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Abstract: A cold-active amylase was purified from Alteromonas sp. KS7913 isolated from 

the Chukchi Sea in the Arctic Ocean. After purification with use of ammonium sulfate 

precipitation, phenyl column chromatography, and size exclusion chromatography, 200.34 

U mg−1 of purified amylase was obtained. The final yield was 3.4%, and the activity was 

5.7-fold higher than that of the initial culture broth. KS7913 origin amylase showed a 

molecular weight of 70 kDa and optimal activity at 25℃, pH 7.0 in Tris-HCl buffer. The 

amylase was highly active, especially at 5℃, and maintained stability at basic conditions 

below 25℃. Copper and zinc ions inhibited enzyme activity, whereas manganese, barium, 

and calcium ions exhibited positive effects. This activity was maintained even in the 

presence of alcohol. The findings of this study supplement our understanding of cold-active 

amylases, and may have practical applications in low-temperature industries. 
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Introduction 

Amylase is an enzyme that breaks down polysaccharides, particularly α-amylase, which 

randomly cuts the 1,4-D-glucosidic bonds between nearby glucose units to produce smaller 

polymers. Amylase is used in manufacturing industries for the bend sizing of textile fibers, 

baking, biomass conversion, molecular biology, food, and liquidation. α-amylase is found in 

plants, animals, and bacteria. Commercial amylase is mostly produced by bacteria because of its 

high production cost (Hassan et al. 2018). Amylase is a widely distributed enzyme produced by 

various bacteria (Peltier and Beckord 1945). The characteristics of the amylase produced by each 

strain can differ from one organism to another. Additionally, the structure and function of 

amylases can vary depending on the specific substrate they target (Konsula and Liakopoulou-

Kyriakides 2004; Yazdanparast et al. 2005), such as starch, glycogen, or other polysaccharides. 

This diversity in amylase production and characteristics offers a range of possibilities for 

industrial applications because different strains may be more suitable for specific processes or 

environments. As a result, the aims of ongoing research are to identify new sources of amylase 

and optimizing the production and characteristics of existing strains to meet the needs of various 

industries. When enzymes are used in manufacturing, they are mainly required at medium 

temperatures for maximum efficiency, which contributes to increased production costs (Singh et 

al. 2016). 

Cold-active amylases have been identified as valuable biocatalysts with high specific 

activity at low temperatures. This unique property of cold-active amylases offers economic and 

environmental benefits by reducing energy consumption during industrial processes that employ 

enzymes (Yao et al. 2019; Bhatia et al. 2021). For example, cold-active amylases can be used to 

process starch at lower temperatures, leading to reduced energy costs and environmental impacts. 

Therefore, the study of cold-active amylases has gained increasing attention because of their 

potential for various industrial applications, such as food and biofuel production. Therefore, 

amylase could be used industrially. 

Microorganisms can adapt to various environments to survive and thrive, and this 

adaptation is closely linked to the enzymes and metabolites they produce. For example, certain 

microorganisms produce specific types of enzymes to survive in low-temperature, high-pressure, 

and high-salinity environments; these enzymes are structurally adjusted to function in these 

environments and optimized for activity. Therefore, the ability of microorganisms to adapt to 

their environment for survival and proliferation is closely related to the enzymes and metabolites 

they produce, which can be utilized in various industries and applications (Bukhari and Rehman 
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2015; Paul et al. 2021). Arctic bacteria are exposed to extremely low temperatures, which can 

influence the characteristics of the amylase they produce (Yao et al. 2019). Marine 

microorganisms, including Alteromonas sp., are capable of decomposing various organic 

materials and are adapted to low-temperature, high-pressure, and high-salinity environments 

(Ottoni et al. 2020; Qin et al. 2020, Vera-Villalobos et al. 2023). Therefore, we screened these 

bacteria from samples collected from the Arctic Ocean over the years. 

Moreover, there is increasing scientific interest in the structure of cold-resistant enzymes 

and the mechanism of their thermal stability (Bhatia et al. 2021). Therefore, discovering new 

cold-active amylases from diverse sources is essential to characterizing their diverse structures 

and characteristics. While a few cold-active amylases have been discovered, the scope of these 

analyses remains limited. This study described the characteristics of a cold-active amylase 

purified from Alteromonas sp. KS7913 isolated from the Chukchi Sea in the Arctic Ocean. 

