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Abstract
In this article a complete procedure to investigate thin semiconductor plates (epitaxial layers), including
high-resolution X-ray diffraction measurements, mathematical modelling of both crystalline structure and
crystalline microstructure and computations to approximate solving inverse problems, is proposed and
described in detail. The method is successfully applied to estimate crystalline homogeneity of a square
indium-arsenide plate epitaxially-grown on gallium-arsenide substrate. To this end, the specimen is tested in
nine areas around points forming a square grid. It is demonstrated that whole specimen may be regarded as
a single large crystalline grain consisting of crystallites separated by small-angle boundaries. The crystallites
occur as rode-like cuboids elongated in the direction perpendicular to the plate surface, with different areas
of the sample and with base sizes not much differing. The mean-absolute second-order strain is very small
and almost constant in the whole sample. The first-order strain also appears and, effectively, the structure of
the crystalline layer is tetragonal with unit-cell parameters being smaller parallelly and larger perpendicularly
to the layer surface and varying slightly in the layer. The results are presented in tables and figures and
commented.
Keywords: X-ray diffraction, crystalline structure, crystalline microstructure, epitaxy, indium arsenide,
crystallite size, first-order strain, second-order strain.

1. Introduction

Indium arsenide (InAs) is a narrow bandgap binary compound (cubic with unit-cell constant
of around 0.60580 nm), a representative of III-V semiconductor materials. These semiconductors
have been widely used for optoelectronic devices, such as light emitters (light emitting diodes,
laser diodes), transistors, electro-optical modulators, detectors etc. [1, 2]. In recent years, research
and commercialisation in the area of infrared radiation detection, where InAs-based epilayers have
been dominant to provide an alternative for HgCdTe, have been quite intensive [3–5].
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In industrial technology of epitaxial materials, fast and non-destructive characterisation
techniques play a very important role. One of them is high-resolution X-ray diffractometry,
being used in science and industry for many years in the design of novel structures and quality
control [6, 7]. One of the advantages of high-resolution X-ray diffractometry is rapid collection of
data. In contrast, its limitations cause the need for an accurate approach to the measurements, and
especially to the analytical procedure [6]. This technique allows obtaining information on: structural
homogeneity of the studied materials, stress state, mosaic microstructure growth, dislocation
density, surface damage [8–11]. In the case of III-V superlattices studies, it allows estimating their
composition, thickness and period [12, 13].

In terms of microstructural features, there are two different forms of microstructure description.
One refers to domains with a high level of structural homogeneity (crystallites and crystalline
grains), while the other refers to disorder of lattice, i.e. defects [14, 15]. In the first approximation,
a crystal is considered to be a collection of crystallites. Each crystallite may be a crystalline
grain or a mosaic block that is a part of a grain. Most often, crystallites have regular and similar
shapes resulting from similar growth conditions [14]. The most common parameters of crystalline
microstructure are size, shape and deformation of crystallites. The crystallite size distribution may
be interpreted as the density of probability of finding a crystallite with an assumed shape and
size (usually taken with the weight proportional to the volume, surface or linear dimension) in an
analysed sample. The shape of crystallites, when modelled as simple solids, may be described
by aspect ratios of characteristic dimensions, called also shape factors or shape coefficients. In
general, it is assumed that crystallites show high structural homogeneity, but differ in their lattice
parameters. To describe the variation of lattice parameters, a second order strain distribution of
crystalline lattice was introduced. This distortion distribution may be interpreted as the density
of probability of finding a crystallite in which the interplanar distances differ in an assumed
value from those of the reference crystallite. The reference crystalline lattice is the average of
all crystallites. The distribution of deformations (second-order strain) may be assumed not to
depend on the size of crystallites and to be statistically isotropic [16–18]; it means that although
strains are considered there [16–18] as homogeneous but in general anisotropic inside each single
crystallite, the second-order strain distribution only is considered as isotropic (same in all crystal
directions). Most industrial materials should be considered as polycrystals. Even semiconductor
wafers, usually considered as monocrystals, are frequently defected by dislocations and may be
effectively interpreted as single mosaic blocks with crystallites slightly misoriented from one
another – or as polycrystals with strong texture.

The principal phenomenon exploited to reveal both crystalline structure and crystalline
microstructure is X-ray diffraction (XRD). The determination of structure characteristics (first of
all, unit-cell constants) is based of measurements of positions of peaks in the XRD pattern that
correspond toBragg diffraction angles.With exploiting peak intensities, it also possible to determine
positions of atoms inside the unit-cell. The determination of microstructure characteristics is based
on the observation that the line profiles (or peak shapes), contributing to XRD pattern, depend on
them. Several methods, in which different, more or less simplified, mathematical models of this
relation were applied, have been proposed. The contribution from instrumental factors to XRD line
profiles should be additionally accounted for to estimate the microstructure parameters reliably. In
fact, pure (or physical) XRD line profiles, obtained from experimental ones through the correction
of background and instrumental contribution, are analysed to characterise the microstructure.
These pure line profiles may be interpreted as produced from perfectly monochromatic and parallel
X-ray beams. The information on crystalline microstructure of an investigated specimen is hidden
in them and, particularly, in the full-widths-at-half-maximums (peak widths). Generally, the
smaller the crystallites or the larger the second-order strain, the broader the peaks.
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The Williamson-Hall method [19–24] is based on the use of simplified formulae for the width
of XRD line profile from a perfect crystallite as dependent on its size and shape (Scherrer formula)
and for the broadening that results from the second-order strains (Wilson-Stokes formula). This
method uses only widths of line profiles and assumes that these profiles are Cauchy (Lorentz)
functions, which is generally not true. The advantage of the Williamson-Hall method is the
inclusion of deformations, while the disadvantages are still the incorrect assumption on line profile
functions (even in such complex analysis as performed by Magalhães [24]). Another popular
approach is the Warren-Averbach-Bertaut method [25–31]. It allows to find the average size of
crystallites, their size distribution and the characteristics of second order strains (and stresses).
Among the disadvantages of this method there is the inaccuracy in the original formulation.
Instead of the distribution of crystallite size, the column length distribution of elementary units in
crystallites is used. In addition, a limitation of the Warren-Averbach-Bertaut method is the lack of
physical interpretation of the function characterising second-order deformations. Another is the
Balzar method, developed taking into account the size and shape distribution of crystallites. In
modelling the experimental data, Balzar [28, 29, 31, 32] assumed a theoretical description of the
line profile, but he proposed only the spherical shape of the crystallites and assumed in advance
the form of the crystallite size distribution function. Balzar’s method is valid mainly for cubic
materials. Other methods are those of Louër and Langford [33–36] and Scardi and Leoni [37–41].
They developed methods taking into account the size distribution of crystallites and their shape. In
addition, they assumed a theoretical description of line profiles. The Louër-Langford method was
used successfully for various crystallite shapes, but only for materials in which the second-order
deformation and scattering of crystallite sizes could be neglected. In contrast, Scardi-Leoni’s
modelling assumed in advance a spherical shape of crystallites and a crystallite size distribution
function. In addition, the second order deformation and dislocation density distribution were
taken into account. The method is valid mainly for cubic materials. A very similar method was
developed by Cervellino [42–45]. Some of these methods are quite general; they make it possible
to find detailed microstructure characteristics but with the strongly simplifying assumption that
crystallites are spheres [38, 42]. The method [48] used in this paper contains no such strong
simplification although is still a simplified version of a more general one [14–18].

