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Abstract. The application of active adhesion control to the traction control system of an electric train holds great appeal for maximizing
longitudinal acceleration force. Most of the currently reported works regulate the adhesion between wheel and rail by adjusting the torque
reference of a cascade motor drive controller, which suffers from slow speed response and excessive start torque. This article proposes a cascade-
free predictive adhesion control strategy for electric trains powered by an interior permanent magnet synchronous motor (IPMSM) to address
these issues. The proposed control scheme utilizes an improved perturbation and observation method to predict the time-varying wheel-rail
adhesion state and determine the optimal slip speed. The initial setpoint reference command from the driver master is then adjusted to a dynamic
reference that continuously adapts to the predicted adhesion conditions. Finally, the predictive speed control method is employed to ensure rapid
convergence of the tracking objective. The simulation and hardware-in-the-loop testing results confirm that this approach achieves excellent
dynamic performance, particularly during the train start-up phase and in the high-speed weak magnetic area of the IPMSM.
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1. INTRODUCTION
The acceleration and braking of a train rely on adhesion, which
is the tangential force at the wheel-rail contact point in the direc-
tion of train movement. When the driving or braking force of the
train exceeds the adhesion during acceleration or deceleration,
the wheel slips in case the train is still running and slides in case
braking occurs [1, 2]. To ensure the desired traction or braking
force, adhesion control between the wheel and the rail has been
developed. The primary objective of adhesion control is to pre-
vent the wheel slip and maintain the adhesion under specific
axle load and environmental conditions [3, 4]. The demand for
high-speed and efficient trains has sparked a growing interest
in the advanced functional objectives, namely, maximizing the
utilization of adhesion while ensuring safety and comfort [5,6].

In most studies on adhesion control, determining the refer-
ence slip and current adhesion condition is crucial. In [7], the
reference slip is determined through pre-testing on the track.
However, this method has limitations due to uncertainties in ex-
ternal weather and wheel-rail conditions. Therefore, [8] and [9]
estimate the reference slip online using intelligent algorithms
based on train operating parameters such as environment, speed,
and slip ratio. Recently, an event-based adhesion control strat-
egy has been proposed, which operates without relying on var-
ious parameters of train operation [10]. The state observers are
commonly employed for adhesion state estimation as they can
directly estimate the train adhesion coefficient. However, the
state observer methods are sensitive to noise and variations in
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system parameters, which affect their accuracy. To improve the
accuracy of adhesion estimation, the unscented Kalman filter is
employed in [11, 12], which has shown promising results. Ad-
ditionally, using information such as noise, train acceleration,
and jerk, the adhesion state can be indirectly estimated [13,14].
Once the train’s reference slip and the adhesion state are de-
termined, effective control methods can be employed in the
design of adhesion controllers, such as sliding mode control,
extremum-seeking control, and fuzzy control [15–17], among
others. For the convenience of verifying adhesion control algo-
rithms, a reduced-scale roller rig that simulates the train track
and wheels has been developed [18].

It is worth noting that all these aforementioned adhesion
controllers can be categorized as torque correction controllers,
which are cascaded onto the traction control system, as shown
in Fig. 1. In manual mode, the torque correction controller di-
rectly adjusts the torque command from the operating handle to
maintain adhesion between the wheel and the rail. Similarly, in
automatic mode, the torque reference is also regulated by the
adhesion control, even though this control target is issued by
the traction motor speed control loop automatically. The torque
correction-based adhesion controller adapts well to both driving
modes of the train by suppressing or promoting the output torque
of the traction motor. However, the motor controller cascaded
with the torque correction controller is generally driven by field-
oriented control (FOC) or direct torque control (DTC) [19, 20].
These types of motor controllers are characterized by the utiliza-
tion of a cascade structure, employing linear and relatively slow
speed controllers, along with inner loops for current, torque, and
flux control [21,22]. Due to the cascaded nature of adhesion con-
trol and motor control, the higher starting torque provided by
the speed controller in the initial phase is difficult to correct in
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the first instance by the torque correction adhesion controller,
making the train susceptible to slippage during this phase. In
addition, during certain special operation stages, such as sud-
den changes in track conditions and high-speed zones, the cas-
caded traction control architecture hinders further improvement
in the overall adhesion utilization of the train. Moreover, the
torque correction controller frequently adjusts the motor refer-
ence torque based on the time-varying adhesion state, resulting
in an increase in torque harmonic content.

(a)

(b)
Fig. 1. Block diagram of a conventional torque correction-based adhe-

sion control strategy: (a) manual mode; (b) automatic mode

To enhance control performance, several different motor con-
trol strategies have been proposed and implemented in electric
traction systems. These strategies include model predictive con-
trol (MPC), active disturbance rejection control, and sliding
mode control, among others [23–25]. Notably, a cascade-free
predictive speed control strategy is introduced for electric trains,
demonstrating exceptional dynamic performance [22]. However,
these efforts have overlooked the adhesion dynamics between
the train and the rail. In other words, the adaptability between the
wheel-track adhesion controller and the motor drive controller
has not been taken into account.

This paper presents a novel cascade-free adhesion control
framework aimed at maximizing adhesion during the acceler-
ation mode of electric trains. The framework integrates two
control objectives: wheel-rail active adhesion control and speed
regulation, into a dynamic reference tracking problem based on
the predictive optimum adhesion state. An improved perturba-
tion and observation (P&O) algorithm is employed to determine
the time-varying reference. Subsequently, predictive speed con-
trol is utilized, which uses a single optimization algorithm to
generate the control action for the next sampling instant, en-
suring consistent operation of the train in the optimal slip state
throughout the acceleration process. The innovations and con-
tributions of this paper can be summarized as follows:

1. A cascade-free framework for adhesion control is proposed.
This control topology represents a pioneering approach to
slip control of electric train, which controls adhesion from
the perspective of reference speed prediction and correction,
rather than the regulation of reference torque.