 

Material and methods 

Exploration for bacteria that produce amylase and subsequent identification. — 

Approximately 20 300 colonies were isolated from various samples (Bongo Net, box-core, 

dredge, ice-core, and multicore samples, and conductivity, temperature, depth (CTD) membranes 

collected from the Chukchi and the Beaufort Sea. The Arctic samples were incubated on various 

solid media: R2A (MB Cell), marine agar (MB) (2216, BD Difco), super ZoBell (SZB), ISP 

Medium 4 (BD Difco), and yeast extract-peptone-glucose (YPG) media (Table 1). Amylase-

producing bacteria were isolated through growth on plates containing 1% [w v−1] soluble starch 

(Junsei, Japan). The isolates inoculated on the substrate-added plates underwent incubation at 

15℃ for 3 days, and bacteria exhibiting extracellular amylase activity were chosen by flooding 

Lugol’s solution (Peltier and Beckord 1945). In total, 162 strains were sorted based on the 

observation of the clear zones, and their sizes were measured and listed sequentially. Finally, the 

eight bacterial strains displaying the widest clear zones were chosen and assessed for amylase 

activity employing a liquid culture medium (Table 2). Identification of these eight bacterial strains 

was performed using the universal primers 27-F (AGAGTTTGATCCTGGCTCAG) and 1492-R 

(GGTTACCTTGTTACGACTT) by Macrogen (Macrogen Online Sequencing Order System). 

The contigs of each strain were assembled and used to perform BLAST with rRNA databases. 

The assembled contigs were deposited to NCBI GenBank. The 16S rRNA contig sequences of 

the strains were used to construct the phylogenetic tree with MEGA 11.0 software (Tamura et al. 
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2021) and the Neighbor-Joining method (Saitou and Nei 1987) was used with bootstrapping of 1 

000 replicates.   

Bacterial cultivation and assessment of amylase activity. — The selected eight strains 

of bacteria were grown in liquid ZoBell medium containing soluble starch (1% [w v−1]) as a 

substrate for three days at 15℃. Supernatants from the eight culture broths were obtained by 

centrifugation (9 000×g, 30 min), and their activities were assayed. Amylase activity was 

determined by combining 0.1 mL of each supernatant (enzyme solution) with 0.5 mL of soluble 

starch (1% [w v−1]) in 50 mM Tris-HCl buffer (pH 7.0). Subsequently, incubation was carried out 

at 37℃ for 30 min. The reaction was stopped by adding 0.6 mL of 3,5-dinitrosalicylic acid (DNS) 

reagent to the reaction mixture. The optical density at 540 nm (OD540) was measured using a 

spectrophotometer (S-3100, Scinco, Korea) (Caf et al. 2014). The unit of activity per milligram 

(U mg−1) was defined as the amount needed to release 1 µmol of reducing sugar in 1 min per mg 

of protein. Commercial amylase Amplify® Prime (Novozyme, USA) was used as a reference 

enzyme. 

Purification of amylase enzyme. — The supernatant of the culture broth was obtained 

by centrifugation at 9 000×g for 30 min at 4℃ (RC-5C Plus, Sorvall, USA) for protein 

purification. Desalting and buffer exchange were conducted with the supernatant and 

concentrated with a 10 kDa molecular weight cut-off membrane (Z615366, Sartorius, Germany). 

The concentrate was freeze-dried, and distilled water was added. The concentrated crude enzyme 

was loaded onto a phenyl-Sepharose column (HiTrap, GE Healthcare, USA). The enzyme was 

eluted at a flow rate of 1.0 mL min−1 with 1% [w v−1] isopropanol and 20 mM potassium 

phosphate buffer (pH 7.0). The fractions displaying activity were combined and then introduced 

onto a Superdex 75 column (GE, USA) with potassium phosphate buffer (20 mM, pH 7.0). The 

concentration of the active fractions was achieved by using Vivaspin 20 (10 kDa cut-off) (GE, 

USA).  

Gel electrophoresis and zymography. — Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and zymography were performed to confirm the molecular mass 

and activity of the starch-degrading enzyme. Samples were boiled at 100℃ for 10 min and 

analyzed using an 8–16% SDS-PAGE gel (4561103, Bio-Rad, USA). The visualization of protein 

bands was achieved by staining the gels. For zymography, samples without heat treatment were 

used. The gel was washed with a 50 mM Tris buffer and placed on an agar plate containing 1% 

(w v−1) soluble starch. The plate was subjected to incubation for 4 h at 15℃ and treated with 

Lugol’s solution staining. After 10 min, enzyme activity was detected by the absence of dyeing.  
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Effect of pH and temperature of purified amylase enzyme. — The pH effect on 

enzyme activity or stability was observed across the spectrum from 4.0 to 10.0. Activity was 

measured after the enzyme reaction solution worked for 30 min at 25℃. pH stability was 

determined after pre-incubating the purified enzyme with different buffer systems for 1 h at 25℃. 

