relationships are, generally, imprecisely ascertained, 
- variation of strain hardening behaviour is difficult to discern, but would obviously 

affect the probable extrapolation, 
- biaxial strain deformation is sensitive to plastic anisotropy. 
It is obviously desirable to generate the required data directly from biaxial 

strain test. 
The hydraulic bulge test is widely used in determining the strain hardening 

properties of sheet materials in biaxial tension. In the bulge test, stress and strain can 
be determined up to failure of the specimen, while in the conventional uniaxial test 
only the uniform strain range can be utilized. Since the strains in press forming 
are normally larger then the uniform strain, the bulge test can better describe 
the plastic properties of a sheet metal at large strains [2]. This is especially impor­ 
tant in determining the stress-strain behaviour of sheets, which are in cold-rolled 
condition. 

Hydraulic bulging has long been known as a convenient method for judging the 
ductility of sheet metal and is an appropriate method for ascertaining biaxial stress-strain 
relationships because, provided that the die aperture is in order of a hundred times the 
sheet thickness, the only insurmountable drawback is some very slight bending; whereas 
other methods, employing cruciform of tubular specimen, induce local stress concent­ 
rations or necessitate prior deformation. 

When the object of hydraulic bulging is to evaluate plastic properties of the sheet 
material, the strain distribution may not be ascertained by any method that requires 
presupposition of those properties. Joint resolution of both bulging strains and material 
properties together is feasible, but would require complex instrumentation to provide 
enough information for the computation. Therefore detailed geometric analysis of the 
measured central dome appears to be most practicable method for calculating the local 
strain gradients of curvature. 

The aim of the present work was to compare plastic behaviour of different sheet 
material under uniaxial and biaxial tension. 
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2. Material and mechanical testing 

The tests were carried out on the 1.0 mm thick half hard 63-37 brass sheet (M63), 
0.8 mm thick DDQ (deep drawing quality) steel sheet and 0.8 mm thick A Wl050 
aluminium sheet in annealed state. The tensile specimens of 50 mm gauge length and 
12.5 mm width were prepared from strips cut at 0°, 45° and 90° according to the rolling 
direction of the sheet. The experiments were carried out on the Schoenk UTS tensile 
testing machine, using a special device, which recorded simultaneously the tensile load, 
the current length and width of specimen, using a microcomputer. 

In order to determine the flow properties of a material in biaxial stretching, the 
bulge test was carried out, using hydraulic bulge apparatus (Fig. 1) with a circular die 
aperture of 80 mm diameter. The bulging pressure and the curvature of the pole were 
measured and recorded continuously up to specimen failure. 

p 

Fig. I. Hydraulic bulge test apparatus 

Both, the uniaxial and biaxial testing were curried out at the room temperature, with 
initial strain rate of 2.2 · 10-1 s-1 and 2.6 · 10-1 s-1 respectively. 

3. Thickness distribution 

In bulging sheet metal through a die aperture by lateral fluid pressure, the expansion 
of surface area is only modest but the meridional strain gradient, from very little at the 
periphery to quite large at the pole, is severe. Let us consider free forming of a circular 
membrane. The current half arc length of any meridian passing trough the dome apex is 
equal to Ra - where R is the dome radius and a is half of the angle subtended by the 
dome surface at the center of curvature (Fig. 2). Since the initial half arc length of the 
meridian under consideration equals to the radius R0, it is stretched Ra!R0 = a/sina 
times. Proceeding from symmetry, it follows that the principal positive strains are equal 
to each other and thickness at the dome apex equals 

td = to(sina/a)2. (I) 
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Fig. 2. Schematic of deformation modeling 

Since the clamp does not deform during forming, the circumferential deformation 
along the periphery is negligible. On the other hand, any meridian approaching the 
periphery is stretched by a/sin a times, and from this it follows that dome thickness at 
the periphery equals to 

tP = to(sina/a). (2) 

At some moment of deformation the point M transfer to point M', and point O to O' 
(Fig. 2). Let /3 be the angle between the symmetry axis and the dome radius to the point 
M' under consideration. The latitude passing the point M' is stretched by pl p0 times and 
the dome thickness at the point M' may be found as follow 

t = to(p0/ p) (sina/a). (3) 