2. In this cascade-free control framework, the P&O method
in [8] is improved, endowing it with the ability to directly
predict the electric train optimal slip speed. Besides, based
on the predictive optimal slip speed, the initial static refer-
ence speed issued by the master controller is corrected to
a dynamic reference that varies continuously with the ad-
hesion conditions. Therefore, by tracking this time-varying
speed control objective during the train speed regulation
phase, the maximum longitudinal acceleration force can be
achieved without the need for an additional adhesion con-
troller.

The paper is organized as follows. In Section 2, the adhe-
sion characteristics and the dynamic model of the train and the
control objectives are described. Section 3 develops the cascade-
free predictive adhesion control method. Section 4 presents the
simulation and hardware-in-the-loop (HIL) platform test results.
Finally, Section 5 concludes the article.

2. PROBLEM FORMULATION

2.1. Adhesion characteristics

The power of the electric train is transmitted to the wheels
through the traction transmission system, as shown in Fig. 2.
When the wheel is subjected to the torque generated by the
traction motor, a small sliding occurs on the contact surface
between the wheel and the rail. This phenomenon is commonly
referred to as creepage. Creepage generates adhesion traction,
propelling the train forward. Simultaneously, due to the exis-
tence of the creep phenomenon, a velocity difference occurs
between the rolling linear velocity of the moving wheels and the
forward velocity, known as the creep velocity (also referred to
as the slip speed). The creep ratio 𝜆, defined as the ratio of the

Fig. 2. Drive energy transfer path and wheel-rail contact model
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creep velocity to the nominal velocity, characterizes the degree
of creep [26, 27]. The creep rate can be expressed as:

𝜆 =
𝑣𝑠

max {𝑣𝑑 , 𝑣𝑡 }
,

𝑣𝑠 = 𝑣𝑑 − 𝑣𝑡 ,
𝑣𝑑 = 𝑤𝑑𝑟𝑑 ,

(1)

where 𝑣𝑠 , 𝑣𝑑 , 𝑣𝑡 are, respectively, the train slip speed, the train
wheel linear velocity, and the train body speed; 𝑟𝑑 is the wheel
radius; 𝑤𝑑 is the axle speed of the wheel pair. Numerous tests
have proven a close relationship between the adhesion character-
istics and creep ratio, which is often described by the adhesion
coefficient curve 𝜇(𝜆) shown in Fig. 3. As shown in Fig. 3, both
creep ratio and rail surface conditions affect the variation of
the adhesion coefficient. The definition of adhesion coefficient
demonstrates that the adhesion force 𝐹ad is proportional to 𝜇

when the load is constant:

𝜇(𝜆) = 𝐹ad
𝑊

, (2)

where 𝑊 is the normal force of the motor car single axle. Ac-
cording to this definition, we can adjust the instantaneous adhe-
sion coefficient of the train to make high use of the tangential
force 𝐹ad.

2.2. Dynamic model of electric train

Establishing an electromechanical coupling model of the elec-
tric train that can capture the relationship between electric con-
trol and adhesion characteristics is essential to build the control
strategy from the electric control perspective. To provide a con-
cise illustration of the designed controller, the analysis focuses
on a simplified one-dimensional single-axle model of the train,
neglecting various complex factors. And then we treat the one-
dimensional single-axle model of the actual train as an equiv-
alent rigid particle, and we treat the motion of the train as the
motion of a rigid body, and this variable of the kinetic energy of
the rigid body is equal to the work done by the external force.
The adopted uniaxial train model satisfies the following force
transfer equation [7]:

𝐹ad = 𝜇(𝜆)𝑊,
𝑊 = 𝑚𝑤𝑔,

𝐽𝑤
𝑑𝑤𝑑

𝑑𝑡
= 𝑇𝑤 −𝐹ad𝑟,

𝑇𝑤 = 𝑇𝑒𝑅𝑔 ,

𝑇𝑙 = 𝐹ad𝑟/𝑅𝑔

𝐽𝑚
𝑑𝑤𝑚

𝑑𝑡
= 𝑇𝑒 −𝑇𝑙 −𝐵𝑚𝑤𝑚 ,

(3)

where 𝑚𝑤 is the total mass applied to single-axle; 𝑚𝑤 =
𝑚𝑀

𝑁𝑐

;
𝑚𝑀 is the total mass of a moving carriage; 𝑁𝑐 is the number of
traction units per rolling stock; 𝑔 is the acceleration of gravity;
𝑅𝑔 denotes the gear ratio of the gearbox;𝑤𝑚 is the rotor speed of
the traction motor, 𝑤𝑚 = 𝑅𝑔𝑤𝑑; 𝑇𝑒, 𝑇𝑙 are the electromagnetic

torque and the equivalent load torque of the motor, respectively;
𝐽𝑚, 𝐽𝑤 are the equivalent rotational inertia of the motor and the
equivalent rotational inertia of the wheel pair, respectively; 𝐵𝑚

is the viscous friction coefficient. As the IPMSM is used as the
drive motor in this paper, the electromagnetic torque 𝑇𝑒 can be
expressed as

𝑇𝑒 =
3𝑝
2

[
(𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 +𝜓 𝑓 𝑖𝑞

]
, (4)

where the stator current 𝑖𝑑 and 𝑖𝑞 satisfy the following voltage
equation [28, 29]:

𝑢𝑑 = 𝑅𝑖𝑑 + 𝐿𝑑

𝑑

𝑑𝑡
𝑖𝑑 − 𝐿𝑞𝑤𝑒𝑖𝑞 ,

𝑢𝑞 = 𝑅𝑖𝑞 + 𝐿𝑞
𝑑

𝑑𝑡
𝑖𝑞 + 𝐿𝑑𝑤𝑒𝑖𝑞 +𝑤𝑒𝜓 𝑓 .