In addition, 50 mM of sodium acetate and 50 mM of Tris-HCl were used to adjust the pH from 

4.0 to 6.0 and from 6.0 to 10.0, respectively.  

The enzymatic activity was investigated across temperatures of 5–85℃ with intervals of 

10℃, after incubating 5 μL (0.14 μg protein) enzyme, 50 μL soluble starch (1%, w v−1), and 

545 μL Tris-HCl buffer (pH 7.0) at each temperature for 30 min. The thermostability of the 

enzyme was assessed by pre-incubating the purified enzyme for 1 h at a specified temperature, 

and the enzyme reaction was performed at 25℃ for 30 min. The remaining conditions were the 

same as those described initially. The enzyme activity was measured by determining the reducing 

sugar content using a 600 μL DNS solution added after the reaction, followed by boiling for 5 

min and measuring the absorbance at 540 nm. 

Effect of metal ions and alcohol tolerance of purified amylase enzyme. — The effect 

of the metal ions of Cl2 and SO4 salts on enzyme activity was investigated (Xian et al. 2015). The 

activity of the purified enzyme was measured in the presence of 1 mM metal ions (BaCl2, CoCl2, 

MnCl2, CuSO4, CaCl2, ZnSO4, Na2SO4, MgCl2, or FeSO4). The enzyme activity under standard 

conditions (enzyme reactions without additives) was considered 100%. 

To confirm the effect of alcohols, including methanol, ethanol, n-butanol, and isoamyl 

alcohol, enzyme activity was checked in the presence of 25 and 90% concentrations of each 

alcohol (Dey and Banerjee 2015). After adding the enzyme to each concentration of the alcohol 

solution and setting it at room temperature for 1 h, the ability to disaggregate the soluble starch 

substrate was measured. 

Statistical analysis. — Student’s t-test was used to determine the significant differences 

in the data. Statistical significance was set at p < 0.05. 

 

Results 

 Identification and selection of enzyme-producing bacteria. — The results of 16S 

rRNA identification of the eight strains with high amylase activity among the 162 screened 

strains are presented in Table 2 and Fig. 1. As a result of measuring the enzyme activity of the 

eight strains by liquid culture, KS7913's enzyme activity was the largest at 35.13 U mg−1 
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(Fig. 2). Alteromonas sp. KS7913 strain showed higher starch-degrading activity than 

Pseudoalteromonas strains. 

Purification and characterization of enzyme from KS7913. — After growing 

KS7913 cells, the cell culture broth was concentrated using a membrane. During the 

concentration process, a slight loss occurred; however, the specific activity of the enzyme 

attained after the phenyl-Sepharose column increased to 52.80 U mg−1. Finally, the enzyme was 

purified using Superdex 75, obtaining an enzyme with a specific activity of 200.34 U mg−1, 

5.70-fold purification, and 3.4% yield. The detailed results of each purification step are 

summarized in Table 3. The enzyme activity was analyzed by zymography and the molecular 

mass was approximately 70 kDa (Fig. 3). 

Effect of pH and temperature on amylase activity and stability. — The optimal pH 

is presented in Fig. 4. KS7913 amylase showed the highest activity at pH 7.0. The activity 

decreased toward an acidic state. When amylase activity was tested under acidic conditions 

using sodium acetate buffer, a significant decrease was observed. The enzyme was inactivated 

below pH 4.0. The stability of the enzyme was maintained over 80% in weakly acidic to alkaline 

conditions. Below pH 5.0, stability decreased by more than 20% in the same buffer. 