In the present study, the crystalline homogeneity of indium arsenide epitaxial layer was
investigated using the high-resolution XRD (HRXRD); a method using a more realistic model of
the crystal microstructure was applied. The purpose of the study was to evaluate the structural
and microstructural homogeneity in different parts of the semiconductor wafer. The comparison
criteria were the averaged parameters of the crystalline structure – the unit-cell parameters and of
the crystalline microstructure – the lengths of edges of the mean crystallite (modelled as cuboid)
and the mean-absolute second-order lattice strain.

2. Materials and method

2.1. Indium arsenide epilayer sample and high-resolution X-ray diffraction equipment

A 5.15 µm-thick non-dopped InAs epitaxial layer was deposited by molecular beam epitaxy
(MBE) on a circular 2-inch GaAs substrate with a 2°offcut. The specification of the MBE system
can be found elsewhere [46,47]. Before the growth process, the substrate was degassed to thermally
desorb the oxides. A GaAs buffer layer of 0.25 µm thickness was deposited prior to InAs. The
process was strictly controlled and monitored using reflection high-energy electron diffraction
which confirmed a Stranski-Krastanov growth mode. As a result, the normal to the plate surface
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coincides with the [001] crystal direction. The almost-square sample with edge length of 20 mm
was then cut from this wafer.

InAs specimen were investigated using a high-resolution PANalytical X’Pert3 MRD diffrac-
tometer, working at 45 kV and 30 mA, equipped with a copper X-ray tube, a channel-cut 4X
Ge(004) monochromator in the incident beam, and a PIXcel1D-Medipix 3 detector was used as
a point detector for measurements of rocking curves and as a line detector for measurements of
diffractograms. The rocking curves (ω-scans, with a scanning step of 0.001◦) and diffraction line
profiles ((2θ − ω)-scans, with a scanning step (2θ) of 0.00123◦) originating from sets of crystal
planes (002), (004), (115), (135), (006), (335), (226), corresponding to (2θ) diffraction Bragg
angles 29.4532, 61.1165, 82.6683, 97.5200, 99.3917, 112.9145, 114.9399 (for a cubic crystalline
lattice with a = 0.606040 nm determined in this work; λ = 0.1540597 nm) were recorded; the
positions and intensities of XRD peak maxima are collected in Table 1. The ω-curves made it
possible to infer the crystalline quality of the tested indium arsenide plate. In turn, the (2θ − ω)
curves were used to determine the unit-cell constants and the averaged parameters of the crystalline
microstructure. A point grid was applied to the test sample (as shown in Fig. 1) and measurements
were taken at small areas around each point with 6 mm apart one another.

Table 1. Positions and intensities of maxima of XRD line profiles recorded for nine areas of the indium arsenide specimen.

Area 002 004 115 135 006 335 226

θ0 [
◦] θ0 [

◦] θ0 [
◦] θ0 [

◦] θ0 [
◦] θ0 [

◦] θ0 [
◦]

I0 I0 I0 I0 I0 I0 I0

(–1,1) 14.73351 30.56101 41.33979 48.78553 49.69274 56.49364 57.48188

7526 19964 4587 4465 259 2489 210

(0,1) 14.73390 30.56167 41.34095 48.78068 49.69331 56.49654 57.48270

7517 19635 4577 2421 271 1860 248

(1,1) 14.73462 30.56221 41.34123 48.78338 49.69342 56.49927 57.48150

7705 19786 4665 2622 270 1885 261

(–1,0) 14.72586 30.55382 41.33189 48.77512 49.68755 56.48969 57.47896

10593 23013 4321 2854 253 1774 224

(0,0) 14.72674 30.55497 41.33373 48.77857 49.68924 56.48931 57.47819

10203 22203 4273 2789 261 1992 235

(1,0) 14.72719 30.55518 41.33512 48.78049 49.68845 56.49138 57.47800

10926 23167 4359 2795 262 1898 224

(–1,–1) 14.72799 30.55574 41.33493 48.77697 49.68850 56.48716 57.47830

9902 22177 4368 3496 260 2065 231

(0,–1) 14.72871 30.55637 41.33581 48.77874 49.68927 56.48946 57.47881

10451 22996 4454 3605 259 1937 245

(1,–1) 14.72938 30.55679 41.33691 48.78008 49.68889 56.48872 57.47953

10682 22770 4372 2475 275 2067 241
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Fig. 1. Locations of square measurement areas (with limits not marked) on the sample (indium arsenide thin near-square
plate of edge length of around 20 mm) with coordinates of their centres (related to 6 mm units in both directions).

2.2. Structure evaluation

Indium arsenide is well known as cubic crystal with unit-cell constant a around 0.60580 nm [56].
The thin plate of indium-arsenide with crystal planes (001) oriented parallelly to the planar surface,
like in this work, is frequently deposited on the planar substrate of gallium-arsenide of the same
type of crystal lattice and orientation but with smaller (by 7%) constant a around 0.56537 nm.
Therefore, it is reasonable to admit strong shear stresses along the contact surface causing
permanent deformation (first-order strain) inside the studied sample resulting in establishing
a pseudo-tetragonal structure and appearing dislocations. To characterise the crystalline structure,
the unit-cell parameters are found for crystalline lattices of both types.

The unit-cell constants (a or a, c) may be reliably computed from experimental Bragg angles
by exploiting simultaneously several recorded XRD peaks involving reflexions from a set of planes
(hkl) with non-zero Miller indices in all positions. When HRXRD is applied, the experimental
Bragg angles may be precisely determined as positions θ0,hkl−m of maximums of XRD line profiles
(measured), and from them the experimental interplanar distances may be found:

dhkl−m =
λ

2 · sin
(
θ0,hkl−m

) . (1)

On the other hand, these distances may be calculated given unit-cell constants and reflexion
indices:

dhkl−c =
a[

h2 + k2 +
(
l · ac

)2
] 1

2
(2)

(for a cubic lattice a = c, for a tetragonal one a , c).
Then the lattice parameters and all reflexion indices are calculated together from experimental

data (m peaks) as the minimiser to the similarity functional:

ψ(ac;hkl) =

[
1
m

∑
hkl

(
dhkl−m − dhkl−c

dhkl−m

)2
] 1

2

(3)

being the root-mean-square relative error of approximating the experimental interplanar distances
by the modelled ones.
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2.3. Microstructure evaluation

The following assumptions are considered for the mathematical model of a crystal interpreted
as a set of crystallites:

– all crystallites are of the same size and shape, forming a monodisperse set of grains or
mosaic blocks;

– each crystallite is modelled as a cuboid (or a rectangular prism) with edges and faces parallel
or perpendicular to the main crystal axes and with a square base;

– each crystallite is a perfect monocrystal with unit-cell constants which may differ from the
crystal mean values;

– a second-order strain distribution (or a unit-cell constant distribution) is normal;

– a diffractogram is formed by a monochromatic and parallel radiation beam, and the kinematic
theory of X-ray scattering is sufficient to describe it.

The second-order strain is considered as homogeneous (although possibly anisotropic) inside
each crystallite and statistically isotropic. Each crystallite is considered to be strained in such
way that along a specific crystal direction the interplanar distance in it is equal to d instead of to

the mean for whole specimen d0; then the corresponding strain is equal to e =
d − d0

d0
and it is

accounted for in the second-order strain distribution with the weight proportional to the crystallite
volume. The distribution of deformations (second-order strain) is assumed not to depend on the
size of crystallites and to be statistically isotropic [16–18] (being the same along each crystal
direction). It means that although strains are considered as homogeneous but in general anisotropic
inside each single crystallite, the second-order strain distribution only is considered as isotropic
(same in all crystal directions).