(5)

In (4) and (5), subscript 𝑑 and 𝑞 stand for direct and quadrature
axle; 𝑢 and 𝑖 are stator voltage and current; 𝑅 and 𝐿 are stator
resistance and inductance; 𝑤𝑒 = 𝑝𝑤𝑚 is electric angular veloc-
ity; 𝜓 𝑓 is permanent magnet flux linkage; 𝑝 is the number of
pole pairs.

Empirically, a moving train generally contains 2–6 power
axles. The single power axle model can be combined to com-
prehensively reflect the essential characteristics of the traction
device comprehensively. According to Newton’s second law, us-
ing the combined single-axle model, the equation of motion of
the whole train can be written as

𝑁𝑐×𝑁𝑚𝑐∑︁
𝑖=1

𝐹ad𝑖 −𝐹𝑅 = 𝑀
𝑑𝑣𝑡

𝑑𝑡
, (6)

where 𝑁𝑚𝑐 stands for the quantity of moving cars; 𝐹ad𝑖 denotes
the adhesion force of the 𝑖-th traction unit; 𝐹𝑅 is the total amount
of running resistance on the train, including but not limited to
frictional resistance, air resistance, etc.; 𝑀 is the total mass of
the train.

2.3. Tracking control objectives

In the automatic mode of electric trains, the primary objective
of traction control is to achieve the tracking of the target speed
𝑣𝑡_ref of the train body. Because of ‘creep’, as long as the wheel
linear speed 𝑣𝑑 reaches the target speed 𝑣𝑡_ref without slipping,
the control objective is considered completed.

We also seek to maximize longitudinal traction during the
traction phase of the train. From Fig. 3 and equation (2), it
can be observed that the maximum adhesion can be obtained
when the train is operating at point (𝜆𝑚, 𝜇𝑚). According to the
definition of creep ratio (1), at the operating point (𝜆𝑚, 𝜇𝑚), the
wheel linear velocity 𝑣𝑑 satisfies

𝑣𝑑 = 𝜆𝑚max {𝑣𝑑 , 𝑣𝑡 } + 𝑣𝑡 = 𝑣𝑠_ref + 𝑣𝑡 , (7)

where 𝑣𝑠_ref is the optimal slip speed. Equation (7) indicates that
the rail provides maximum longitudinal traction as long as the
wheel rolling line speed 𝑣𝑑 and the train body speed 𝑣𝑡 always
maintain a difference of 𝑣𝑠_ref .
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Fig. 3. Adhesion characteristics curve

In summary, this work aims to develop a control scheme for
generating the control command 𝑢 to fulfill the following control
objectives:
1. Drive the electric train modeled by (3) and (6) to track the

prespecified target speed trajectory 𝑣𝑡_ref .
2. Maintain the optimum slip speed 𝑣𝑠_ref .

In order to achieve both of these tracking control objectives,
conventional methods employ separate designs shown in Fig. 1.
Upon analyzing equation (7), it becomes evident that the time
scales associated with these two control objectives (i.e., 𝑣𝑡_ref
and 𝑣𝑠_ref) are inconsistent, with the first control objective ex-
hibiting a significantly longer time scale compared to the second
control objective. Therefore, below we consider the conversion
of two tracking control objectives into one tracking control ob-
jective 𝑣∗

𝑡_ref in a dual-time-scale context.

3. CONTROL DESIGN

Figure 4 illustrates the block diagram of the developed cascade-
free predictive adhesion control method. The proposed method

Fig. 4. General operation block diagram of the proposed cascade-free
predictive adhesion control method

can be divided into three consecutive parts. Firstly, a load ob-
server is designed to estimate the current adhesion state. Sec-
ondly, an improved P&O algorithm predicts the optimal slip and
target speed online. Lastly, a predictive speed controller enables
the train wheels to track the time-varying optimal reference
speed rapidly. The detailed design of these three parts will be
presented in the following subsections 𝐴, 𝐵, and𝐶, respectively.

3.1. Adhesion coefficient estimation and motor speed
prediction

Accurate motor load torque is needed to predict either the train
adhesion state or the traction motor speed. The load torque can
be estimated by taking the Laplace transform from (3) as given
by [15]

𝑇𝑙 =
𝑝1

𝑠+ 𝑝1
(𝑇𝑒 − 𝑠 · 𝐽𝑚 ·𝑤𝑚) , (8)

where 𝑝1 is the pole of the load torque observer.
Equations (2) and (3) state that the adhesion coefficient 𝜇 is

proportional to the torque of the corresponding motor load, 𝑇𝑙 .
Therefore, the estimated value of the adhesion coefficient can
be calculated by

𝜇̂ =

¤̂𝑇𝑙𝑅𝑔

𝑚𝑤𝑔𝑟
. (9)

Similarly, the traction motor speed can be predicted with
the help of a load torque observer. To obtain precise predictor
variables, we discretize the mechanical equations of motion of
the traction motor described in equation (3) using the modified
forward Eulerian discretization formula

𝑤
𝑝
𝑚 (𝑘 +1) = 𝑤𝑚 (𝑘) +𝑇𝑠 ·

1
𝐽𝑚

(
𝑇𝑒 (𝑘) −𝑇𝑙

)
,

𝑤𝑠
𝑚 (𝑘 +1) = 𝑤𝑝

𝑚 (𝑘 +1) + 𝑇𝑠
2
· 1
𝐽𝑚

[ (
𝑇𝑒 (𝑘) −𝑇𝑙

)
+

(
𝑇
𝑝
𝑒 (𝑘 +1) −𝑇𝑙

) ]
,

(10)

where 𝑇𝑠 is the system sampling period; 𝑤𝑝
𝑚 (𝑘 + 1) is the pre-

dicted motor speed; and 𝑤𝑠
𝑚 (𝑘 +1) denotes the corrected motor

speed, which is also the final predicted motor speed. It is worth
noting that the electromagnetic torque 𝑇𝑒 (𝑘) can be calculated
from equation (refeq4).