When the effect of temperature on amylase of KS7913 was examined, the highest activity 

was achieved at 25℃ (Fig. 5), and the activity gradually decreased at 35℃ or higher 

temperatures. The enzyme showed 68% and 82% of its maximum activity at 5℃ and 15℃, 

respectively. Alteromonas sp. KS7913 exhibited remarkably high activity levels at low 

temperature such as 5℃, corresponding to 68% of the maximal activity. The commercial enzyme, 

Amplify®, showed the highest activity at 75℃ and the activity was approximately twice that of 

amylase from KS7913 at 25℃. However, at cold temperatures such as 5℃, the enzyme activity 

was severely reduced to 10% of the maximum activity. Compared with KS7913 amylase, 

Amplify® showed double the level of activity (271.6 U mg−1 and 132.5 U mg−1) at 15℃; however, 

the activity rapidly decreased at 5℃ (63.39 U mg−1 and 112.3 U mg−1). For temperature stability, 

the activity was maintained at 80% or more from 5℃ to 25℃. Only 40% of the maximum activity 

remained at 35℃ and the decline continued at 45℃.  

Effect of metal ions on the activity of amylase. — Copper and zinc ions were found 

to inhibit enzyme activity. The enzyme activity decreased by 74% in the presence of copper 

ions and by 21% in the presence of zinc ions (Fig. 6). In contrast, the amylase activity increased 

upon exposure to other ions. In particular, amylase activity in the presence of manganese, 
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barium, and calcium ions was strengthened 1.75 times more than sole KS7913 amylase 

condition. 

Alcohol tolerance of amylase. — When KS7913 amylase was treated with 25% and 

90% alcohol for 1 h, the activity, except for ethanol, was greatly reduced at a concentration of 

90%. At a concentration of 25%, high activity was observed in methanol and ethanol; however 

little activity was observed in isoamyl alcohol and butanol (Fig. 7).  

 

Discussion 

Various amylase-producing bacteria were discovered in the Arctic Ocean, and the cold-

active amylase was investigated. Compared with other amylases, the maximum activity of our 

KS7913 amylase was higher than that of cold-active α-amylase from Pseudoalteromonas sp. 

2–3 (51.7 U mg−1; Sanchez et al. 2019) or from Bacillus sp. dsh19-1 (16.4 U mg−1; Dou et al. 

2018); however, it was lower than that of cold-active amylase from Zunongwangia profunda 

(284.9 U mg−1; Qin et al. 2014).  

KS7913 amylase showed optimal activity at pH 7.0 and the enzyme was greatly stable 

within pH 6.0–10.0 for 1 h. However, its activity decreased in acidic conditions, indicating that 

the sensitivity of the enzyme toward low pH was high. Similar findings were also reported in 

previous studies (Kuddus et al. 2012; Roohi et al. 2013; Xie et al. 2014; Rathour et al. 2020). 

Therefore, this result suggests that KS7913 amylase could be more effective in cold-alkali fields 

such as the food industry. 

Compared to other Antarctic bacterial strains producing amylases, Arthrobacter sp. and 

Carnobacterium iners showed a decrease in activity to less than one-third at 5℃ (Ottoni et al. 

2020), which is contrary to KS7913 amylase. Particularly, Alteromonas sp., the strain investigated 

in this study, shares similarities with Pseudoalteromonas sp. 2–3, an Antarctic bacterium. Both 

strains exhibited optimal temperature characteristics at approximately 20℃. However, the 

amylases produced by Pseudoalteromonas sp. 2–3 showed a 60% decrease in activity at 10℃ 

(Sanchez et al. 2019). Even compared to other strains producing cold-active amylases, such as 

Bacillus sp. dsh19-1, Zunongwangia profunda and Microbacterium foliorum GA2, they showed 

less than 40%, 50%, and 10% of maximal activity at 5℃, respectively (Dou et al. 2018; Qin et 

al. 2014; Kuddus et al. 2012). Therefore, according to revealed studies, KS7913 amylase 

demonstrates the highest relative activity at 5℃ and 15℃. This result suggests that the amylase 

from Alteromonas sp. KS7913 possesses a strong cold-adaptive characteristic.  
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The effect of metal ions on amylase activity varies depending on the microbial source. In 

Nocardiopsis sp. 7326, amylase was activated in the presence of Ca2+, Mn2+, Mg2+, Cu2+, and 

Co2+ (Zhang and Zeng 2008). The amylase from Shewanella sp. ISTPL2 was inhibited by the 

addition of Mn2+, Cd2+, Zn2+, Na2+, and Co2+; however, Cu2+ was required for efficient activity 

(Rathour et al. 2020). In Salinispora arenicola CNP193, Ca2+, Na+, and K+ significantly increased 

the α-amylase activity, whereas other metal ions, such as Hg+, Cu2+, Zn2+, Pb2+, and Fe3+, inhibited 

the enzyme (Liu et al. 2019). The activities of the cold-active amylases from Pseudoalteromonas 

sp. 2–3 (Sanchez et al. 2019), Bacillus sp. dsh19-1 (Dou et al. 2018), and Zunongwangia 

profunda (Qin et al. 2014) increase in the presence of Ca2+, consistent with the results of this 

study. Most known-amylases are metalloenzymes that require Ca2+ for activity, stability, and 

structural integrity (Gupta et al. 2003; Ghorbel et al. 2009; Chen et al. 2015; Dou et al. 2018). 