Taking into account that = R sin/3, p0 = v R0 and /3 = va the dome thickness at any 
point could be calculated from the following equation [3]: 

t(a, /3) = t0(sina/a)2 /3/sin/J. (4) 

Measurements of sheet thickness in different points of brass and aluminium 
hemisphere formed in bulging test (at the moment close to material failure) were 
compared with calculations using eq. (4). From this presentation (Fig. 3) it is visible that 
thickness variation along the dome wall obtained in experiment is larger than determined 
theoretically. Due to a specimen clamping the sheet thickness at the hemisphere 
periphery is the largest. The smallest sheet thickness at the dome pole could be a result 
of strain localization. Also it is noteworthy, that visibly variation of the hemisphere 
formed radius was observed. Because of this deviation, measurement of the sheet 
thickness at the pole, e.g. with an ultrasonic probe, was suggested [4]. 
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Fig. 3. Dependence of dome thickness on the distance from the dome apex of brass and aluminium sheet at the 
end of bulge test 

4. Stress-strain relationship 

In the bulge test a circular diaphragm, rigidly clamped at the periphery, is stretched 
by uniform lateral pressure. The sheet bends during deformation due to clamping. 
Provided that the sheet thickness/bulge diameter ratio is small, the effects of bending can 
be neglected in calculating membrane stresses. The average value of effective stress can 
be calculated on the basis of the force equilibrium of a small circular element at the 
center of a membrane from: 

pR 
a=- 

2t' (5) 

where p is the bulging pressure, and R and t are the radius of curvature and the thickness 
of the element, respectively. The radius of curvature could be obtained from: 

a2+h2 
R = ~, (6) 

where a is width and h is height of the central part of membrane (see Fig. 1). 
On the base of measured width and height of the central part of membrane the 

effective strain (equals to the thickness strain) could be calculated as [5], 

Comparison of stress-strain relationships obtained in uniaxial tensile test and 
equibiaxial stretching (bulge test) have shown visibly differences (Fig. 4) - larger region 
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Fig. 4. Uniaxial tensile test and biaxial stress-strain curves of brass (a), 
aluminium (b) and steel ( c) sheet 
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of straining and higher stress value. The latest could be a result of different textural 
changes accompanying plastic deformation in these two tests [ 6]. 

According to some works [7], uniaxial and equibiaxial stress-strain curves could be 
related using the following relationships: 

-(l+rav)l/2 
a- 23 aav' (8a) 

(8b) 

where r is anisotropy ratio, and material parameters are averaged as xav = 
= (xo + 2x45 + X90)/4. 

The plastic anisotropy factor rav has been determined on the base of the relationship 
between the width and thickness strain in the whole range of straining using the method 
proposed by We 1 ch et al. [8], and amount the value of 0.855, 1.167 and 1.638 for 
brass, aluminium and steel sheet respectively. 

However, in present work, calculations of equibiaxial stress-strain curve on the base 
of uniaxial stress-strain curve, have shown poor agreement with experimental curve 
obtained from the bulge test, even in the case of the DDQ steel sheet (Fig. 4c) 
characterized by the highest r-value. 

For many years different strain hardening laws has been used to describe the plastic 
behaviour of polycrystalline metals and alloys. The Hollomon law in the form of: 

a= KE" (9) 

has been used the most frequently. The parameters involved in these laws, particularly 
n-value, have been correlated to changes in the microstructure of a material and in some 
way represents processes, which occur during deformation. They have also been used 
extensively to characterize the formability of sheet material. The value of strain 
hardening exponent n is usually determined from the double logarithmic plot of the true 
stress and true strain by linear regression. 

The value of n-exponent is strain state dependent [6]. In the case of all the material 
tested the value of biaxial strain hardening exponent was larger than that of uniaxial one 
(Fig. 5). 

5. Instantaneous strain hardening 

The n-value is strain dependent what resulted from the changes in the crystallo­ 
graphic texture [6,8]. Because of this the mean n-value (which describe the strain 
hardening of the whole strain range) and differential n1-value were determined on the base 
of the results of uniaxial and biaxial testing. Taking the derivative from equation (9) yields 
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Fig. 5. Logarithmic stress-strain curves of uniaxial tensile test 
and biaxial of brass ( a), aluminium (b) and steel sheet ( c) 
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da a - = Knen-i = -n 
de e 

(10) 

which results in 

da e 
n=--. 1 de a 

(11) 

The results presented in Fig. 6 show clearly that there is no unique constant n-value, 
which may characterize hardening process in both uniaxial and biaxial deformation of 
brass sheets. 