3.2. Best reference speed prediction

In the current train operation control system, the speed com-
mand 𝑣𝑡_ref of the train is issued by the commander controller.
Subsequently, the train final operating speed is adjusted to a
preset value through the action of the speed regulator. However,
because of creep, an additional anti-slip controller is required to
maintain the adhesion relationship between the wheels and the
rails. In this section, we will present the approach for transform-
ing the initial setpoint reference 𝑣𝑡_ref into an optimal dynamic
tracking trajectory 𝑣∗

𝑡_ref , with the aim of eliminating the design
of the adhesion controller while achieving maximum adhesion
control. The flowchart of the proposed method is illustrated in
Fig. 6.
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• Initially, compare the real-time wheel rolling speed 𝑣𝑑 with
the train body speed command 𝑣𝑡_ref . If the wheel speed 𝑣𝑑
exceeds or is equal to the train body speed command 𝑣𝑡_ref ,
regardless of the adhesion control target, it indicates that the
train is either in the cruise or braking phase. Since this ar-
ticle specifically addresses maximizing adhesion utilization
during the train acceleration phase, there is no consideration
for correcting the target speed 𝑣𝑡_ref at this stage. However, if
the wheel speed 𝑣𝑑 is slower than the train body speed com-
mand 𝑣𝑡_ref , it means that the train is in the traction phase. In
this case, it is necessary to move the operating point toward
(𝜆𝑚, 𝜇𝑚) to achieve maximum acceleration, as depicted in
Fig. 5.

Fig. 5. Classification diagram of each operation point
on the adhesion curve

• Secondly, determine the operating point owning the maxi-
mum adhesion coefficient [i.e., (𝜆𝑚, 𝜇𝑚)]. By tracking the
measured wheel slip and the estimated adhesion coefficient
at each time step (i.e., 𝜆(𝑘) and 𝜇̂(𝑘) at time step 𝑘), the ad-
hesion state of the train can be classified into four categories,
namely 𝐴, 𝐵, 𝐶, and 𝐷, as shown in Fig. 5. However, due to
uncertainties in system parameters, noise interference, and
other factors, certain operating points may be erroneously
categorized. Previous literature [30] has shown that changes
in acceleration can also be used as criteria for determin-
ing the adhesion state. Because of this, introduce the train
acceleration discriminatory criteria:

Δ𝜇̂ = Δ𝜇̂, Δ𝜇̂ ·Δ𝛼 ≥ 0,
Δ𝜇̂ = 0, Δ𝜇̂ ·Δ𝛼 < 0,

(11)

where Δ𝛼 is the ramp of the train acceleration, Δ𝛼 =

𝛼(𝑘) − 𝛼(𝑘 − 1). Equation (11) shows that the estimated
adhesion coefficient Δ𝜇̂ is updated only when the estimated
adhesion coefficient is consistent with the change in the ramp
of the accelerationΔ𝛼; Otherwise, the slope of the estimated
adhesion coefficient is considered to be zero. The accelera-
tion criterion will improve the discriminative accuracy of the
estimated adhesion coefficient when the observer is stable.
With the aid of estimated adhesion coefficient, we can de-
termine the class to which the operating point belongs. For

points belonging to classes 𝐴 and 𝐷, the adhesion state sat-
isfies Δ𝜇̂(𝑘) ·Δ𝜆(𝑘) > 0 where Δ𝜇̂(𝑘) = 𝜇̂(𝑘) − 𝜇̂(𝑘 − 1),
Δ𝜆(𝑘) = 𝜆(𝑘) −𝜆(𝑘 − 1). At this time, to move toward the
point of (𝜆𝑚, 𝜇𝑚), the operating point needs to move to the
right side; for points corresponding to classes 𝐶 and 𝐵, the
adhesion state satisfiesΔ𝜇̂(𝑘) ·Δ𝜆(𝑘) < 0, indicating that the
operating end needs to move to the left side. Based on the
above analysis, the updated formula of the reference creep
slip state is designed as

𝜂 = 1, 𝑟 = 𝑟2, Δ𝜇̂(𝑘) ·Δ𝜆(𝑘) > 0,
𝜂 = −1, 𝑟 = 𝑟1, Δ𝜇̂(𝑘) ·Δ𝜆(𝑘) < 0,
𝜂 = 0, 𝑟 = 0, Δ𝜇̂(𝑘) ·Δ𝜆(𝑘) = 0,

(12)

𝜆ref (𝑘 +1) = 𝜆ref (𝑘) +𝜂 · 𝑟 ·𝑇𝑠 , (13)

where 𝑟 is the adjustment rate and 𝜆ref (𝑘 +1) is the predicted
optimum slip rate. Based on equation (12), the distance of
each operation point from the point of (𝜆𝑚, 𝜇𝑚) is evalu-
ated. To be specific, for the operation point in the wheelspin
area, the adjustment rate is set to 𝑟 = 𝑟1 (𝑟1 > 𝑟2) to achieve
a faster update rate. On the other hand, for the operation
point in the creep area, the regulation rate is set to 𝑟 = 𝑟2 to
ensure a gradual approach towards the point (𝜆𝑚, 𝜇𝑚) and
avoid over-regulation. The continuous iteration of the adhe-
sion state by equation (12) and equation (13) will make the
operating point gradually approaches (𝜆𝑚, 𝜇𝑚). 𝜆allow-min
and 𝜆allow-max are the maximum and minimum allowable
slip rates to ensure that the reference speed is within an ac-
ceptable range to avoid idling or skidding the locomotive. It
is worth noting that the reference creep 𝜆ref (𝑘 + 1) though
iteration may not necessarily the optimum creep rate. For
safety reasons, the reference creep rate 𝜆ref (𝑘 +1) obtained
by iteration must be treated as follows.

