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Abstract. The paper proposes a deep-learning approach to the recognition of melanoma images. It relies on the application of many different
architectures of CNN combined in the form of an ensemble. The units of the highest efficiency are selected as the potential members of the
ensemble. Different methods of arrangement of the ensemble members are studied and the limited number of the best units are included in the
final form of an ensemble. The results of numerical experiments performed on the ISIC2017 database have shown the very high efficiency of the
proposed ensemble system. The best accuracy in recognition of melanoma from nonmelanoma cases obtained by the ensemble was 96.54% at
AUC = 0.9909, sensitivity 94.71%, and specificity 97.67%. These values are superior to the results presented for this ISIC2017 database.
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1. INTRODUCTION

The image recognition is an important subject in supporting the
medical diagnosis. It belongs to extremely difficult classification
problems of special interest to researchers.

To such problems belongs the recognition of dermoscopic
images in melanoma. It is a very demanding task, because of a
large variety of images in the same class and the close similarity
of samples representing opposite classes. The former approach
typically used by medical experts was based on the application
of ABCDE rules [1–3] assessing such factors as asymmetry
(different shape of the image from the left and right as well
as from bottom and upper side), border (irregular, blurry or
ragged lesions), colour (great changes of shades from brown
to black, inconsistent pigmentation), diameter (usually greater
than 6 mm, and with progressive changes in size) and evolution
representing history of changes over time.

The progress in information technology has allowed computer
methods to support the recognition process. The earliest solu-
tions relied on many preprocessing steps of images, including
segmentation, definition of numerical descriptors of the image
(such as colour distribution statistics, wavelet analysis, colour
texture descriptors, global and dynamic thresholding), selection
of diagnostic features, and the last step of recognition of le-
sions using classifiers. Several types of classification units, like
K-nearest neighbours (KNN), naive Bayes, a random forest of
decision trees, neural networks, fuzzy and neuro-fuzzy systems,
support vector machines, etc., were proposed [2–5]. However,
the results of such approaches are of limited accuracy and need
further improvements.
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Nowadays, the most effective classification systems use the
idea of computational intelligence, especially deep architec-
tures [5]. The convolutional neural networks (CNNs) [6] play
the most significant role in classification tasks of image recogni-
tion. Thanks to combining the automatic generation of features
and final classification stage in one common structure they are
very efficient in image analysis.

The single CNN structures, as well as different arrangements
of the ensemble, are regarded as the most perspective [7–9]. This
is due to the fact, that CNN networks integrate in a single ar-
chitecture of the automatic generation/selection of features and
recognition of classes. Such an approach simplifies the classifi-
cation task and leads to the improvement of the results in image
recognition.

In the work of Esteva et al. [10] the CNN network results
were presented for an exceptionally considerable number of
samples of skin lesions (129 450 clinical images used for train-
ing) obtained from 18 different physician-curated, open-access
online repositories (including ISIC) and the Stanford University
Medical Center. The reported test results for the three classes
showed an average accuracy of 93.3%, which is still better than
the results obtained by 21 board-certified dermatologists for the
investigated database.

Codella et al. [9] proposed an ensemble of CNN for recog-
nizing melanoma from other samples representing the second
class. They obtained the average accuracy measured based on
the additional 100 test images equal to 76%, sensitivity 82%,
and specificity 62%.

The paper of Yuexiang and Linlin [11] presented a deep learn-
ing framework consisting of two fully convolutional residual
networks to simultaneously produce the segmentation and clas-
sification results for the ISIC2017 dataset.

Different deep models of image preprocessing and classifi-
cation were presented in [12–16]. The best results were ob-
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tained by using such deep CNN structures as Resnet152 [12],
LCnet [13], Efficientnet, Inception., Resnet50, VGG, Mobilnet,
Densenet [14–16].

Alenezi et al. [7] proposed a multi-stage recognition frame-
work with a deep residual neural network and hyperparame-
ter optimization-based decision model to discriminate between
melanoma and nonmelanoma. The declared efficiency highly
depends on the size of the datasets. The larger the dataset, the
better the accuracy. The best results corresponded to ISIC2020
of the largest number of samples.