Inhibition of activity in Cu2+ and Zn2+ was also reported by Qin et al. (2014). Amylases appear 

to be affected differently by metal ions depending on their structure (Zhang and Zeng 2008). This 

suggests that the structure of the amylase produced by KS7913 differs from that of other bacterial 

amylases. 

For alcohol tolerance results, the enzyme maintained its activity at a concentration 

higher than the theoretical ethanol production concentration of 23% during fermentation. 

Therefore, it can efficiently hydrolyze carbohydrate substrates and simultaneously undergo 

alcohol fermentation, making it suitable for simultaneous saccharification and fermentation 

processes. Additionally, they exhibit resistance to organic solvents and alcohols. This strain has 

been found to exhibit superior resistance to methanol compared to other strains (Pandey et al. 

2018). This indicates the advantage of using the enzyme for organic solvent-based reactions, 

which increases the solubility of non-polar substrates, inhibits water-dependent side reactions, 

and eliminates microbial contamination in reaction mixtures (Anbu et al. 2020). 

 

Conclusions 

This study revealed that Alteromonas sp. KS7913, obtained from the Arctic sample, 

maintained exceptionally high activity levels at a low temperature of 5°C, surpassing the activity 

levels of the other amylase-producing Arctic and Antarctic bacterial strains mentioned earlier. 

These results suggest that the amylase produced by the KS7913 strain has a strong low-

temperature activity. This amylase meets the conditions required for industrial use, including high 

activity at low temperatures and stability in various environments and substances. Therefore, the 

amylase produced by KS7913 can be expected to have structural characteristics that differ from 
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those of amylases and has industrial potential. However, productivity improvements need to be 

investigated through gene manipulation and mass culture using gene-recombination strains. 
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Table 1.  

Compositions of media used for bacteria cultivation. 

Media Composition (g L−1) Media Composition (g L−1) 

SZB Glucose 20 MB Peptone 5 

 Peptone 5  Yeast extract 1 

 Yeast extract 1  Ferric citrate 0.1 

 75% seawater up to 1 L  Sodium chloride 19.45 

    Magnesium chloride 8.8 

YPG Glucose 10  Sodium sulfate 3.24 

 Peptone 5  Calcium chloride 1.8 

 Yeast extract 5  Potassium chloride 0.55 

 Seawater up to 1 L  Sodium bicarbonate 0.16 

    Potassium bromide 0.08 

R2A Proteose peptone 0.5  Strontium chloride 0.034 

 Casamino acids 0.5  Boric acid 0.022 

 Yeast extract 0.5  Sodium silicate 0.004 

 Dextrose 0.5  Sodium fluoride 0.0024 

 Soluble starch 0.5  Ammonium nitrate 0.0016 

 Dipotassium 

phosphate 

0.3  Disodium phosphate 0.008 

 Magnesium sulfate 0.05  Distilled water up to 1 L 

 Sodium pyruvate 0.3    

 80% seawater up to 1 L ZB Peptone 5 

    Yeast extract 1 

ISP4 Soluble starch 10  75% seawater up to 1 L 

 Dipotassium 

phosphate 

1    

 Magnesium sulfate 1    

 Sodium chloride 1    

 Ammonium sulfate 2    

 Calcium carbonate 2    

 Ferrous sulfate 0.001    

 Manganous chloride 0.001    

 Zinc sulfate 0.001    

 70% seawater up to 1 L    

 

SZB: super ZoBell; YPG: yeast extract-peptone-glucose 
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Table 2.  

Information on the eight strains showing high amylase activity from the Arctic Ocean. 

Sample 

No. 

Sampling 

year and 

location 

Latitude (N) 

and longitude 

(W) 

Closest match Identification Accession 

No. 

KS7913 2012,  

Chukchi Sea 
76°08’70.25” 

174°56’87.61” 

Alteromonas 

naphthalenivorans 

SN2 

Alteromonas sp. 