1. Case 1: If the reference creep rate 𝜆ref (𝑘 +1) obtained
from the iteration is less than or equal to the minimum
allowable creep rate 𝜆allow-min, the minimum permissi-
ble creep rate 𝜆allow-min is used as the reference creep
rate for the next time step.

2. Case 2: If the reference creep rate 𝜆ref (𝑘 + 1)
obtained by the iteration is within the range of
(𝜆allow-min |,𝜆allow-max), it is used as the reference creep
rate for the next time step.

3. Case 3: If the reference creep rate 𝜆ref (𝑘 +1) obtained
from the iteration is more than or equal to the maximum
allowable creep rate 𝜆allow-min, the maximum permis-
sible creep rate 𝜆allow-max is used as the reference creep
rate for the next time step.

After obtaining the reference creep rate 𝜆ref (𝑘 + 1). From
equation (1) and equation (13), one can obtain the real-time
slip velocity as follows

𝑣𝑠_ref (𝑘 +1) = 𝜆ref (𝑘 +1) ·max {𝑣𝑑 , 𝑣𝑡 } . (14)

• Finally, to ensure the rolling linear velocity of train’s wheel
and the real-time running speed of the train body during the
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Fig. 6. Flowchart for predicting the optimal reference speed trajectory

traction phase always meet the requirements of the optimal
reference slip speed, based on equation (1), equation (7) and
equation (14), we correct the reference operating speed of
the train 𝑣𝑡_ref to 𝑣∗

𝑡_ref . The updated equation of 𝑣∗
𝑡_ref is

𝑣∗𝑡_ref (𝑘 +1) = 𝑣𝑡 (𝑘) + 𝑣𝑠_ref (𝑘 +1), (15)

where 𝑣𝑡 (𝑘) is the train operating speed at time step 𝑘 . It
is worth pointing out that 𝑣𝑡 (𝑘) should be 𝑣𝑡 (𝑘 +1) in real.
Nevertheless, because of the high control frequency, 𝑣𝑡 (𝑘)
can be nearly equal to 𝑣𝑡 (𝑘 +1) within one sampling period.
If equation (15) is directly input to the speed control system,
the traction motor will not start. This is because, during the

start-up phase, both the train body running speed and the
slip speed are zero. To deal with it, a start term 𝛿𝑒−𝛽𝑡 is
introduced, at which point the train will have an initial start
speed. Moreover, the start term will decay to zero as the
running time 𝑡 → ∞, without affecting the tracking of the
optimal reference slip speed. The final reference speed of
the train is

𝑣∗𝑡_ref (𝑘 +1) = 𝛿𝑒−𝛽𝑡 + 𝑣𝑡 (𝑘) + 𝑣𝑠_ref (𝑘 +1), (16)

where 𝛿 is the initial start speed and 𝛽 is the decay rate of the
initial start speed. To avoid affecting the slip speed control,
we set 𝛿 < 1, 𝛽 > 1.
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The final reference speed (16) proposed in this paper depends on
the instantaneous train body speed 𝑣𝑡 (𝑘). Currently, the speed
measurement method based on the train rolling linear velocity
is the most commonly used train speed measurement method.
However, as discussed in Section 2, the train rolling linear veloc-
ity is not equal to the actual train speed but rather an approximate
value, due to the creep phenomenon. Therefore, to ensure the
accuracy of the subsequently designed controller, more precise
methods are desired to obtain the instantaneous train speed 𝑣𝑡
with the correction of the train reference speed. Potential meth-
ods include radar speed measurement, satellite positioning, or
multi-sensor fusion techniques [31–33].

3.3. Predictive speed control

The corrected reference speed is no longer a flat line but a curve
that constantly varies with the operating speed and optimal creep
ratio, as shown in Fig. 7. Once the real-time reference speed of
the train, considering the optimal creep ratio, is obtained, it is
converted to the equivalent motor reference speed

𝑤∗
𝑚 =

𝑣∗
𝑡_ref

𝑟𝑑
∗𝑅𝑔 . (17)

Fig. 7. Real-time reference velocity profile considering optimal
creep ratio

Given that high-speed trains are a sizeable inertial system,
the existing PI speed control algorithm used on trains faces
challenges in quickly tracking the constantly changing reference
speed profile with adhesion dynamics. The pre-experiments con-
ducted on the experimental platform depicted in Fig. 8 found
the predictive speed control algorithm advantageous in track-
ing fast time-varying references. Therefore, we will describe a
predictive speed control algorithm in the following paragraphs.
The speed prediction model (10) of IPMSM can be rewritten as

𝑤𝑚 (𝑘 +1) = 𝑤𝑚 (𝑘) +𝑇𝑠 𝑓 (𝑇 𝑝
𝑒 (𝑘 +1)) (18)

where 𝑓 (𝑇 𝑝
𝑒 (𝑘 +1)) = 1

2 · 𝐽𝑚
[3(𝑇

𝑒
(𝑘) −𝑇𝑙) + (𝑇 𝑝

𝑒 (𝑘 +1) −𝑇𝑙)].
𝑇
𝑒
(𝑘) can be calculated from the stator current at time step 𝑘

𝑇𝑒 (𝑘) =
3𝑝
2

[
(𝐿𝑑 − 𝐿𝑞)𝑖𝑑 (𝑘)𝑖𝑞 (𝑘) +𝜓 𝑓 𝑖𝑞 (𝑘)

]
. (19)

Fig. 8. IPMSM experimental platform

𝑇
𝑝
𝑒 (𝑘 +1) can be calculated from the predicted stator current

at time step 𝑘 +1

𝑇
𝑝
𝑒 (𝑘 +1) = 3𝑝

2

[
(𝐿𝑑 − 𝐿𝑞)𝑖𝑑 (𝑘 +1)𝑖𝑞 (𝑘 +1)

+ 𝜓 𝑓 𝑖𝑞 (𝑘 +1)
]
. (20)

The predicted stator current can be obtained by Eulerian dis-
cretization of the electric equation (5). Since the focus of this
paper is not on the control of electric quantities, a detailed model
of this process is not provided.