El-Khatib et al. proposed in [17] a system composed of a few
CNN networks using transfer learning. The reported accuracy
and F1 score for the ISIC2020 database was equal to 93.50%.

This paper proposes a different approach to the recognition of
medical images representing melanoma. It applies many differ-
ent architectures of CNN combined in the ensemble form. The
most significant difference to the existing methods is the way,
in which the members of the ensemble are selected. In the first
step, the individual CNN structures are assessed and the best
units according to the chosen quality measure are selected as
the potential members of the ensemble. In the second step, dif-
ferent compositions of such members are studied and assessed
by using the validation datasets. In the last step of experiments,
most perspective sets create the ensembles of the final form
subjected to checking.

The key step applied in this paper is also the proper segmen-
tation of the original images included in the ISIC database. By
applying the modified flood fill method [18], the region of in-
terest containing only the lesion region was extracted from the
images. Thanks to this the diversified background region (some-
times occupying half of the image) representing the noise was
eliminated and did not take part in the recognition process.

The results of numerical experiments performed on the
ISIC2017 database show exceptionally superior performance
of the proposed system. The best accuracy in the recognition of
melanoma from nonmelanoma cases obtained by the ensemble
was 96.54%, at AUC = 0.9909, sensitivity 94.71%, and speci-
ficity 97.67%. All of them exceed the presented results in the
other papers for this ISIC2017 database.

The novel approach to the ensemble creation produced out-
standing results in melanoma recognition. The proposed system
is formed from numerous different CNN architectures, precisely
selected for the task. The differences in the structures allow them
to provide high independence in their operation, leading to the
improvement of the generalization ability of the system.

The novelty of the paper is also included in the efficient pre-
processing of the original ISIC images, which leads to the accu-
rate extraction of the regions of interest (ROI) containing only
lesion regions, which are the most important in the recognition
process.

2. DATABASE OF MELANOMA IMAGES

ISIC database ISIC2017 of melanoma images is used in this
paper [19,20]. It is an open-source public access archive of skin
images to test and validate the methods in automated diagnostic

systems. Among different versions of the available ISIC datasets
(2017, 2019, 2020) the ISIC2017 seems to be the most demand-
ing since it contains the smallest population of data; hence the
biggest difficulty in class recognition using an automatic system.

Two classes of images were considered in the experiments.
• Class 1 representing melanoma (945 images).
• Class 2 representing other, nonmelanoma cases (1543 im-

ages).
Both datasets are only slightly unbalanced. The results of ex-
periments show that this imbalance is not a problem for the
proposed classification system. Therefore, no specialized meth-
ods (like GAN, variational autoencoder, or introducing noise to
the images) were used to enrich the learning data.

Figure 1 presents some examples of original images from this
database representing melanoma and nonmelanoma cases.

Fig. 1. The representative original images belonging to melanoma (up-
per row) and nonmelanoma (bottom row) cases. The background oc-

cupies a large part of the images

The first and second rows of the figure represent melanoma
and nonmelanoma samples, respectively. The images contain
not only lesion regions but also the background of different
colours and diversified structures in each image. This part of the
images is not important in the recognition of melanoma.

The regions of interest (ROI) corresponding to the true le-
sions differ significantly in the sample images belonging to the
same class. The differences are visible in the colour distribution,
structure, and size of the ROI. There are significant differences
in the proportion of the area of ROI and the total area of the
image in particular samples. Moreover, some similarity of the
ROIs corresponding to the opposite classes is also visible (see
for example the ROI of melanoma and nonmelanoma in the first
or third column). To compare the melanoma and nonmelanoma
sets of images the statistical characterization of them was made.

Table 1 shows values of the statistical parameters describing
the pixel intensity in the total populations of melanoma and
nonmelanoma samples. They include mean value, standard de-
viation, energy, skewness, and kurtosis. The high similarity of
these parameters characterizing both classes is evident. For ex-
ample, the mean value for the melanoma class is 88.04±22.82
and 82.75±21.08 for the nonmelanoma class. Even more sim-
ilar are the values of energy: 12818± 5018 for melanoma and
12000±5159 for nonmelanoma.