When the second-order strain (i.e. randomly distributed deformations of the crystalline lattice
being homogeneous inside each crystallite and related to average lattice parameter, same as in
unstrained material) coexists with the first-order strain (i.e. permanent deformation due to external
forces that may cause change of average lattice parameters, differently in monocrystals and in
polycrystalline materials), both effects may be studied with use of XRD but involving different
mathematical models as well as measurement methods and computational procedures.

The total full-width-at-half-maximum (FHWM; ‘width’ further in this work) of a pure line
profile, w f ,hkl , depends on contributions from a second-order strain, wr,hkl , and a set of crystallites,
wk,hkl . For a monodisperse population of crystallites the same width, wc,hkl , comes from all
crystallites, thus wk,hkl = wc,hkl . The wr,hkl and wc,hkl and wk,hkl for (hkl) reflexion can be
described by approximate formulae [48]:

wr,hkl = 2
√

2 ln 2 ·
√
π

2
· e · tan (θ0,hkl) (4)

wc,hkl =

[
1− 1

2 (
H+K+L

F )+ 1
3

(
HK+HL+KL

F2

)
− 1

4

(
HKL

F3

)
1
3−

1
4 (

H+K+L
F )+ 1

5

(
HK+HL+KL

F2

)
− 1

6

(
HKL

F3

) ] 1
2

F√
G
· 0.584·λ
π ·a ·cos(θ0,hkl)

· 1
n (5)

wk,hkl =

(
1 − 0.25

σ

µ

)
· wc,hkl (6)
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w f ,hkl

(
wk,hkl,wr,hkl

)
=

[
−0.189358 ·

(
wr

wk

)3
+ 0.700940 ·

(
wr

wk

)2
− 0.070257 ·

(
wr

wk

)
+ 1

]
· wk for wr ≤ wk[

0.069441 ·
(
wk

wr

)3
+ 0.106305 ·

(
wk

wr

)2
+ 0.275051 ·

(
wk

wr

)
+ 1

]
· wr for wk ≤ wr

, (7)

where e =

√
2
π
ε – is the mean-absolute second-order strain of the crystalline lattice (throughout

the crystal, when normal strain distribution with zero mean and standard deviation ε with
mean deviations e is assumed); θ0,hkl is the Bragg angle; σ, µ are the standard deviation and
expected value for the crystallite size distribution (in this work it is finally assumed that σ = 0,
as for monodisperse population of crystallites). For cubic system, H = h, K = k, L = κ−1l,
G = h2 + k2 + l2, F = max {H,K, L}, were hkl are the Miller indices, a – is the unit-cell constant,
n · a = µ – is the average crystallite size (length of the edge of the square base of a cuboid in
directions [100] and [010]), κ – is the form factor (defining the height of the cuboidal crystallite in
direction [001], equal to κ · n · a for a cubic crystal or κ · n · c for a tetragonal crystal, with respect to

the base edge length); the only difference in these formulae for the tetragonal system is L = κ−1 a2

c2 l.
The width w f of line profiles is expressed in approximate formulae (4–7) based on simulation
of whole XRD line profiles with accounting for a normal second-order strain distribution with
parameters (0, ε) (as described above) and a logarithmic-normal cuboidal crystallite volume-
weighted size distribution with parameters (σ, µ) [48]. In this way, the crystalline microstructure,
on average, is characterised by the set of parameters: n, κ, e, σ and derivative quantities, while the
widths of the corresponding pure line profiles are expressed by formulae (4–7) as the functions of
these parameters. Subsequently, to characterise a real polycrystal, such values of these parameters
should be found for which the discrepancy between the sets of pure line profile widths measured
(determined from XRD patterns) and simulated (according to formulae (4–7)) is as small as
possible. In finding the parameters the root-mean-square relative error of approximation was used
as the criterion of similarity:

ϕ (n, κ, e, σ) =

[
1
m

∑
hkl

(
w f ,hkl−m − w f ,hkl−c

w f ,hkl−m

)2
] 1

2

(8)

where m is the number of simultaneously analysed line profiles, w f ,hkl−m is the width (FWHM)
of a pure line profile calculated from measurements, w f ,hkl−c is the width of a pure line profile
calculated from (4-7).

More complete characteristics of crystallinemicrostructure including crystallite size distribution
and second-order strain distribution can be found in diffractograms with no prior assumptions
with a more complex method [14–18].

3. Results and discussions

3.1. Idea and interpretation of measurements

Two modes of measurements were applied with using the above-mentioned diffractometer
adapted to investigate semiconductor monocrystalline plates. This diffractometer features a vertical
specimen stage and an operating mode with a fixed position of the X-ray tube.
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The rocking curve (ω-scans) is recorded when the sample rotates (atω angle) in both directions
around the axis lying at the sample surface, perpendicular to the diffraction plane, with the fixed
position of the detector (i.e. with the fixed (2θ) diffraction Bragg angle between the tube arm
and the detector arm); the position of XRD line profile maximum results at ω = 0. The rocking
curve provides information on spatial distribution of orientations of crystallites with respect to
the considered crystallographic direction; especially the narrower the peak, the less scattered the
orientations of crystallites.

The diffractogram ((2θ − ω)-scans – X-ray diffraction pattern) is recorded when both the
sample and the detector rotate in the same direction with preserving the same angle between each
arm and the sample surface normal or diffracting plane normal (∆ω = ∆θ). When each line profile
is recorded separately, such initial sample slope ω is chosen that both the angles between the
tube arm or the detector arm and the normal to the diffracting planes are equal and close to the
reflexion (θ) Bragg angle. In this way, when a sample is monocrystalline (possibly with an inner
mosaic structure featuring strong texture), each recorded XRD line profile may be assigned to
a family of diffracting crystal planes the orientation of which with respect to the sample normal is
uniquely defined. The diffractogram provides information on crystalline structure (in the positions
of radiation intensity maximums approximating Bragg angles, together with peak intensities) and
on crystalline microstructure (in the shapes of line profiles); especially the narrower the peak, the
larger and less strained the crystallites.

3.2. Shapes of measured line profiles

The XRD line profiles after background subtraction sometimes may be well approximated
as some specific functions (plane curves) with simple formulae. Such approximation may be
exploited to smooth profiles and determine the width (FWHM) of profiles and to extract pure line
profiles from pairs of experimental and standard ones (in special cases, as described below in
Chapter 3.5). In the present study, as frequently in XRD measurements, the line profiles, as well
as the rocking curves, occurred to be very close to Voigt functions and this approximation was
exploited to estimate and compute widths of experimental, standard and pure line profiles.

All background-corrected experimental XRD line profiles (after the subtraction of the back-
ground) were approximated (by applying the least-squares method) as the Voigt functions:

fV (x) = A
2 ln 2
π3/2

wL

(wG)
2

∞∫
−∞

e−t
2(

√
ln 2

wL

wG

)2
+

(
√

4 ln 2
x − xc
wG

− t
)2 dt, (9)

each of them being the convolution of two components, the Gauss function and the Lorentz (or
Cauchy) function, in standard forms:

f G (x) =

√
4 ln 2
π

1
wG

exp

(
−

4 ln 2 (x − xc)2

(wG)
2

)
, (10)

fL (x) =
2A
π

wL

4
(
(x − xc)2 + (wL)

2
) , (11)

where A – is the area between the graph and the abscissa axis, xc – is the position (abscissa) of the
maximum (centre of line profile), wG , wL – are FWHMs of both components. The total width of
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the line profile was then computed from the approximate formula:

wV = 0.5346 · wL +

√
0.2166 · w2

L + w
2
G
. (12)

The approximation of XRD line profiles as Voigt functions with such decomposition was
performed by solving non-linear least squares problems with the Origin software.