KS7913 

PP937156 

KS16195 2012,  

Chukchi Sea 
76°08’70.25” 

174°56’87.61” 

Pseudoalteromonas 

agarivorans DSM 

14585 

Pseudoalteromonas 

sp. KS16195 

PP937157 

KS16398 2012,  

Chukchi Sea 
77°32’00.9” 

161°46’05.8” 

Pseudoalteromonas 

tetraodonis GFC 

KMM 458 

Pseudoalteromonas 

sp. KS16398 

PP935320 

KS16483 2012,  

Chukchi Sea 
77°45’00.0” 

165°22’05.0” 

Pseudoalteromonas 

elyakovii KMM 162 

Pseudoalteromonas 

sp. KS16483 

PP935319 

KS16627 2012,  

Chukchi Sea 
77°02’07.42” 

173°18’10.12” 

Pseudoalteromonas 

carrageenovora 

NBRC 12985 

Pseudoalteromonas 

sp. KS16627 

PP937155 

KS17030 2012,  

Chukchi Sea 
77°32’00.9” 

161°46’5.80” 

Pseudoalteromonas 

tetraodonis GFC 

KMM 458 

Pseudoalteromonas 

sp. KS17030 

PP935318 

KS17134 2012,  

Chukchi Sea 
76°11’41.75” 

173°31’95.17” 

Pseudoalteromonas 

agarivorans DSM 

14585 

Pseudoalteromonas 

sp. KS17134 

PP937154 

KS27803 2014,  

Beaufort Sea 
69°42’06.81” 

137°32’31.91” 

Pseudoalteromonas 

agarivorans DSM 

14585 

Pseudoalteromonas 

sp. KS27803 

PP937158 

 

 

Table 3.  

Purification summary for KS7913 amylase. 

Stage Total 

activity 

Total protein 

content (mg) 

Specific activity 

(U mg−1) 

Fold Yield (%) 

Cell culture broth 340.1 9.677 35.13 1.000 100.0 

10 kDa cut-off 86.77 4.213 20.61 0.587 25.51 

Phenyl-Sepharose column 13.72 0.290 52.80 1.503 4.030 

Superdex 75 11.45 0.057 200.3 5.702 3.370 
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Fig. 1. Phylogenetic tree of amylase-producing strains from the Arctic Ocean. Neighbor-joining method 

based on 16S rRNA sequence of the isolates with bootstrapping of 1 000 replicates. The phylogenetic 

tree is constructed with MEGA 11.0 software. The evolutionary distance is represented with the lengths 

of the branches and it was computed using the Jukes-Cantor method (Jukes and Cantor 1969). 
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Fig. 2. Amylase activity measured for each cell culture broth. The assay was conducted at temperatures 

ranging from 5℃ to 37℃. Data are presented as mean and standard deviation of duplicate experiments. 

 

 

Fig. 3. Activity confirmation of amylase from Alteromonas sp. KS7913 by zymography analysis.  
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Fig. 4. Effect of pH on amylase activity. (A) Starch-degrading activity (U mg−1) of α-amylase from 

KS7913 at pH 4.0 to 9.0. (B) pH stability of α-amylase from KS7913. To achieve the pH values, the 

following buffers were used: 50 mM sodium acetate buffer pH 4.0 to 6.0 (●) and 50 mM Tris-HCl buffer 

pH 6.0 to 10.0 (■). * p < 0.05 and ** p < 0.01 compared to the optimal pH (pH 7.0). 
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Fig 5. Effect of temperature on amylase activity. (A) Starch-degrading activities (U mg−1) of α-amylase 

from KS7913 (♦) and the commercially available enzyme (▲) at temperatures ranging from 5℃ to 

85℃. (B) Thermostability of α-amylase from KS7913. * p < 0.05 and ** p < 0.01 compared to the 

optimal temperature (25℃). 
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Fig. 6. Effect of metal ions on amylase activity. The enzyme activity under standard conditions (enzyme 

reactions without additives) is shown as the rightmost bar (KS7913). * p < 0.05 and ** p < 0.01 

compared to the KS7913 amylase. 

 

 

Fig. 7. Alcohol tolerance of α-amylase from KS7913. Enzyme reactions were performed in the presence 

of methanol, ethanol, n-butanol, and isoamyl alcohol at 25% or 90% concentration.  

 

 

 

 

 