The high value of the standard deviation of all parameters in
both classes is very characteristic. For example, it is typical to
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Table 1
The statistical parameters of the pixel intensity of images included in

the melanoma and nonmelanoma classes of the ISIC2017 database

Mean Standard
deviation Energy Kurtosis Skewness

Melanoma 88.04±
22.82

66.21±
12.73

12818±
5018

2.17±
1.01

−0.08±
0.68

Nonmelanoma 82.75±
21.08

67.65±
11.50

12000±
5159

1.91±
0.49

0.14±
0.46

have the standard deviation of the skewness exceeding the cor-
responding mean values a few times. The values presented in
Table 1 are evidence of high differences among the images form-
ing the same class and large similarity of images representing
opposite classes.

In the first step of building an efficient classification system,
we should eliminate the influence of unimportant factors like the
background and concentrate only on the ROI representing the
true lesions. Therefore, the segmentation of the images aimed
to extract the true ROI should be done in the first step.

3. SEGMENTATION STEP OF THE IMAGES

The original ISIC database was created by many institutions
around the world and contains images of different proportions
between the ROI corresponding to lesions and the background
containing many undesirable factors. In some images, the back-
ground occupies more than half of the image size. In the recogni-
tion process, only the ROI plays a vital role. Therefore, reducing
the influence of the background in the image recognition pro-
cess is especially important. After doing it the extracted ROIs
of the images are saved and used as the input data in further
experiments.

The extraction of the ROI is the part of segmentation process,
aimed at finding the regions of pixels representing the lesions.
This step is done here by using the modified region growing
procedure [18], called flood fill algorithm (FF). It is directed to
create the mask covering the lesions region of the image. The
input to the procedure is the original RGB image (Img𝑅𝐺𝐵) and
the output – the mask Img𝑚𝑎𝑠𝑘 representing the pixels forming
the recognized ROI.

In the first step, the RGB image is converted to a grayscale
image Img𝑔𝑠 . The FF algorithm assumes that the neighbouring
pixels of Img𝑔𝑠 are characterized by similar levels of inten-
sity. The flooding procedure starts from two different reference
regions Ref𝑎 and Ref𝑏 of the grayscale image aiming in two
opposite directions. The Ref𝑎 represents the region of the image
outside a circle of the radius R𝑎 defined by:

𝑅𝑎 =
max(𝑖𝑤, 𝑖ℎ)

2
·0.8, (1)

where 𝑖𝑤 and 𝑖ℎ represent the width and the height of the image.
The starting point corresponds to the highest mean intensity
level of the area. The flooding process is directed toward the
centre of the image.

On the other side, the Ref𝑏 covers the inside of the region of
the lowest mean intensity level with a constant value R𝑏 = 50
pixels and is directed outside the centre. The parameter val-
ues used in the definition of R𝑎 and R𝑏 were obtained in the
introductory experiments.

Both FF processes starting from regions Ref𝑎 and Ref𝑏 are
applied simultaneously. The similarity measure 𝐾 (𝑥, 𝑦) based
on the neighbouring pixel intensity values in the reference areas
is calculated using the expression:

𝐾 (𝑥, 𝑦) =
Im𝑔𝑔𝑠 (𝑥, 𝑦)

avg(Ref(Imggs))
·255. (2)

The pixels of the similar values of this measure are merged in
both reference areas Ref𝑎 and Ref𝑏, respectively.

The FF processes in both regions are executed until their areas
meet. The border points of both FF areas, define the boundary
of the neoplastic lesions corresponding to ROI. In the next step,
the image is cropped from four sides (up, down, left, right) until
the final size of the mask, covering ROI is obtained. In the last
step, the final mask ImgmaskImgmask is filled by the area of pixels
existing in the original image Img𝑅𝐺𝐵.