3.3. Rocking curves and texture in the indium arsenide plate

The rocking curves were recorded separately in relation to seven analysed reflexions for all
nine areas of the specimen. The sample was rocked around the position of maximum intensity in
which the angle between the tube and detector arms was fixed to the diffraction (2θ) Bragg angle.
Each experimental position of a peak maximum agreed within 0.04◦ of reflexion (θ) angle with
a Bragg angle computed for Cu Kα1 wavelength (λ = 0.1540597 nm) and approximate unit-cell
constant a = 0.60580 nm as well a = 0.60604 nm determined in this work. The sample was
positioned with the angle τ between the normal to diffracting crystal planes and the normal to
the sample surface (coinciding with direction [001]), with the angle being as small as possible.
In this way, the last index l of each set of diffracting planes (hkl) was determined uniquely. The
results of measurements and calculations are collected in Table 2. As an example, the rocking
curve related reflexion 004 recorded from the central area (0, 0) of the sample is shown in Figure 2;
the others are almost undistinguishable when presented in the same diagram. The line profiles of
the rocking curves are Voigt-function-type with Gauss-function-type component dominating, as it
is illustrated, as an example, in Table 3 for curves recorded for all areas and related 004 reflexion.
They are typical of polycrystalline material without effects specific for monocrystals, what can
be interpreted as evidence of at least mosaic microstructure of the investigated specimen – the
indium arsenide plate occurs to be a monocrystal with defects resulting in formation of crystallites
slightly misoriented from each other. Very narrow rocking curves evidence strong texture in all

Table 2. The widths wω of the measured rocking curves derived for seven reflexions 004, 004, 115, 135, 006, 335, 226
corresponding to Bragg angles θ0 (for a cubic lattice of approximate a = 0.60580 nm and λ = 1.540597 nm for nine
measurement areas of the indium arsenide plate; the angle τ between the normal to the sample surface (coinciding with

direction [001]) and the normal to diffracting crystal planes with uniquely determined index l are added.

hkl 002 004 115 135–315 006 335 226

θ0 [
◦] 14.7326 30.5717 41.3542 48.7860 49.7227 56.4917 57.5058

τ [◦] 0.0000 0.0000 15.7932 32.3115 0.0000 40.3155 25.2394

Area wω [
◦] wω [

◦] wω [
◦] wω [

◦] wω [
◦] wω [

◦] wω [
◦]

(–1,1) 0.0464 0.0477 0.0455 0.0505 0.0517 0.0474 0.0501

(0,1) 0.0464 0.0475 0.0457 0.0426 0.0507 0.0453 0.0518

(1,1) 0.0463 0.0477 0.0456 0.0432 0.0511 0.0458 0.0528

(–1,0) 0.0456 0.0455 0.0436 0.0427 0.0486 0.0450 0.0501

(0,0) 0.0457 0.0457 0.0435 0.0426 0.0493 0.0445 0.0494

(1,0) 0.0462 0.0464 0.0444 0.0431 0.0496 0.0451 0.0507

(–1,–1) 0.0458 0.0462 0.0445 0.0429 0.0499 0.0448 0.0504

(0,–1) 0.0458 0.0460 0.0443 0.0426 0.0492 0.0441 0.0504

(1,–1) 0.0455 0.0462 0.0441 0.0425 0.0505 0.0444 0.0502
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studied directions characterised by the angle τ between the normal to the sample plate surface
and the normal to diffracting crystal planes with fixed index l (Table 2), which confirms the
previous prediction. The widths of all curves vary around δ = 0.05◦. Considering edge dislocation
producing such mutual inclination of two vicinal crystallites, one can estimate the crystallite size

in the direction perpendicular to the Burgers vector as equal to
a
δ
≈

0.60580
0.00087

nm ≈ 700 nm. This
estimate agrees with one of microstructural characteristics of the specimen (presented further).

Fig. 2. Measured rocking curve related 004 reflexion at the central area (0, 0) of the specimen.

Table 3. The widths of Voigt functions (same as in corresponding column of Table 2) together with widths of Gauss-function
and Lorentz-function components approximating rocking curves related to 004 reflexion for all measurement areas and

reliability factors.

Area wG [
◦] wL [

◦] wV [
◦] R2

(–1,1) 0.0393 0.0146 0.0477 0.9998

(0,1) 0.0391 0.0145 0.0475 0.9998

(1,1) 0.0395 0.0142 0.0477 0.9998

(–1,0) 0.0375 0.0140 0.0455 0.9998

(0,0) 0.0376 0.0140 0.0457 0.9998

(1,0) 0.0382 0.0142 0.0464 0.9998

(–1,–1) 0.0380 0.0143 0.0462 0.9998

(0,–1) 0.0377 0.0143 0.0460 0.9998

(1,–1) 0.0380 0.0144 0.0462 0.9998

3.4. Reference material and instrumental correction

The XRD standard line profiles are necessary for extracting the pure line profiles from the
experimental line profiles. They must represent the whole instrumental contribution from the X-ray
source and all slits, collimators and monochromators, both from the source and the detector side,
shaping the X-ray beam in a diffractometer. They may be produced via immediate measurements
of XRD patterns from a reference material same as the studied one but containing crystallites
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sufficiently large, unstrained and randomly oriented which negligibly contribute to line profiles.
Especially the spatial distribution of the orientations of crystallites in the reference sample should
imitate the distribution in the investigated sample. In lack of such material some standard reference
material may be exploited to construct the instrumental function and to produce the standard line
profiles corresponding exactly to Bragg angles for the studied sample [49].

In this work the special case of defected monocrystalline material is studied. It can be treated in
modelling and computations as polycrystalline one but with very narrow dispersion of orientations
of the crystallites (strong texture). Hence, the monocrystalline silicon plate (NIST SRM 2000)
was used as standard reference material (SRM) to estimate the instrumental contribution to
the experimental line profiles. This SRM is dedicated principally as the standard (cubic, with
a = 0.5431035 nm for precise determination of unit-cell constants by exploiting Si 004 reflexion
(with very precisely determined interplanar distance d022 [50]). A unit of SRM 2000 consists of
25 mm × 25 mm × 0.725 mm double-polished (001)-oriented single-crystal silicon (Si) specimen
with a nominal 50 nm Si0.85Ge0.15 epitaxial layer and 25 nm Si cap [51].

