Archives of Mining Sciences 48, 4 (2003) 521-532

MARIAN BROZEK*, ANNA MEYNARCZYKOWSKA*, ANNA TURNO*

THE DISTRIBUTION OF THE FLOTATION RATE CONSTANT IN A SAMPLE
OF THE TWO-COMPONENT RAW MATERIAL

ROZKEAD STALEJ PREDKOSCI FLOTACJI W PROBCE SUROWCA DWUSKLADNIKOWEGO

The flotation ratc constant at the fixed hydrodynamic conditions in the flotation chamber is
proportional to the probability of adhesion. This probability is, respectively, the function of the
induction time which depends on the surface properties of the particle and reagents procedures.

The authors derived a formula for the distribution function of the flotation rate constant in thc
sample of the two-component raw material. When deriving, the analogy between the shape of empirical
dependences of the flotation rate constant on the content of useful mineral in the particle and the
coverage rate of the particle with a collector, and the theoretical dependence of the adhesion probability
on the induction time. This analogy results from a sequence of several dependences. With the growth of
the content of the mineral in the particle, the cxposition rate of this mineral on the particle surfacc
increases, the coverage rate of the particle surface with the collector grows, the induction time
decreascs, the adhesion probability goes up and therefore the flotation rate constant increases. Con-
scquently, the distribution of the flotation ratc constant in the sample will be analogical to the
distribution of the content of a useful mineral. The distribution of content was derived according to the
dispersive model of particle. This distribution is expressed by an incomplete gamma function, also
called Pearson’s function.

Key words: flotation rate constant, flotation kinetics, dispersive model, distribution function, incom-
pletc gamma function

W ujgeiu makroskopowym jako argument rozdziatu przyjeto si¢ w praktyce flotacji uzywacé statej
predkosci flotacji. Stata ta przy ustalonych warunkach hydrodynamicznych w komorze flotacyjnej jest
proporcjonalna do prawdopodobienstwa adhezji (wzér 7). Jak wida¢ ze wzoru (5), prawdopodobien-
stwo adhezji, a przez to i stata predkosci flotacji, jest zalezne od czasu indukeji, ktory jest funkcja
wiasnosci powicrzchniowych ziarna i rezimu odczynnikowego.

W artykule wyprowadzono wzér na dystrybuantg rozktadu statej predkosci flotacji w probee
surowca dwuskiadnikowego. Wykorzystano podobienstwo ksztattdéw migdzy empirycznymi zalez-
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no$ciami statej predkosei flotacji od zawarto$ci flotowanego mineratu w ziarnic (rys. 2) i stopnia
pokrycia ziarna odczynnikicm zbicrajacym (rys. 3) a teoretyczng zaleznoscia prawdopodobicfistwa
adhezji od czasu indukcji (wzér S irys. 1 ). Podobienstwo to wynika z nast¢pstwa kilku zaleznosci. Ze
wzrostem zawarto$ci objgtosciowej mineratu w ziarnic A ro$nic powierzchniowa zawarto$¢ tegoz
mineratu na powierzchni ziarna o (wzor 9), rosnie stopien pokrycia powierzchni ziarna odczynnikiem
zbierajacym g, (wzor 10), malcje wige czas indukcji ¢; (wzor 11), a przez to rosnie prawdopodobienistwo
adhezji P, (wzory 12) oraz stata predkosci flotacji k (wzor 14).

Wyrazenie (14) przedstawia zalezno$¢ statej predkosci flotacji od zawarto$ci objgtosciowe;j floto-
wanego mineratu w ziarnic. Rozkfad statej predkosci flotacji w probee bedzie wige analogiczny do
rozktadu zawartosci flotowancgo mineratu.