Figure 2 presents examples of the cropped segmented im-
ages representing different neoplastic lesions corresponding to
melanoma and nonmelanoma cases. They correspond exactly to
the ISIC original images represented by Fig. 1. The first row
represents melanoma and the second the nonmelanoma. It is
evident that the ROIs representing now lesion regions occupy
the maximum part of the images, and the background areas are
limited to a minimum.

Fig. 2. The sample images representing the cropped original images
obtained by using the presented algorithm: the first row presents the
melanoma and the second one – the nonmelanoma cases. They corre-

spond to the original ISIC images depicted in Fig. 1

4. ENSEMBLE SYSTEMS BASED ON DIFFERENT CNN
ARCHITECTURES

The ROI images extracted in the segmentation procedure create
the set of data used in the recognition process. The images
of melanoma represent class 1 and nonmelanoma samples the
opposite class 2.
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The classification system proposed in the paper will apply
different architectures of convolutional neural networks orga-
nized in the form of an ensemble. It is well known [21] that
many classifiers combined in an ensemble and properly aggre-
gated may generate improved results, even regarding the best
individual member. However, the most important condition to
achieve is to provide the independent operation of its members.
This can be obtained in diverse ways, for example, by applying
different types of classifiers, different sets of learning data used
in the training process, diversified sets of input attributes, etc.

Fig. 3. The general structure of the proposed ensemble. The number
of units and their composition are chosen by considering their achieve-

ments

In our solution, we applied the set of CNN classifiers of dif-
ferent architectures and used transfer learning. The pre-trained
structures available in Matlab [22] were adjusted to the actual
problem. The first 30% of the hidden, locally connected lay-
ers were left unchanged. The other layers, including the fully
connected structure of the softnet, were subjected to adapta-
tion using the actual learning data in a five-fold cross-validation
technique. The time of adaptation of the particular CNN units
forming an ensemble was changing a lot, from a few minutes in
Alexnet to a few hours in the case of Nasnetlarge. These values
correspond to the typical laptop containing GPU.

The general structure of the proposed ensemble is presented
in Fig. 3. The choice of the members and their number is based
on their achievements in the class recognition.

To achieve the highest efficiency of the ensemble, the set of
CNN classifiers was carefully selected based on the achieve-
ments of the individual members. Since training the CNN from
scratch needs a huge population of learning data, we used pre-
trained units in the transfer learning mode available in Mat-
lab [22]. The following CNN architectures were included in the
pool and considered as the potential members of an ensem-
ble: Squeezenet, Googlenet, Inceptionv3, Densenet201, Mobil-
netv2, Resnet18, Resnet50, Resnet101, Xception, Inceptionres-
netv2, Shufflenet, Nasnetmobile, Nasnetlarge, Darknet19, Dark-
net53, Efficientnet, Alexnet, VGG16 and VGG19. The CNN
classifiers considered as the potential members of the ensemble
differ in the way the data are processed, the number of layers,

the types of applied filters, etc. Therefore, their independence
in the class recognition process is relatively high. The critical
point is to estimate the proper size of their population to obtain
the best performance of the ensemble.

5. STATISTICAL RESULTS OF NUMERICAL EXPERIMENTS

In the first phase of experiments, the individual classifiers were
retrained on the database set described in the previous section.
In the first stage, the samples of the dataset were randomized
applying the uniform distribution. Next, the five-fold strategy
was applied. It means the set of the sample images was divided
into five subsets. Four of them were used for learning and the
fifth one for testing. In each fold, the testing subset was changing.
Only the results of testing are considered in the assessment of the
classification results. All CNN architectures were trained using
the ADAM algorithm implemented in the Matlab platform [22].

The assessment of the quality of classifiers was based on
the following parameters: accuracy (ACC), area under the ROC
curve (AUC), true positive rate (TPR), true negative rate (TNR),
positive precision value (PPV), and negative precision value
(NPV) [23, 24]. Table 2 presents the average values of these
parameters for the testing data achieved by the considered can-
didates for the ensemble. The standard deviations between the
succeeding folds were minuscule (below 1%), hence their values
are omitted in the further presentation of results in the tables.
Additionally, the confusion matrix in the last column for each
classifier is also included.