The measurements were performed with a four-fold germanium 4X Ge(004) incident beam
monochromator which cut only the central part of the Cu Kα1 spectral line. According to the
diffractometer specification, for Si 004 reflexion the width (2θ) of the line profile is less than
0.0021◦ while the width of the line profile from the Cu Kα1 component only (without accounting
for additional broadening caused by slits) would be 0.02305◦, as it follows from Cu Kα1 radiation
characteristics [52, 53]. It results in very narrow XRD line profiles, as it is shown in Table 4. The
widths of XRD line profiles from the silicon plate (SRM 2000) recorded both with the front surface
(from the deposited thin layer face) up or the back surface (from the thick silicon substrate face) up,
together with the width of XRD line profiles for the indium arsenide specimen recorded at the plate
centre (0, 0), are given to compare. Only line profiles were important and therefore any procedure
of precise measurements like described in the SRM 2000 certificate [51] was not applied. The
measurements were performed with the angle ω0 of the initial specimen slope with respect to the
position with the right angle (for Si) or Bragg angle (for InAs) between the X-ray tube arm and the
specimen surface. In this way, the effective angle between the source arm and the diffracting crystal
planes (hkl) with uniquely determined index l and the angle τ between the normal to these planes
and the normal to the sample surface coinciding with direction [001], equal τ + ω0, was close to
the appropriate Bragg angle (Table 4). The widths of the rocking curves from the silicon standard
sample turned out to be very narrow, and much narrower than those from the investigated indium
arsenide sample, which evidenced crystalline order being close to monocrystalline. It supports
the use of SRM 2000 to estimate the instrumental contribution to experimental line profiles of
indium arsenide. Nevertheless, the XRD peaks were typical of polycrystalline materials with peak
widths varying strongly with the dependence on Bragg angle that could hardly be explained, which
suggested contribution from crystalline microstructure. Since a detailed study of microcrystalline
properties of the silicon standard is not a goal of this work, they served only to estimate the
standard line profiles. The estimation is based on the observations that these line profiles are Gauss
functions (in good approximation) and almost half of line profiles are of similar width varying
in the range (2θ) from 0.0262 to 0.0342 degrees, while for the indium arsenide specimen the
narrowest Gauss-function component of experimental line profiles (of 002 reflexion) is around
(2θ) = 0.0190 degrees. Moreover, in view of very narrow spectral distribution of radiation, the
instrumental function is dominated by a component independent of Bragg angle [50]. Taking all
these facts and results of numerical experiments into account, we have chosen the Gauss function
with width of 0.01203◦ (2θ) (equal to (θ) = 0.000105 rad), as standard line profile independent of
the Bragg angle. It was further used to perform the instrumental correction of experimental XRD
patterns from the investigated specimen.
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Table 4. The widths of Voigt functions wV together with widths of Gauss-function and Lorentz-function components wG ,
wL and reliability factors R2 approximating XRD line profiles measured from the silicon standard reference unit (cubic,
a = 0.5431035 nm) positioned with the thin layer cap up (top table – front face) and with the bulk silicon plate up (middle
table – back face) and XRD line profiles measured from the middle area (0, 0) of the indium arsenide specimen (cubic,
approximately a = 0.60580 nm; bottom table) with using highly-monochrome Cu Kα1 radiation (λ = 1.54056 nm); the
Bragg angles θ0 correspond to precise values of unit-cell constant and wavelength; τ is the angle between the normal to the
sample surface (coinciding with direction [001]) and normal to the diffracting crystal planes (hkl) with index l uniquely
determined (as shown), ω0 is the angle of initial specimen slope with respect to the position with the right angle (for Si)
or the Bragg angle (for InAs) between the X-ray tube arm and the specimen surface, wω is the width of corresponding

rocking curves (all widths are given in the diffraction angle (2θ) scale). The smallest widths are bolded.

Si hkl f θ0 [
◦] τ [◦] ω0 [

◦] ω0 + τ [
◦] wω [

◦] wG [
◦] wL [

◦] wV [
◦] R2

113 28.0605 25.2394 2.6035 27.8429 0.0053 0.2638 0.0000 0.2638 0.9997
004 34.5641 0.0000 34.3359 34.3359 0.0022 0.0324 0.0011 0.0330 0.9966
224 44.0138 35.2644 8.5282 43.7926 0.0086 0.0967 0.0000 0.0967 0.9948
115 47.4748 15.7932 31.4658 47.2590 0.0112 0.0263 0.0000 0.0263 0.9987
044 53.3525 45.0000 8.2267 53.2267 0.0178 0.1044 0.0000 0.1044 0.9985
026 63.7696 18.4349 45.2072 63.6421 0.0356 0.0255 0.0012 0.0262 0.9974
335 68.4433 40.3155 27.9179 68.2334 0.0470 0.0292 0.0000 0.0292 0.9958

Si hkl b θ0 [
◦] τ [◦] ω0 [

◦] ω0 + τ [
◦] wω [

◦] wG [
◦] wL [

◦] wV [
◦] R2

113 28.0605 25.2394 2.6084 27.8478 0.0045 0.2835 0.0000 0.2835 0.9990
004 34.5641 0.0000 34.3461 34.3461 0.0022 0.0342 0.0000 0.0342 0.9957
224 44.0138 35.2644 8.5360 43.8004 0.0088 0.0953 0.0000 0.0953 0.9953
115 47.4748 15.7932 31.4679 47.2611 0.0115 0.0268 0.0000 0.0268 0.9992
044 53.3525 45.0000 8.1106 53.1106 0.0184 0.1539 0.0000 0.1539 0.9978
026 63.7696 18.4349 45.0840 63.5189 0.0343 0.0310 0.0000 0.0310 0.9991
335 68.4433 40.3155 27.9238 68.2393 0.0470 0.0390 0.0000 0.0390 0.9983

InAs hkl θ0 [
◦] τ [◦] ω0 [

◦] ω0 + τ [
◦] wω [

◦] wG [
◦] wL [

◦] wV [
◦] R2

002 14.7326 0.0000 0.2034 0.2034 0.0457 0.0190 0.0034 0.0209 0.9997
004 30.5717 0.0000 0.3060 0.3060 0.0457 0.0317 0.0100 0.0374 0.9984
115 41.3541 15.7932 –15.3754 0.4178 0.0435 0.0651 0.0157 0.0739 0.9982
135 48.7859 32.3115 –31.8183 0.4932 0.0426 0.1434 0.0126 0.1503 0.9991
006 49.7226 0.0000 0.4936 0.4936 0.0493 0.0600 0.0242 0.0740 0.9900
335 56.4915 40.3155 –39.7000 0.6155 0.0445 0.1435 0.0227 0.1560 0.9971
226 57.5056 25.2394 –24.6025 0.6369 0.0494 0.0996 0.0273 0.1150 0.9877

All measurements were effective only with so narrow and highly monochromatic X-ray beam
as it was at the disposal while using this diffractometer with an arrangement specially designed and
dedicated just for such analyses. They would be impossible while using a standard diffractometer
due to very narrow pure line profiles for the indium arsenide specimen and, consequently, a very
small difference between experimental and standard line profiles resulting in pure line profiles
dominated by noise.

3.5. X-ray diffraction patterns and pure line profiles

To characterize the parameters of crystalline microstructure of a material under study, pure
line profiles must be analysed. The pure line profile f originating from the crystal planes (hkl)
corresponding to the Bragg angle θ0,hkl can be obtained by solving a convolution integral equation
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of the first kind:
+u∫
−u

ghkl (s − t) fhkl (t) = hhkl (s) (13)

where g is the standard (instrumental) profile, h is the experimental profile, s is the reciprocal
space vector length (s ' 4πλ−1 (

θ − θ0,hkl
)
cos θ0,hkl), λ is the X-ray wavelength, u is a number

sufficiently large to ensure good approximation. Deconvolution is an ill-posed problem and should
be regularised [56]. In this work the simplified descriptive regularisation was applied, based on fact
that both experimental and standard XRD line profiles were well approximated by Voigt functions.
Having experimental and standard line profiles approximately decomposed into Gauss-function
and Lorentz-function parts (convolutive multipliers), one can easily find the solution to (13)
in the form of a Voigt function. The method is based on the theorem on convolution of two
Voigt functions: it is the convolution of Gauss and Lorentz components being convolutions of
corresponding components of both convolved functions:

fV = fV1 ∗ fV2 = ( fG1 ∗ fL1) ∗ ( fG2 ∗ fL2) = ( fG1 ∗ fG2) ∗ ( fL1 ∗ fL2) = fG ∗ fL, (14)

where the widths (FWHM) of component functions satisfy the equalities:

w2
G = w2

G1
+ w2

G2
and wL = wL1 + wL2 (15)