In this paper, the conventional two-level voltage source in-
verter is used as the motor driver. This type of inverter is capa-
ble of generating eight fundamental voltage vectors, denoted as
𝒖 = (𝑢0, 𝑢1..., 𝑢7). Therefore, combining equations (4), (5), and
(18), the motor speed can be predicted from the eight different
voltage vectors at the moment 𝑘 +1. Based on MPC theory, sub-
stituting the predicted eight motor speeds into the cost function
(i.e., the square of the residual difference between the predicted
motor speed and the predicted reference speed) separately, the
voltage vector with the minimum cost function is selected as the
optimal voltage vector for the k+1 time step and acted on by the
traciton motor through the inverter.

𝐹𝑐 = 𝛾𝑤𝑚
·
(
𝑤∗
𝑚−𝑤𝑚 (𝑘 +1)

)2 +𝐹lump , (21)

where 𝛾𝑤𝑚
is weighting factors; 𝐹lump is a set sum function that

weights the other desired electric states.
The first term in equation (21) evaluates the distance of each

predicted motor speed from the desired reference speed. Note
that when the weight 𝛾𝑤𝑚

is constant, the cost function of the
speed error term will reduce, as the actual speed gradually ap-
proaches the reference speed. To improve the tracking accuracy
of the controller with minor errors, a dynamic adjustment weight
factor is introduced [34]

𝛾𝑤𝑚
= 𝑘1𝑒

(𝑘2 (1−
𝑎𝑏𝑠 (𝑤∗

𝑚−𝑤𝑚 )
𝑤max ) ) (22)

where 𝑘1, 𝑘2 are the constant coefficients to adjust the weight,
𝑤𝑚𝑎𝑥 is the maximum electric angular speed.
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𝑢∗ = argmin
𝑢0 ,𝑢1 ,...,𝑢7

{
𝛾𝑤𝑚

·
(
𝛿𝑒−𝛽𝑡 + 𝑣𝑡 (𝑘) + 𝑣𝑠_ref (𝑘 +1)

𝑟𝑑
· 𝑅𝑔 −𝑤𝑚 (𝑘 +1)

)2

+𝐹lump

}
, (23)

𝐹lump is utilized to optimize the stator current and achieve good
torque performance while ensuring the current remains within
a safe amplitude range. Since these aspects are not the primary
control objectives of this paper, they are not detailed here for
brevity, and detailed design considerations can be found in Ap-
pendix.

Coupling (16), (17), (21) leads to the final predictive speed
controller (23), shown at the top of next page.

In summary, the proposed control strategy achieves both
speed regulation and adhesion control for the train by chang-
ing the initial reference speed without the need for additional
adhesion control equipment. This approach avoids adjusting the
creep ratio by torque correction, resulting in a higher accuracy
of the creep rate (closer to the optimal creep ratio) and thus im-
proved the utilization of the adhesion between the train wheels
and rails.

4. SIMULATION AND HIL PLATFORM TEST RESULTS

4.1. Simulation conditions

At present, there are no public parameters of the electric mul-
tiple unit (EMU) driven by IPMSM. Therefore, CRH3’s train
body are used as simulation train model parameters shown in
Table 1 [35]. A IPMSM for a certain type of 160 km/h power-
concentrated EMU (FXD1-J) is selected as the prototype motor
for simulation shown in Table 2. The running resistance of the

Table 1
Electric train traction system parameters

Parameter Value

Vehicle weight(t) 𝑀 = 61.8
Axle weight(t) 𝑚𝑤 = 15.45
Wheel radius(m) 𝑟 = 0.43
Gear ratio 𝑅𝑔 = 2.355
Wheel moment of inertia (kg.m2) 𝐽𝑤 = 100
Motor rotational inertia (kg.m2) 𝐽𝑚 = 16
Number of traction units 𝑁𝑐 = 2
Number of IPMSM pole pairs 8
IPMSM rated power (kW) 1225
IPMSM rated voltage (V) 1660
IPMSM rated current (A) 477
Maximum starting current (A) 680

Table 2
Rail surface parameters

Rail surface conditions 𝑎 𝑏 𝑐

Dry rail surface 0.3315 40.19 5.392
Wet rail surface 0.2478 22.87 5.396

train is given as

𝐹𝑅 = 6.796+0.0062𝑣𝑡 +0.000143𝑣2
𝑡 . (24)

Empirically, the adhesion characteristic curves of differ-
ent railway conditions can be approximated in the following
way [27, 36]

𝜇(𝜆) =

𝑎(1− 𝑒−𝑏𝜆) − 𝜆

𝑐
, if 𝜆 ≥ 0,

−𝑎(1− 𝑒𝑏𝜆) − 𝜆
𝑐
, if 𝜆 < 0.

(25)

Based on an empirical formula, two railway conditions are
set for the train operation. i.e., a dry railway condition for the
first 10 s and a wet railway condition after 10 s. The coefficients
for different railway conditions are given in Table 2. For dry
rail surfaces, the optimal adhesion operation point (𝜆𝑚, 𝜇𝑚)
is (0.107, 0.3072). For wet rail surfaces, the optimal adhesion
operation point is (0.155, 0.2116).

The parameters of the proposed control strategy are shown in
Table 3. The target rolling linear velocity of the train in this paper
is 28.68 m/s, equivalent to a traction motor speed of 1500 r/min.