6. Strain localization 

In strain rate independent materials the strain localization begins when increase of 
hardening cannot balance the decrease of the cross section of deformed sample: 

a= da/de. (12) 

The strain at the intersection of the a and the da/de curves is the local instability 
strain [10]. Meanwhile, in the rest of the sheet, practically useful "quasistable" flow 
succeeds the initially stable flow. The quasistable flow increment increases as the 
degree of biaxiality increases [ 11]. The strain at the intersection of the a/2 and the 
da/de curves is the diffuse instability strain. The results presented in Fig. 7 indicate 
that in the case of biaxial stretching test (Fig. 7a) the quasistable flow was twice larger 
than that in the case of uniaxial tensile test (Fig. 7b ), as it could be expected on the base 
of the results presented in Fig. 6. 
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Fig. 6. Differential strain hardening exponent 
of uniaxial tensile test and biaxial of brass (a), aluminium (b) and steel sheet (c) 

7. Conclusions 

Uniaxial and equibiaxial tensile tests were carried out to determine strain-hardening 
parameters of brass, aluminium and steel sheets. The Hollomon equation was found to 
describe stress-strain curves well, and the n-values determined from biaxial test were 
larger, than those of determined from uniaxial test. 

Equi-biaxial bulging was found to be very useful method for determining the strain 
hardening behaviour of the material at very large strains. 

For both the uniaxial and biaxial tensile the value of differential strain hardening 
exponent was strain dependent, and demonstrate the change in the strain hardening process. 

The quasistable plastic flow range in the case of biaxial testing was twice larger 
than those under uniaxial tensile. 

Calculation of biaxial stress-strain curve on the base of the results of uniaxial test 
was not satisfied. 
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Fig. 7. Demonstrating the instability strain determination of brass sheet using biaxial (upper) 
and uniaxial (lower) stress-strain curve 

Because of visible difference in plastic flow under bulge test and uniaxial tensile, 
both of these two tests should be perform due to obtain material parameters needed for 
satisfactory modeling of sheet forming processes. 

REFERENCES 

[l] M. Atkins o n, Accurate determination of biaxial stress-strain relationships from hydraulic bulging test 
of sheet metal, Int. J. Mech. Sci. 39, 761 (1997). 

[2] A. Ra n ta - Esko 1 a, Use of hydraulic bulge in biaxial tensile testing, Int. J. Mech. Sci. 21, 457 (1979). 
[3] F.U. En i k ee v, A.A. Kr u g 1 o v, An analysis of the superplastic forming of a thin circular diaphragm, 

Int. J. Mech Sci. 37, 473 (1995). 
[4] R. Mahmud i, Stress-strain dependence of work-hardening behavior in aluminium alloy sheet, J. Mat. 

Proc. Techno!. 72, 302 (1997). 



456

[5] Z. Marc i n i a k, Odksztalcenia graniczne przy tłoczeniu blach, WNT, Warszawa 1971.
[6] R. Hi 11, J.W. Hutch i n so n, Differential hardening in sheet metal under biaxial loading: A theoretical

framework, J. Appl. Mech. 59, SI (1992).
[7] R. Pe arce, Sheet metal forming, A. Hilger ed., Bristol, Philadelphia and New York 1991.
[8] P.I. We Ich, L. Rat k e, H-J. Bu n g e, Consideration of anisotropy parameters in polycrystalline

metals, Z. Metallkunde. 74, 233 (1983).
[9] J.J. Gr ac i o, J.V. Fer n a n de z, J.H. Schmitt, Effect of grain size on substructural evolution and

plastic behavior of copper, Mat. Sci. Eng. A118, 97 (1989)
[IO] H.J. KI ee mo I a, AJ. Ra n ta-Esko I a, Comparison of the strain-hardening parameters of sheet

metal in uniaxial and biaxial tension, Metali. Trans. 7A, 595 (1976).
[ 11] A.K. Ghosh, W.A. Back of en, Strain hardening and instability in biaxially stretched sheets, Metali.

Trans. 4, 1113 (1973).

REVIEWED BY: STANISŁAW WIERZBIŃSKI

Received: 20 May 2002. 