Deconvolution was performed via decomposing experimental and standard line profiles as
Voigt functions (with using the Origin software to solve this non-linear least-squares problem)
and computing pure line profiles as Voigt functions with component widths following from
formula (15):

w
f
G
=

√(
wh
G

)2
−

(
w
g
G

)2
and w

f
L = wh

L − w
g
L (16)

Since, according to formulae (4–8), only the widths of pure line profiles were further analysed

to determine microstructural characteristics, in fact, only w
f
L = wh

L , w
f
G
=

√(
wh
G

)2
− (0.01203)2,

and then w
f
V from formula(12) were calculated for each line profile. Although the approximate

decomposition of a function into Gauss-function and Lorentz-function convolution components
from (9) is generally unstable with respect to approximate problem data, only when wh

L ≥ w
g
L and

wh
G
≥ w

g
G
the solution f to (13) may be found in a stable way through solving (9) for h and g

given, computing component widths of f from (16) and finally calculating w
f
V from (12) and f

from formula(9) (if needed). In this way both width w
f
V and solution f can be found stably while

component widths may vary within the same approximation inaccuracy (for example following
from measurements) and be unreliable. Any simplified analysis of crystalline microstructure based
on immediate exploiting w

f
G
and w

f
L computed by this method may be generally unstable and

unreliable. In this work only resulting widths of pure line profiles w f
V are involved in microstructure

analysis based on formulae (4–8).
The XRD patterns for the indium arsenide specimen are illustrated in Figure 3 (the whole

diffractogram for the central area (0, 0) and XRD line profiles of reflexions 002, 004, 006 for all nine
specimen areas). An example of the results of measurements and computations is shown in Table 5
for the central area (0, 0) and all reflexions analysed. Evidently, the instrumental contributions are
significant only for two line profiles corresponding to smaller Bragg angles.
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(a) (b)

(c) (d)
Fig. 3. The XRD patterns recorded for the indium arsenide plate specimen: whole for central area (0, 0) (a) and for all nine
areas related reflexions 002 ((b), subsequent curves shifted from each other by a thousand counts), 004 ((c), subsequent
curves shifted from each other by a thousand counts) and 006 ((d), subsequent curves shifted from each other by a hundred

counts).

Table 5. Simplified deconvolution of pure line profiles f (calculated) from pairs of experimental h and standard g ones
(measured) through representing all them as Voigt functions: the widths of Voigt functions wV together with widths of
Gauss-function and Lorentz-function components wG , wL approximating XRD line profiles for the central area (0, 0) of

the indium arsenide specimen (all widths are given in the diffraction angle (2θ) scale).

hkl θ0 [
◦] wh

G
[◦] wh

L [
◦] wh

V [
◦] w

g
G
[◦] w

g
L [
◦] w

g
V [
◦] w

f
G
[◦] w

f
L [
◦] w

f
V [
◦]

002 14.7326 0.0190 0.0032 0.0207 0.0120 0.0000 0.0120 0.0147 0.0032 0.0164

004 30.5717 0.0322 0.0096 0.0377 0.0120 0.0000 0.0120 0.0299 0.0096 0.0354

115 41.3541 0.0664 0.0150 0.0748 0.0120 0.0000 0.0120 0.0653 0.0150 0.0737

135 48.7859 0.1420 0.0148 0.1501 0.0120 0.0000 0.0120 0.1415 0.0148 0.1496

006 49.7226 0.0555 0.0270 0.0713 0.0120 0.0000 0.0120 0.0542 0.0270 0.0700

335 56.4915 0.1328 0.0261 0.1473 0.0120 0.0000 0.0120 0.1323 0.0261 0.1468

226 57.5056 0.0880 0.0366 0.1092 0.0120 0.0000 0.0120 0.0871 0.0366 0.1084
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3.6. Crystalline structure of the indium arsenide specimen

The experimental peak positions were analysed together as approximating Bragg angles to find
the unit-cell constants from formulae (1–3). Firstly, owing to the strong texture in the specimen
and well-determined orientation of diffracting planes with respect to the specimen surface, all
line profiles were indexed uniquely with the use of an approximate value of a = 0.60580 nm. For
each area experimental interplanar distances were determined according to (1) and then with use
of (2), the unit-cell constants were determined as minimising functional (3). Since permanent
compressive shear stress and resulting strain in plane (001) of the specimen layer was expected, two
structures were considered – cubic and tetragonal with axes [001] perpendicular to the specimen
surface. Additionally, a possible small shift δ of the diffraction angle scale (same for all reflexions)
was taken into account. The minimisers of corresponding functionals:

(a, δ) = arg min {ψ2(a, δ) : a > 0} or (a, c, δ) = arg min {ψ2(a, c, δ) : a, c > 0} (17)

were found by the algorithm of approximate optimisation for each specimen area.
The computations were performed in three series. Firstly, the unit cell constants were computed

for both structures with zero δ assumed. A better approximation was found for the tetragonal
lattice. Secondly, the full problem (17) was solved for both structures. For each specimen area
the approximation to measured data occurred much better (with a much smaller value of (3))
for the tetragonal lattice than for the cubic one, but with a different shift of diffraction angle
values. Therefore, only results for the tetragonal structure were considered to be reliable, and
hence the computations were repeated only for the cubic structure with the same δ as determined
for tetragonal one. The resulting root-mean-square relative error (3) was taken as the relative
error in the determined unit-cell constants; the absolute error was calculated by multiplication.
The results for the central area (0, 0) are collected in Table 6 to illustrate the details. The values
of unit-cell constants with corresponding error estimates following from the minimal values of
the similarity functional (3, 17) are collected in Table 7. The resulting errors of approximation
of model interplanar distances to experimental ones (after the correction for the shift of the
diffraction angle scale) are much smaller for the tetragonal lattice than for the cubic one, which
supports the hypothesis of stress-enforced permanent (first-order) strain and effective (pseudo)
tetragonality of the indium arsenide specimen. The unit-cell constant for cubic lattice varies slightly

Table 6. Results of computations of unit-cell constants for area (0, 0) of the indium arsenide plate under the assumption of
a tetragonal lattice with axis [001] perpendicular to the layer surface: Bragg (reflexion) angles θ0 [rad] and interplanar
distances d determined from measured XRD peak positions and calculated as solutions to inverse problem, with
relative errors; the resulting values are: δ = −0.0381 mrad, ψ = 0.000021, a = 0.605387 ± 0.000013 nm, c =