Funkcjg rozktadu zawarto$ci wyprowadzono na podstawie dyspersyjnego modelu ziarna, w ktorym
liczba wprysnig¢ fazy rozproszonej (flotowanego mineratu) w ziarnic o objgtosci ¥ jest zmienna losowa
$(¥) majaca rozktad Poissona (wzor 18). Dystrybuanta tego rozktadu wyraza sig przez niepetna funkcjg
gamma (wzor 20). Korzystajac ze zwiazku pomigdzy liczba wprysnig¢ a objgtosciowa zawartoscig fazy
rozproszoncj (wzoér 21) uzyskuje si¢ wyrazenic na dystrybuante rozktadu zawartosci flotowanego
mincratu w ziarnach nadawy (wzory 23 i 24 ). Odwrdcenic funkceji (14) daje zalezno$¢ zawarto$ci fazy
rozproszoncj od statej predkosei flotacji (wzér 25). Po podstawiceniu tej zaleznosci do wzoru (24)
otrzymuje si¢ dystrybuantg rozktadu statej predkosci flotacji wyrazong przez niepetna funkcj¢ gamma.
Wszystkie state wystgpujace w tym rozktadzie maja interpretacjg fizyczna.

Stowa kluczowe: stata predkosci flotacji, kinetyka flotacji, model dyspersyjny, dystrybuanta rozktadu,
nicpeina funkcja gamma

1. Introduction

Every separation process, either the process of enrichment, of mechanical or hy-
draulic classification, is implemented according to a separation argument, specific for
the given process. In the process in which the separation argument is constituted by the
geometric properties of particles or their physical volume properties, such as density or
magnetic susceptibility, the argument value is conditioned only by the particle structure
and physical properties of its components. These properties cannot be modified without
changing their chemical composition. The distribution of the separation argument in the
sample, in the sense of distribution type and the values of distribution parameters,
depends only on the size distribution function of the sample.

In the flotation process the particle flotation properties are determined by the surface
properties of the particle whose value can be modified in a certain range by means of
flotation reagents. However, the rate of modification of these properties is proportional
to their primary values. Due to this, the type of distribution of flotation properties in the
sample after treatment with flotational reagents will be the same as before treatment
whereas the distribution parameters will change.

The flotation rate constant has been accepted to be used as a separation argument in
the macroscopic approach. This value is defined in the equation of flotation kinetics
whose first form (and most often applied so far) was proposed by Zuniga as an analogy
of the equation of kinetics of the chemical reaction (Zuniga 1935):

g()=1-eM (1)
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where:
g(t) — recovery of the useful component in the foam product after the time ¢ of the
process duration,
k — flotation rate constant.

From equation (1) it is obtained:

o L de (2)
1-¢ dt

This is therefore the relation of the number of particles which were subject to flotatiqn in
a time unit to the number of free particles (which were not subject to flotation) in the flotation
chamber in the moment ¢. The average value of the flotation rate constant is calculated
by means of fitting the model dependence of the recovery of the useful component in
the foam product on time, expressed by formula (1), to the empirical dependence.

Many models of flotation kinetics were proposed in the last several decades, both
determinist and stochastic (Schuhmann 1942; Sutherland 1948; Beloglazov 1947;
Kelsall 1960; Melkich 1963; Bushell 1962; Arbiter and Haris 1962; Panu 1965; Bo-
dziony 1965; Inoue and Imaizumu 1968; Stachurski 1970; Kapur and Mehrota 1973;
Siwiec 1981; Geidel 1985; King 1982; Laskowski 1991; Yoon and Luttrell 1989; Yoon
1991; Jiang 1991; Yoon and Mao 1996). In these models the flotation rate constant is
expressed by the probability of permanent mineralization of air bubbles. This proba-
bility is the product of three probabilities (Schuhmann 1942; Sutherland 1948):

P=PP,(1-F;) 3)

where:
P. — probability of collision between the particle and the air bubble,
P, — probability of adhesion of the particle to the bubble,
P, — probability of detachment of the particle from the air bubble.