Table 3
Control system parameters

Parameters Value Parameters Value

𝛽 0.01 𝜆alllow-min 0.04
𝑟1 1 𝜆alllow-max 0.4
𝑟2 0.2 𝑘1 1 500 000
𝛿 −15 𝑘2 10

𝑇𝑠 (𝑠) 1×10−5 𝑤max (rad/s) 261

4.2. Simulation results

Figure 9 shows the control performance of the train body speed
and rolling linear velocity. Firstly, it can be seen that the initial
reference speed of the train undergoes a change from a straight
line to a slowly rising smooth line after the prediction correc-
tion. Consequently, with the proposed control method, the train
wheels steadily track the corrected reference speed within the
first 19 s. Figure 12 shows the tracking performance for the
creep ratio. At 18.42 s, the actual creep ratio between the wheel
and the rail is measured to be 0.15, with an error of only 0.005
compared to the optimum creep rate. It is found that the pro-
posed method can accurately predict and track the optimal slip
velocity for various rail conditions, even when the wheel-rail
situation abruptly transitions from dry to wet at 10 s.

Further, this indicates that during this phase, the train exerts
maximum traction and operates at maximum acceleration. How-
ever, after 19 s, the rolling linear velocity speed wheel starts to
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Fig. 9. Wheel and train body speed tracking performance

gradually deviate from the reference speed, eventually reaching
the preset value at 27 seconds. Throughout this phase , the accel-
eration continues to decrease, and the improved P&O algorithm
starts to deviate from the actual optimal creep rate.

It can also be observed that the acceleration drops after 19 s,
i.e., the shaft speed does not track to the predicted optimum
speed, can be explained by the voltage constraint equation (equa-
tion (26)), where

√︁
(𝑅𝑖𝑑 −𝑤𝑒𝐿𝑞𝑖𝑞)2 + (𝑅𝑖1 +𝑤𝑒𝐿𝑑𝑖𝑑 +𝑤𝑒𝜓 𝑓 )2

represents the stator voltage and 𝑢max means the maximum in-
verter output voltage. When the motor speed exceeds the base-
line speed, the torque current decreases due to the constraint
imposed by the maximum output voltage 𝑢max of the inverter.
The IPMSM runs from the constant torque zone to the weak
magnetic area. The IPMSM cannot provide enough electromag-
netic torque to maintain maximum adhesion traction, as shown
in Fig. 10 and Fig. 11.√︃

(𝑅𝑖𝑑 −𝑤𝑒𝐿𝑞𝑖𝑞)2 + (𝑅𝑖1 +𝑤𝑒𝐿𝑑𝑖𝑑 +𝑤𝑒𝜓 𝑓 )2 ≤ 𝑢max . (26)

To further validate the control performance of the proposed
method, we conducted a comparison with a PI torque correction-
based technique. The parameters of PI torque correction-based
controller are 𝐾𝑝 = 1000, 𝐾𝑖 = 0.1. These were tuned using
a trial-and-error method based on engineering experience. At

Fig. 10. IPMSM speed tracking performance

Fig. 11. IPMSM electromagnetic torque and load torque performance

present, the specific parameter adjustment methods in PI-based
adhesion lack control. Without loss of the generality, the torque
correction method also uses an improved P&O strategy to pre-
dict the adhesion state between the wheels and the rails. The
motor control algorithm in the torque correction method con-
sists of a PI control for the outer loop and model predictive
current control combined with maximum torque to current ratio
control for the inner loop. The following evaluation function
was employed to evaluate the adhesion performance of the train
during the acceleration phase.

𝜂ad =
𝜇ave
𝜇opt-ave

=

∫ 𝑡acc

0
𝜇d𝑡∫ 𝑡on

0
𝜇opt d𝑡

, (27)

where 𝜂ad is the adhesion efficiency; 𝜇ave is the average adhesion
coefficient during acceleration; 𝜇opt-ave is the average optimal
adhesion coefficient available to the wheel-rail; and 𝑡acc denotes
the time taken by the train throughout the acceleration process.

The adhesion efficiency of the two methods calculated by (27)
is given in Table 4. As seen in Table 4, the proposed method
takes 32.58 s to reach the target speed, which is 7 s faster than
the comparison method. The adhesion efficiency of the proposed
method is 88.38%, indicating a 9.99% improvement compared
to the torque-corrected process.

Table 4
Computational burden overview

Parameters PI method Proposed method

Execution time 27 µs 30 µs
Processor utilization 27% 30%

Figure 13 shows the control performance of the train body
speed for both methods. In the early stage of the traction phase,
the method based on torque correction exhibits faster speed. As
the traction phase progresses, the proposed method gradually
outpaces the torque correction-based method, reaching the pre-
set speed 7 s earlier. From the control performance of the vehicle
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Fig. 12. Creep ratio performance

Fig. 13. Performance of train body speed with comparative simulation

acceleration (Fig. 14) and the coefficient of adhesion between
wheels and rails (Fig. 15), it can be seen that the coefficient of
adhesion and acceleration of the proposed control method con-
sistently exceed those of the comparison method, except for the
early stage of the traction phase (0–2 s). Particularly, after en-
tering the weak magnetic zone, the train acceleration controlled
by the proposed method decreases monotonically and smoothly.

Fig. 14. Performance of train body acceleration with comparative
simulation

Fig. 15. Performance of train adhesion coefficient with comparative
simulation

In contrast, the acceleration controlled by the torque correc-
tion method undergoes a sudden drop. The performance of the
motor torque (Fig. 17) reveals the reason for the sudden drop in
the acceleration of the train controlled by the torque correction
method in the weak magnetic zone. When entering the soft mag-
netic area, the motor cannot generate enough torque to maintain
an optimal sticking condition. The weakening of the adhesion
state causes the torque correction to increase and the electro-
magnetic torque to decrease further, which in turn causes the
adhesion coefficient and acceleration of the train to plummet.

Figure 16 shows the creep rate variation curve for the torque
correction method. From 0–5 s, the actual creep rate of the train
gradually moves from 1.0 (slip zone) to the predicted reference
creep rate. The difference with the creep ratio control perfor-
mance of the proposed method (Fig. 11) is that the actual creep
ratio of the proposed method is always stable in the creep zone.
In contrast, due to the ample initial start torque (Fig. 17), the
torque correction method causes the actual initial creep ratio
to operate in the slip zone before gradually approaching the
optimum creep ratio. This behavior explains why the train is
more prone to slipping during the start-up phase when using the
torque correction method.