0.606126 ± 0.000013 nm

h k l θ0,hkl−m + δ [rad] θ0,hkl−c [rad]
θ0−m − θ0−c

θ0−m
dhkl−m [nm] dhkl−c [nm]

dm − dc

dm

0 0 2 0.2569913 0.2570294 0.0001510 0.3030621 0.3030630 –0.0000028

0 0 4 0.5332473 0.5332854 0.0000501 0.1515344 0.1515315 0.0000193

1 1 5 0.7213711 0.7214092 0.0000512 0.1166386 0.1166384 0.0000013

1 3 5 0.8513091 0.8513472 0.0001036 0.1024137 0.1024182 –0.0000439

0 0 6 0.8672021 0.8672401 0.0000589 0.1010199 0.1010210 –0.0000110

3 3 5 0.9858862 0.9859243 0.0000017 0.0923883 0.0923861 0.0000241

2 2 6 1.0031457 1.0031838 0.0000176 0.0913578 0.0913566 0.0000130
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between sample areas; the mean of all nine is a = 0.606040 nm with the standard deviation of
0.000010 nm which is around twelve times less than for each value for a single area. The unit-cell
constants (especially c) for the tetragonal lattice vary slightly in each zone of three vicinal areas:
[(−1, 1), (0, 1), (1, 1)], [(−1, 0), (0, 0), (1, 0)], [(−1,−1), (0,−1), (1,−1)], and therefore the means for
these three zones (presented in the lower part of Table 7) are taken as representative for the
specimen, they differ between zones significantly (especially values of c). This time the resulting
standard deviations for these triples are similar (for c) or a little larger (for a) as estimates for each
sample area. Characteristics of the crystalline structure (tetragonal compared with the cubic one)
of the specimen in these three zones like lattice constants, tetragonality and strains in directions
[100], [010] (in plane (001)) or [001] and change of unit-cell volume are gathered in Table 8 (with
estimates of uncertainties given in Table 7). The compression of around 0.001 in two directions in
plane (001) is accompanied by tension of around 0.00015 in perpendicular direction [001] with
resulting diminution of unit-cell volume of around −0.002. The tetragonality rations in the three
zones are significantly different.

A reliable estimation of the shift of the diffraction angle scale is important, since the set of
seven Bragg angles corresponding precisely to a cubic lattice might be falsely interpreted as
corresponding precisely to a tetragonal lattice when a suitable but false value of δ was admitted.

The method for estimation and quantitative characterisation of tetragonality applied in this
work is based on exploiting only diffractograms recorded in the standard (for HRXRD) way,
differently than in experimental works in which difficult measurements of line profiles from
diffracting planes perpendicular to the semiconductor plate surface are performed [54, 55].

Table 7. Results of computations of unit-cell constants for all areas of the indium arsenide plate under the assumption of
a tetragonal lattice or cubic lattice (both with axis [001] perpendicular to the layer surface): a, c – unit-cell constants for
the tetragonal lattice, ac – unit-cell constant for the cubic lattice, sat , sct , sac – estimates of absolute errors computed
from root-mean-square relative errors ψt , ψc of estimating interplanar distances (being effectively standard deviations
describing dispersion of unit-cell constant values corresponding to the measured ones around the computed estimate), δ
– shift of the diffraction angle scale. Finally, as representative for the investigated sample, three pairs of the tetragonal
lattice constants and one constant for the cubic lattice were taken (boldfaced for zones of areas [(−1, 1), (0, 1), (1, 1)],

[(−1, 0), (0, 0), (1, 0)], [(−1, −1), (0, −1), (1, −1)].

Tetragonal lattice Cubic lattice

Area a [nm] sat [nm] c [nm] sct [nm] ψt (a, c, δ) ac [nm] sac [nm] ψc (a, δ) δ [mrad]

(−1, 1) 0.605381 0.000018 0.606155 0.000019 0.000031 0.606048 0.000120 0.000198 –0.170

(0, 1) 0.605403 0.000007 0.606152 0.000007 0.000012 0.606049 0.000115 0.000189 –0.176

(1, 1) 0.605354 0.000010 0.606165 0.000010 0.000017 0.606053 0.000124 0.000205 –0.194

(−1, 0) 0.605378 0.000007 0.606136 0.000007 0.000012 0.606032 0.000116 0.000192 –0.027

(0, 0) 0.605387 0.000013 0.606126 0.000013 0.000021 0.606024 0.000114 0.000188 –0.038

(0, 1) 0.605347 0.000016 0.606134 0.000016 0.000027 0.606026 0.000122 0.000201 –0.051

(−1, −1) 0.605431 0.000011 0.606139 0.000011 0.000019 0.606041 0.000109 0.000180 –0.066

(0, −1) 0.605405 0.000012 0.606140 0.000012 0.000020 0.606039 0.000113 0.000187 –0.079

(1, −1) 0.605406 0.000017 0.606144 0.000017 0.000028 0.606042 0.000114 0.000189 –0.093

(∗, 1) 0.605380 0.000025 0.606157 0.000009 0.606050 0.000003

(∗, 0) 0.605370 0.000021 0.606132 0.000015 0.606027 0.000004

(∗, −1) 0.605414 0.000015 0.606141 0.000013 0.606041 0.000002

(∗, ∗) 0.605388 0.000027 0.606143 0.000012 0.606040 0.000010
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Table 8. Characteristics of the crystalline structure of the specimen in three zones observed in the experimental data and
a comparison of unit-cell constants for cubic (symbols with subscript c) and tetragonal systems together with characteristics
of tetragonality and strains in directions [100] , [010] (in plane (001)) or [001] and change of the unit-cell volume. The

estimates of uncertainties are given in Table 7.

Crystal lattice constants Quotients Strain
Area a [nm] c [nm] ac [nm] c/a a/ac c/ac Vt /Vc (001) [001] V

(∗, 1) 0.605380 0.606157 0.606040 1.001284 0.998911 1.000194 0.998017 –0.001089 0.000194 –0.001983
(∗, 0) 0.605370 0.606088 0.606040 1.001258 0.998896 1.000153 0.997945 –0.001104 0.000153 –0.002055
(∗, −1) 0.605414 0.606050 0.606040 1.001201 0.998968 1.000167 0.998103 –0.001032 0.000167 –0.001897

3.7. Crystalline microstructure of the indium arsenide specimen

The widths of pure line profiles for each specimen area were analysed and interpreted together
with using formulae (4–7) and (8) under the assumption of a model polycrystal described in 2.2.
The averaged characteristics of crystalline microstructure: mean crystallite size n, shape coefficient
κ, mean-absolute second-order strain e and standard deviation σ of crystallite size distribution
have been found as the solutions of an inverse problem reduced to a non-linear least-squares
problem of minimisation of a similarity functional (8):

(n, κ, e, σ) = arg min
{
ϕ2 (n, κ, e, σ) : n, κ, e, σ > 0

}
(18)

where ϕ = ϕ(n, κ, e, σ) is a function of arguments n, κ, e, σ defined by formulae (4–8). The
solutions were computed with an additional restriction that the size of crystallite in direction [001]
may not be larger than the plate thickness of 5.15 µm. The standard deviation σ for crystallite size
distribution turned out to be very small and did not influence the results; therefore, it was neglected
in the final calculations. The monodisperse set of crystallites turned out to be a good model for
the investigated indium arsenide plate. Moreover, after several numerical experiments, the proper
value of width of the standard line profile (with only the Gauss-function component) was fixed
at (θ) = 0.105 mrad (or (2θ) = 0.012031◦) as a mean from results of analysing diffractograms
from all areas. In some cases, an instability with respect to shape coefficient κ was observed. To
stabilise the computations, the solutions to the inverse problem were finally found as minimisers
to the smoothing functional of a special form:

(n, κ, e) = arg min
{
ϕ2 (n, κ, e) + α · κ2: n, κ, e > 0

}
(19)

with constant regularisation parameterα = 5.35·10−8. Such regularisation produced stable solutions
in all cases although in most of them the results obtained without regularisation differed negligibly.