The values of these probabilities depend on many physical and physicochemical
factors. Starting from the first principles Yoon and Luttrell (1989) and Yoon and Mao
(1996) derived the formulae for the above probabilities and presented the relation
between these probabilities and the flotation rate constant:

p (3, 4R YR, . )
R 15 B
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y,van;(l—cosB)2 +E; (6)
P, =exp| -
E'y
k=4 S, PP A=P)) ™
where:
R,  — particle radius,
R, — bubble radius,
Re  — Reynolds number for the bubble,
up, — motion velocity of the elevated bubble,
t — induction time,
0 — contact angle,
Y — surface tension on the liquid-air boundary,
E, — height of the energy barrier of the particle bubble interaction,
E',  — kinetic energy necessary to detach the particle from the bubble,
Sp — area of air bubbles penetrating the area unit of the cross-section of the flotation
machine.

As it appears from formula (5), the probability of adhesion as well as the flotation rate
constant depend on the induction time. When the hydrodynamic parameters of the
flotation system are fixed, the value of the flotation rate constant is affected by the
induction time which, respectively, is the function of reagents procedure. This fact and
the dependence of particle surface properties on the content of the useful component is
the leading theme of this paper and will be used in the next part to derive the distribution
of the flotation rate constant in the sample.

2. The relationship between the content of the useful component in the particle
and the flotation rate constant

As it was revealed above, the flotation rate constant depends on many factors characteri-
zing physical and geometrical properties of the particle. In mineral flotation by means of
a selected reagent the flotation properties constitute the function of particle coverage rate
with this reagent, depending on particle surface properties and the amount of reagent ad-
ded to the system. The induction time is connected with the rate of particle coverage by the
collector. The induction time decreases with the increase of the covering rate. Respec-
tively, the induction time, as it results from formula (5), affects the adhesion probability.

Fig. 1 presents a dependence of adhesion probability on the induction time, drawn
according to formula (5). The adhesion probability increases with the decrease of the
induction time, i.e. the growth of ceverage rate. The shape of this curve is convergent
with the shape of the curve of dependence of the flotation rate constant on the content of
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Fig. 1. Illustrative dependence of the adhesion probability (P,) on the induction time (z;)

Rys. 1. Pogladowa zalezno$¢ prawdopodobiefistwa adhezji (P,) od czasu indukcji (¢;)

useful mineral in the particle and on the coverage rate of the surface by the collector.
Fig. 2 and 3 present the dependences of the flotation rate constant on the weight content
of hematite in particles and on the coverage rate of the particle by the collector (Bartlett
and Mular 1974).

This convergence is explained in the following way. The surface properties of the
particle depend on the exposition rate of the useful mineral on the particle surface which,
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Fig. 2. Variation of the flotation rate constant (K) with average fractional hematite content
for each particle size range (Bartlett and Mullar 1974)

Rys. 2. Zmiany statej predkosci flotacji K ze $rednia zawarto$cia hematytu dla roznych wielko$ci ziaren
(Bartlett i Mullar 1974)
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Fig. 3. Dependence of the flotation rate constant (K) on fractional surface coverage of collector.

Results for 74-105 pm quartz particles and collector dodecylamine hydrochloride
(Inoue and Imazumi 1968)

Rys. 3. Zalezno$¢ statej predkosci flotacji K od stopnia pokrycia powierzchni ziaren kwarcu 74-105 um
chlorowodorkiem dodecyloaminy (Inoue i Imazumi 1968)

respectively, depends on the content of this mineral in the particle. Therefore the
following sequence of dependences exists. With the increase of content the rate of
exposition of the useful mineral on the particle surface increases, the coverage rate of the
particle surface by the collector increases, the induction time decreases, the adhesion
probability grows and therefore grows the flotation rate constant. Therefore the distri-
bution of the flotation rate constant in the sample will be analogical to the distribution of
the content of useful mineral. If the inclusions of the dispersed phase (see Chapter 3) are
distributed evently in the volume of the spherical particle of radius R, then the total
content of the dispersed phase in the sphere of radius 7(r < R;) and the infinitesimal
thickness dr wil be:

d\ = dmr’dr (8)

where:
A — volume content of the dispersed phase in the particle.

If » = Ry, it can be assumed that the exposition rate of surface of the useful mineral
(mineral of the dispersed phase) on the particle surface or, in other words, the surface
content of the dispersed phase on the particle surface ® will be:

@= ‘“2 = \dr )

4nR ),

It is therefore proportional to the volume content of the dispersed phase in the particle.
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The coverage rate g of of the particle with the collector is proportional to the surface
content of dispersed phase:

g.=Cci0+cy =C3h+¢y (10)

The constant ¢, in the above formula presents the coverage rate of the continuous
phase with the collector.