Fig. 16. Creep ratio performance based on torque correction
method

10 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151375, 2024



Cascade-free predictive adhesion control for IPMSM-driven electric trains

Fig. 17. IPMSM electromagnetic torque performance with comparative
simulation

Comparative simulation results show that the proposed
method has a higher adhesion utilization and better anti-slip con-
trol performance in the traction phase, especially in the start-up
phase and in the weak magnetic region of the IPMSM.

4.3. HIL platform test results

In this section, the electric train dynamic model and a wheel-rail
model are built based on the starHIL semi-physical simulation
platform to enhance the simulation resemblance to actual work-
ing conditions. The control method compiled by Simulink has
been downloaded directly into the real-time rapid control pro-
totype hardware via rapid prototyping control technology, as
shown in Fig. 18. The parameters of train system and controller
are consistent with the pure simulation conditions, although the
hardware limits the sampling frequency to 10 kHz. Table 4 in
the revised manuscript shows the computational burden of two
methods (PI method and proposed method). nThe proposed PB-
ESO with optimized gains). The memory usage of the proposed
method is only 3% higher than PI.

Figure 19 shows the train traction motor speed tracking curves
for the proposed and the comparison methods. Figure 20 shows
the adhesion coefficients between the wheels and the rails for
both methods. Similar to the simulation results, the proposed
method has a higher average adhesion utilization in the HIL
platform, especially in the high-speed motor operation region.
However, during the start-up phase, the adhesion coefficient de-
creases compared to the simulation results, showing significant
fluctuations and even negative values. We analyzed that this
is due to the limitation imposed by the hardware computation
frequency.

Figure 21 shows the control performance of the motor output
torque. Similar to the simulation results, the torque correction
method torque performance demonstrates a rapid surge in start-
ing torque, reaching up to 2.8𝑒−4 Nm. In contrast, the proposed
method gradually increases the output torque, providing supe-
rior traction control to prevent wheel slip during the start-up
phase. However, the proposed method encounters an elevation
in dynamic torque pulses due to the limitations imposed by
sampling and computation frequencies. As a result, further im-

(a)

(b)

Fig. 18. Hardware-in-the-loop platform diagram: (a) HIL platform
setup; (b) topology of the HIL platform

Fig. 19. IPMSM speed tracking performance in the HIL platform

provements are required to refine the proposed approach and
enhance its adaptability to lower control frequencies in real-
world operating conditions.
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Fig. 20. Adhesion coefficient tracking performance in the HIL
platform

Fig. 21. IPMSM output torque performance in the HIL platform

5. CONCLUSIONS

This study suggests a cascade-free predictive adhesion control
technology for IPMSM-driven electric trains, aimed at achieving
maximum acceleration. The simulation and HIL platform test
results show that the proposed method improves the wheel-
rail adhesion utilization during the acceleration phase of the
train and obtain superior dynamic performance. In particular, it
addresses the issue of excessive start-up torque that can lead to
wheel slip with conventional control methods. In addition, the
torque performance of the train in the high-speed weak magnetic
area of the IPMSM is ensured, enabling the train to attain better
tractive effort in this phase.

The proposed control method is still in the laboratory stage.
A limitation is that the control performance of the proposed
strategy relies heavily on the controller’s sampling and calcu-
lation frequency. Lower controller calculation frequencies will
result in high harmonic torque in the dynamic stage. One can
hopefully further enhance the overall control performance of
the proposed strategy by improving the optimal slip velocity
estimation algorithm and traction motor control algorithms.

APPENDIX

𝐹lump is a non-negative lumped function that measures how far
each expected electrical state of the IPMSM is from the desired
values. The design details of 𝐹lump is as follows

𝐹lump = 𝛾MTPA𝐶MTPA (𝑘 +1)︸                  ︷︷                  ︸
𝑎

+𝛾𝑇𝑒𝐶𝑇𝑒 (𝑘 +1)︸            ︷︷            ︸
𝑏

+ 𝛾𝐼𝑚𝐶𝐼𝑚 (𝑘 +1)︸            ︷︷            ︸
𝑐

, (28)

where 𝛾MTPA , 𝛾𝑇𝑒, 𝛾𝐼𝑚 are weighting factors, and we have the
following.
• Term (b) is used to achieve the maximum-torque-per-ampere

(MTPA) control. The MTPA trajectory is derived by the
Lagrange multiplier method and can be described by the
formula

𝑖𝑑_MTPA =
𝜓 𝑓

2(𝐿𝑞 − 𝐿𝑑)
−

√√
𝜓2

𝑓

4(𝐿𝑞 − 𝐿𝑑)2 + 𝑖
2
𝑞 . (29)

Thus, the form of 𝐶𝑇𝑒 (𝑘 +1) is

𝐶MTPA (𝑘 +1) = (𝑖𝑑 (𝑘 +1) − 𝑖𝑑_MTPA (𝑘 +1))2. (30)

• Term (b) weights 𝑇𝑒 𝑓 which are high-pass filtered versions
of the predictive torque. This penalizes the switching states
that generate high frequencies in the predictive torque. As a
consequence, the form of 𝐶𝑇𝑒 (𝑘 +1) is

𝐶𝑇𝑒 (𝑘 +1) = (𝑇𝑒 𝑓 (𝑘 +1))2. (31)

• Term (c) is the stator current protection term. It is designed
as a nonlinear function,

𝐶𝐼𝑚 (𝑘 +1) =
{
∞,

√︃
𝑖2
𝑠𝑑
(𝑘 +1) + 𝑖2𝑠𝑞 (𝑘 +1) ≥ 𝐼lim ,

0, else,
(32)

where 𝐼lim is the maximum allowable current.
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