The results show high differences in the efficiency of the par-
ticular solutions of CNN classifiers. The best results correspond
to the Resnet101 and the worst to Alexnet. For example, the av-
erage accuracy ACC in the test changed from 79.26% (Alexnet)
and 80.47 (Squeezenet) to 95.78% for Resnet101 and 94.69%
for Nasnetlarge.

The CNN architectures of the lowest efficiency are excluded
from the consideration (for example Alexnet and Squeezenet).
Only the members of comparable results are considered for
the set. The aggregation of the results of the ensemble members
was based on the majority voting. In this process, the probability
values of class membership pointed out by the members were
used instead of their binary translation. The 𝑖-th class probability
𝑝(𝑖) is calculated by summing the proper pointing 𝑝(𝑖, 𝑗) of the
𝑀 members forming the ensemble:

𝑝(𝑖) =
𝑀∑︁
𝑗=1
𝑝(𝑖, 𝑗). (3)

The process of choosing the best composition of the ensemble
members may consider different parameters of the quality. In
this solution, we studied three of the most crucial factors: ACC,
AUC, and TPR.

The introductory experiments showed that too small or too
large sets did not improve the results at a sufficient rate. Different
populations of ensemble members were investigated. The choice
of units was based on their mentioned quality measures: ACC,
AUC, and TPR.
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Table 2
The results of the experiments show the mean values of the quality measures obtained by the candidates for the ensemble.

The best results corresponding to the Resnet101 are depicted in bold

CNN AUC ACC TPR TNR PPV NPV Confusion Matrix

1. Squeezenet 0.8726 0.8047 0.6857 0.8775 0.7742 0.8201
648 297
189 1354

2. Googlenet 0.9451 0.8585 0.8455 0.8665 0.7950 0.9016
799 146
206 1337

3. Inceptionv3 0.9861 0.9421 0.9312 0.9488 0.9176 0.9575
880 65
79 1464

4. Densenet201 0.9813 0.9401 0.9164 0.9546 0.9252 0.9491
866 79
70 1473

5. Mobilenetv2 0.9743 0.9244 0.8730 0.9559 0.9239 0.9248
825 120
68 1475

6. Resnet18 0.9655 0.8983 0.8889 0.9041 0.8502 0.9300
840 105
148 1395

7. Resnet50 0.9817 0.9317 0.9037 0.9488 0.9153 0.9415
854 91
79 1464

8. Resnet101 0.9865 0.9578 0.9238 0.9786 0.9636 0.9545
873 72
33 1510

9. Xception 0.9777 0.9196 0.8720 0.9488 0.9125 0.9237
824 121
79 1464

10. Inceptionresnetv2 0.9819 0.9349 0.8868 0.9644 0.9384 0.9329
838 107
55 1488

11. Shufflenet 0.9731 0.9184 0.9132 0.9216 0.8770 0.9455
863 82
121 1422

12. Nasnetmobile 0.9767 0.9172 0.8857 0.9365 0.8952 0.9305
837 108
98 1445

13. Nasnetlarge 0.9909 0.9469 0.9280 0.9585 0.9320 0.9560
877 68
64 1479

14. Darknet19 0.9702 0.9043 0.9048 0.9041 0.8524 0.9394
855 90
148 1395

15. Darknet53 0.9745 0.9232 0.8825 0.9482 0.9125 0.9295
834 111
80 1463

16. Efficientnetb0 0.9572 0.8947 0.7968 0.9546 0.9149 0.8847
753 192
70 1473

17. Alexnet 0.8539 0.7926 0.6349 0.8892 0.7782 0.7991
600 345
171 1372

18. VGG16 0.9403 0.8473 0.8709 0.8328 0.7613 0.9133
823 122
258 1285

19. VGG19 0.9498 0.8830 0.8265 0.9177 0.8601 0.8962
781 164
127 1416

After many introductory simulations, 11 combinations of the
best units were selected in the study. Their compositions are
presented in Table 3.