As it was said above, the induction time decreases with the increase of the coverage
rate. The convergence of the shape of curves of Fig. 1-3 contributes to the assumption
that the dependence of the induction time on the coverage rate is of the form of a linear
function:

t;=cs —c48.=a—bh (11)

where:
b=cscy,a=cs —cycy and A € [0,1].

Therefore the induction time decreases with the growth of the volume content of the
dispersed phase in the particle. For the particles of the pure continuous phase (A = 0)
the induction time is a, whereas for the particles of the pure dispersed phase (A = 1) the
induction time 18 ¢; = a — b.

Inserting expression (11) into formula (5) we can obtain the dependence of adhesion
probability on the content of the dispersed phase in the particle:

P, =sin*{2arc tgexp[—A(a — bL)]} (12a)
P, =sin? {2arc tg[ B exp(4bL)]} (12b)
where:
e 45+8Re%7? (13a)
30R,,[Rb +1j
Rp
B =exp(—A4a) (13b)

When the constancy of flotation conditions is assumed, the probability of collision for
the particles of a narrow size fraction is constant. Then the changes of the flotation rate
constant are conditioned by the changes of adhesion probability. Thus it can be written:,

k =CP, =C sin? {2arc tg[Bexp(4bL)]} (14)
where:

CziS,,Pc(l—Pd) (15)
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3. The distribution function of the flotation rate constant

Geidel (1985) and Laskowski (1991) dealt with the problem of distribution of the
flotation rate constant. Starting from the exponential dependence of adhesion proba-
bility on the contact time, by means of the method of generalizations, they came to the
conclusions that the flotation rate constant has a gamma distribution whose particular
form is the exponential distribution.

As it was said in the previous chapter, the distribution of the flotation rate constant in
the sample depends on the distribution of the content of the useful component. In this
paper the distribution of the content of the useful component was determined according
to the dispersive model of a particle (Brozek 1995b, ¢). In this model the multi-com-
ponent raw materials are treated as a multi-phase system in which the phase denotes
a part of the medium which is homogeneous from the point of view of physical and
chemical properties (Cottrell 1964).

In the dispersive system there are a continuous phase and dispersed phases. The
continuous phase constitutes a matrix for inclusions of the dispersed phase. In case of
coal the continuous phase is constituted by the organic coal matter while the dispersed
phases are the inclusions of the mineral matter. In case of ores the continuous phase is
constituted by the waste rock while the dispersed phases are the inclusions of metal-
-bearing minerals.

In order to facilitate the derivation of the form of distribution of the content of the
dispersed phase in the sample it was assumed that the dispersive system has two phases
(continuous phase and one dispersed phase) while the dispersed phase is monodisper-
sive. Let the particle volume of the narrow size fraction be equal ¥ while the volume of
a single inclusion be v.

Since the content of the dispersed phase changes from one particle to another, it is
assumed in the dispersive model that the number of inclusions of the dispersed phase in
the particle is a random variable s(V).

There are two conditions which result from the very idea of the dispersive system and
dispersion in general. They are fulfilled by the above mentioned random variable:

1. The sum of volumes of inclusions in every particle must be smaller than the
particle volume, i.e. s;v < V(i = 1, 2, ..., m), where s; denotes the number of inclusions
in the i-th particle while m is the number of particles in the sample.

2. The second condition results from the nature of the dispersion as such. At
a sufficiently small element of the particle volume AV > v, the probability of an event
that there is only one inclusion in this element is proportional to AV with accuracy to
infinitesimals of the higher order:

P[s(AV)=1]=nAV +o(AV) : (16)

where n is the average number of inclusions for a volume unit while o(AV) is an
infinitesimal of the higher order than AV. The volume element AV is sufficiently little
and the probability of finding two or more inclusions in this element is negligible
little, i.e.
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P[s(AV)>1]=o(AV) (17)

Moreover:

3. The probability of apperance of a determined number of inclusions in the particle
depends only on its volume V. It means that when the particle volume is constant, the
probability of appearance of a determined number of inclusions is constant.