The CNN structures are represented here by the follow-
ing numbers: Squeezenet (1), Googlenet (2), Inceptionv3 (3),

Densenet201 (4), Mobilnetv2 (5), Resnet18 (6), Resnet50 (7),
Resnet101 (8), Xception (9), Inceptionresnetv2 (10), Shuf-
flenet (11), Nasnetmobile (12), Nasnetlarge (13), Dark-
net19 (14), Darknet53 (15), Efficientnet (16), Alexnet (17),
VGG16 (18) and VGG19 (19). The sequence of their appear-
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ance in the set corresponds to their quality measures. Three
different quality measures corresponding to the best units were
considered in creating the ensemble (column 2). One considered
ensemble was formed from all 19 units (the last row in the table).
All proposed compositions of the ensemble used in experiments
are presented in Table 3.

The results of the performance of different compositions of
ensemble represented by all quality values AUC, ACC, TPR,
TNR PPV, NPV, and confusion matrices are shown in Table 4.
They correspond to the testing data only and were obtained in the
five-fold cross-validation approach. The best solution, pointed
out in the table by the bold numbers, corresponds to the ensem-

Table 3
The CNN architectures form different compositions of the ensemble

No Quality Number of units CNN architectures forming the ensemble

AUC 3
1 ACC 3 [3, 8, 13]

TPR 3
2 AUC 5 [3, 8, 13, 10, 7]
3 ACC 5 [3, 8, 13, 4, 10]
4 TPR 5 [3, 8, 13, 4, 11]
5 AUC 10 [3, 7, 8, 10, 13, 4, 9, 12, 15, 5]
6 ACC 10 [3, 8, 13, 4, 10, 7, 5, 15, 9, 11]
7 TPR 10 [3, 8, 13, 4, 11, 14, 7, 6, 10, 12]
8 AUC 15 [3, 7, 8, 10, 13, 4, 9, 12, 15, 5, 11, 14, 6, 16, 19]
9 ACC 15 [3, 8, 13, 4, 10, 7, 5, 15, 9, 11, 12, 14, 6, 16, 19]
10 TPR 15 [3, 8, 13, 4, 11, 14, 7, 6, 10, 12, 15, 5, 9, 18, 2]
11 – 19 All CNN architectures

Table 4
The results of the efficiency of different compositions of the ensemble. They are represented by AUC, ACC, TPR, TNR PPV, NPV,

and the confusion matrix

Ensemble AUC ACC TPR TNR PPV NPV Confusion Matrix

1 0.9811 0.9582 0.9312 0.9747 0.9576 0.9586
880 65
39 1504

2 0.9866 0.9634 0.9376 0.9793 0.9651 0.9624
886 59
32 1511

3 0.9866 0.9626 0.9354 0.9793 0.9651 0.9612
884 61
32 1511

4 0.9867 0.9602 0.9397 0.9728 0.9548 0.9634
888 57
42 1501

5 0.9926 0.9626 0.9429 0.9747 0.9581 0.9653
891 54
39 1504

6 0.9909 0.9654 0.9471 0.9767 0.9613 0.9679
895 50
36 1507

7 0.9915 0.9590 0.9460 0.9669 0.9460 0.9669
894 51
51 1492

8 0.9924 0.9598 0.9323 0.9767 0.9607 0.9593
881 64
36 1507

9 0.9924 0.9598 0.9323 0.9767 0.9607 0.9593
881 64
36 1507

10 0.9922 0.9598 0.9386 0.9728 0.9548 0.9628
887 58
42 1501

11 0.9908 0.9546 0.9249 0.9728 0.9541 0.9548
874 71
42 1501
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ble number 6, composed of 10 units: Resnet101, Inceptionv3,
Nasnetlarge, Densenet201, Inceptionresnetv2, Resnet50, Mobil-
netv2, Darknet53, Xception and Shufflenet. Such a combination
resulted in the top results for accuracy and sensitivity.