4. The numbers of inclusions in respective particles are independent random va-
riables. The random variable which fulfills the above four conditions has Poisson’s
distribution (Fisz 1967). Respectively, the probability that there are s inclusions in the
particle of volume V is expressed by the formula:

(V) -y (18)
s!

P(s)=

Expression (18) present a fraction of a general number of particles in which the
number of inclusions equals s, or the volume yield (frequency of occurrence) of particles
of the number of inclusions s.

The distribution function of the number of inclusions equals:

P 19
(S) P(S <S) e—nV Z (T’IV) ( )

p=0 p'

The distribution function of Poisson’s distribution is expressed in the following way
by the gamma function (Gradstein and Ryzik 1971):

- ! 20
o j e 'tdt =I(nV1+s) (20)
F(l o
where:
[(1+s) — gamma function,
I(nV;1+s) — Pearson’s function (Firkowicz 1970).

Pearson’s function is also known as the incomplete gamma function.
The number of inclusions in the particle is connected with the volume content
of the dispersed phase by the following dependence (Brozek1995a):

s =hhi 21
while
h=— =const.
v
The product nV represents the average number of inclusions in the particle of

volume V. Therefore, analogically as in formula (21):

nV =hA (22)
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where A is the average volume content of the dispersed phase in a sample. After
substituting dependences (21) and (22) into formula (20) we obtain the expression for
the distribution function of the volume content of the dispersed phase:

F,(0) =I(hAl+h0) (23)

Formula (23) was derived at the assumption of monodispersivity of the dispersed
phase. This assumption was made to facilitate the combining of distribution parameters
with the properties of raw material and the sample.

After these remarks a generalization can be made and hypothesis can be proposed
that the following Pearson’s function constitutes the distribution function of volume
content of the polydispersive dispersed phase:

F,(A)=I(HAl +H)) (24)

while A presents the average volume content of the polydispersive dispersed phase in
the sample, whereas H, analogicall as #, is a constant connected with the size of particles
and inclusions.

From formula (14) an inverse dependence, i.e. the content of the dispersed phase in
the particle in the function of the flotation rate constant will be:

1.1 {1 . [k 25)
A =—1In| —tg| —arcsin_|—
Ab | B "\ 2 C

Substituting this dependence to formula (24) we obtain the required distribution
function for the flotation rate constant:

26
Fv(/c):I{HA;I+iln{ltg[larcsm\/z]:l} 26)
Ab | B |2 C

In the above distribution all the included constants have a physical interpretation by
sample properties or physicochemical conditions occurring in the flotation chamber.
The values of constants a and b can be obtained from dependence (11) while constants 4
and B from dependence (13). Constant H is connected with the size distribution function
and can be determined from the density or magnetic susceptibility distributions in the
sample (Brozek 1995 b,1995 ¢). The value of constant C is obtained from fitting the
model distribution function (26) to the empirical distribution function. In this constant,
as it results from formula (15), there are probabilities of collisions P, detachment P,; and
the area of air bubbles S}, crossing the area unit of the cross-section of the flotation
machine. The values P, and Sj, can be determined from the investigations of flotation
kinetics (Brozek et al. 2003) and size distribution function of air bubbles. Therefore,
knowing of the value of constant C enables the probability of collision P, to be
calculated. This is, of course, the average value of this probability because it depends,
according to formula (4), on the hydrodynamic conditions in the flotation chamber (Re)
and on the dimensions of particles and air bubbles (R, and R;), subjected to flotation.
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Consequently, both the sizes of particles and air bubbles have determined distributions
in the flotation of natural mineral mixtures.

Summing up, it can be said that dependences (14) and (26), derived in this work, can
be used for the analysis of a given flotation system and influence of physical and
physicochemical parameters on the flotation results.

This work was done as part of University of Mining and Metallurgy Research Program No. 10.10.100.655
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