Figure 4 illustrates the performance of different compositions
of the ensemble concerning the accuracy ACC, the area under
the ROC curve AUC, and the sensitivity of melanoma recogni-
tion TPR. The horizontal axis represents the succeeding com-
positions (from 1 to 11) mentioned in Table 4. Irrespective of
the composition of the ensemble the results are on a remarkably
prominent level (all above 92%).

Fig. 4. The illustration of the performance of different compositions
of the ensemble concerning AUC, ACC, and TPR. The horizontal axis

represents the succeeding ensembles (from 1 to 10)

It is worth noting that all compositions of the ensemble
improved the best individual result of AUC corresponding to
Resnet101. The accuracy value obtained by all ensembles (ex-
cept for one including all CNN architectures) also outperformed
the best individual result of ACC = 0.9578.

The best result of ACC of the ensemble number 6 is equal to
ACC= 0.9654. It outperformed the average value of its members
ACCav = 0.9339±0.1292. The least efficient was the ensemble
composed of all 19 units. However, even in this case, the obtained
accuracy ACC = 0.9546 was higher than the average of its all
members, ACCav = 90.08%±4.67%.

The improved values of other quality measures (TPR, NPR,
PPV, and NPV) were observed for all compositions of an en-
semble. A particularly important advantage is the high reduction
of critical errors (recognition of melanoma as nonmelanoma).
The best individual unit (Resnet101) made 72 such misclassi-
fications. The best ensemble number 6 reduced this number to
only 50.

6. DISCUSSION OF RESULTS

It is interesting to compare our best results (accuracy ACC =

96.54%, sensitivity TPR = 94.71%, specificity TNR = 97.67%,
positive precision value PPV= 94.16%, negative precision value

NPV = 96.79% and AUC = 0.9909) with these presented in the
international publications for the same database ISIC2017.

The paper of Yang et al. [8] declared only the area under the
ROC curve AUC = 0.880 for the ISIC2017 database.

The paper of Yuexiang and Linlin [11] presented the results of
the deep learning framework for the ISIC2017 dataset, declaring
an accuracy of 85.7%, sensitivity of 49%, specificity of 85.7%,
and AUC of 0.912.

The results of the Acosta et al. [12] obtained for the ISIC2017
dataset by applying Resnet152 were as follows: ACC = 90.4%,
TPR = 82%, and TNR = 92.5%.

Kaur et al. in the paper [13] present an interesting comparison
of results for different versions of ISIC by using deep CNN LC-
net. The best recognition accuracy values obtained for these sets
were: 81.41% (ISIC 2016), 88.23% (ISIC 2017), and 90.42%
(ISIC2020). The succeeding version of ISIC is of a larger pop-
ulation.

The recent results of Dutta et al. [15] obtained for the
ISIC2017 were as follows: AUC = 0.87, sensitivity 73%, class
precision 76%, and F1 = 74%.

Our results obtained by the best ensemble in all consid-
ered quality measures are superior to those presented for this
ISIC2017 database in the mentioned papers.

7. CONCLUSIONS

The paper proposes a novel architecture of an ensemble com-
posed of many different deep CNN structures. The applied en-
semble members differ in many aspects of signal processing (or-
ganization of layers, the width and depth of the network, number
and size of filters, different types of activation functions, etc.).
Therefore, in the recognition process, they are concentrated on
various aspects of the analyzed images. Thus, the units are highly
independent in their assessment of the input image.

As a result, the classification verdicts of the members are
diverse, which provides a good perspective for improving the
generalization ability of the system, by applying the procedure
of fusing their results.

The numerical experiments performed using the ISIC2017
database show extremely high efficiency of the system created
from the precisely selected CNN architectures. Moreover, the
ensemble reduces significantly the most severe misclassification
cases (melanoma recognized as nonmelanoma). For example,
the best individual unit (Resnet101) made 72 such misclassifi-
cations, while the ensemble committed only 50 errors.

The presented procedure of creating the optimal ensemble is
universal and applicable to any problems of class recognition.
It may be useful in different areas of research, not limited to
medical problems. Moreover, it is not restricted to the two class
recognition tasks.
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