The widths of experimental XRD line profiles were determined with relative errors not larger
than 4% (mostly 1% to 2%), which influenced the resulting discrepancies (8). The relative errors
of recovering the widths of pure line profiles from the experiment by those following from the
best-fitted model of polycrystal are shown in Table 9 and illustrated for area (0, 0) in Figure 4
(this is the worst result from all areas); for each area the root-mean-square relative error (8) is
given. The relative errors of recovering single line profiles generally vary around 5%, up to 20%
in separate cases, especially for very weak peak 226; such error level is typical of XRD data and
acceptable.

The averaged microstructure characteristics for all nine areas: n, κ, e, b, h are collected in
Table 10; where b = n · a [nm] is the length of the base edge (in directions [100] and [010] parallel
to the plate surface) and h = n · κ · a [nm] is the height (in direction [001] perpendicular to the plate
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Table 9. Widths (FWHM) [milliradians of reflexion angle (θ)] of pure line profiles f calculated from pairs of experimental
h and standard g ones (measured) through representing all them as Voigt functions and widths calculated for a model
of microstructure producing the best approximation for the whole set of widths for each specimen area separately, with
relative errors of recovering; the root-mean-square error of this approximation is shown to the right of each symbol of area;

the unit-cell constants for each three-area zone are also displayed.

a
[nm] 0.605380 (–1,1) 0.0421 (0,1) 0.0724 (1,1) 0.0647

c
[nm] 0.606157 Experiment Model Difference Experiment Model Difference Experiment Model Difference

hkl θ0 [rad] w
f
V [mrad] w

f
V

[mrad] (relative) w
f
V [mrad] w

f
V

[mrad] (relative) w
f
V [mrad] w

f
V

[mrad] (relative)

002 0.256977 0.184 0.184 –0.001 0.195 0.198 0.012 0.189 0.192 0.012
004 0.533228 0.340 0.342 0.004 0.349 0.344 –0.016 0.341 0.334 –0.020
115 0.721331 0.576 0.532 –0.083 0.591 0.547 –0.082 0.572 0.543 –0.054
135 0.851221 0.839 0.817 –0.027 0.956 0.888 –0.077 0.973 0.902 –0.079
006 0.867129 0.621 0.647 0.040 0.634 0.639 0.007 0.623 0.622 –0.002
335 0.985885 1.025 1.077 0.048 1.115 1.169 0.046 1.144 1.188 0.037
226 1.003104 0.946 0.977 0.031 0.867 1.016 0.146 0.879 1.017 0.135

a
[nm] 0.605370 (–1.0) 0.0945 (0.0) 0.1125 (1.0) 0.1105

c
[nm] 0.606132 Experiment Model Difference Experiment Model Difference Experiment Model Difference

hkl θ0 [rad] w
f
V [mrad] w

f
V

[mrad] (relative) w
f
V [mrad] w

f
V

[mrad] (relative) w
f
V [mrad] w

f
V

[mrad] (relative)

002 0.256988 0.145 0.146 0.006 0.143 0.145 0.010 0.141 0.143 0.009
004 0.533253 0.306 0.310 0.014 0.309 0.306 –0.008 0.306 0.305 –0.003
115 0.721366 0.635 0.616 –0.030 0.643 0.606 –0.061 0.657 0.622 –0.056
135 0.851260 1.307 1.138 –0.148 1.305 1.120 –0.165 1.361 1.166 –0.167
006 0.867177 0.635 0.609 –0.044 0.611 0.600 –0.019 0.614 0.600 –0.024
335 0.985931 1.357 1.502 0.097 1.281 1.478 0.133 1.327 1.539 0.138
226 1.003161 0.997 1.199 0.168 0.946 1.179 0.198 0.988 1.216 0.187

a
[nm] 0.605414 (–1.-1) 0.0764 (0.-1) 0.0781 (1.-1) 0.0793

c
[nm] 0.606141 Experiment Model Difference Experiment Model Difference Experiment Model Difference

hkl θ0 [rad] w
f
V [mrad] w

f
V

[mrad] (relative) w
f
V [mrad] w

f
V

[mrad] (relative) w
f
V [mrad] w

f
V

[mrad] (relative)

002 0.256984 0.140 0.141 0.003 0.139 0.139 0.003 0.138 0.139 0.007
004 0.533244 0.307 0.311 0.015 0.303 0.308 0.016 0.306 0.308 0.007
115 0.721349 0.622 0.566 –0.098 0.617 0.561 –0.099 0.621 0.565 –0.100
135 0.851224 1.025 0.941 –0.089 1.018 0.936 –0.088 1.038 0.949 –0.095
006 0.867160 0.619 0.618 –0.002 0.615 0.611 –0.006 0.609 0.611 0.003
335 0.985872 1.135 1.243 0.087 1.138 1.236 0.079 1.133 1.253 0.096
226 1.003121 0.938 1.071 0.125 0.918 1.063 0.137 0.938 1.072 0.126
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Fig. 4. Widths (FWHM) [milliradians of reflexion angle (θ)] of pure line profiles f calculated from pairs of experimental
h and standard g ones (measured) through representing all of them as Voigt functions and widths calculated for a model of
the microstructure producing the best approximation for the whole set of widths for specimen area (0, 0) (the polygonal

chain is added only for better visibility of the sequence of model values).

surface) of the mean cuboidal crystallite and e is the mean-absolute second-order strain. These
characteristics, together with unit-cell constants, are also illustrated in Figure 5. These results
evidence crystalline heterogeneity of the investigated indium arsenide plate. It can be regarded
as a defected monocrystal with dislocations or equivalently as a mosaic bulk polycrystal (one
large crystalline grain) comprising crystallites slightly misoriented from each other and separated
with only small-angle boundaries between them. The crystallites are, on average, rode-like and
elongated in the direction perpendicular to the plate surface. Evidently, the mean crystallite sizes
(together with shape) and seconds-order strains change from one side of the plate to the opposite

one: roughly in the first zone [(−1, 1) , (0, 1) , (1, 1)] b ∼ 90 nm, h ∼ 500 ∼
1
10

t, e ∼ 0.000163,

in the second zone [(−1, 0) , (0, 0) , (1, 0)] b ∼ 60 nm, h ∼ 1600 nm∼
1
3

t, e ∼ 0.000167, in the third
zone [(−1,−1) , (0,−1) , (1,−1)] b ∼ 80 nm, h ∼ 5000 nm ∼ t, e ∼ 0.000174, (where t = 5.15 µm
is the plate thickness). The mean-absolute second-order strain is small in the whole specimen
and varies slightly between 0.000159 and 0.000176 being a little smaller in areas with smaller
crystallites. Nevertheless, the contribution from the strain to XRD line profiles is significant as it
is illustrated in Table 11 for area (0,0) according to formulae (4–7). Each small-angle boundary
between side faces of vicinal crystallites may be interpreted as a single dislocation. Under such
hypothesis, for cuboidal crystallites, the dislocation density can be calculated as ρ = 2 · b−2 – these
estimates are given in the last column of Table 10.

The estimation of uncertainties in the computed values of microstructural characteristics
is difficult because the inverse problem of determining them is unstable. It can be effectively
performed via numerical tests for a specific algorithm and data type (particularly as those considered
in this work). To achieve it, a series of numerical experiments was made. The experimental data
from area (−1, 1) – widths of Gauss-function and Lorentz-function components of pure line
profiles – were randomly perturbed on the similar (although a little excessive) level as a difference
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Fig. 5. Averaged microstructural characteristics and unit-cell parameters (for the permanent cubic lattice and for a pseudo-
tetragonal lattice enforced by stress from the substrate) of the indium arsenide specimen in the centres of square areas:
b [nm] is the length of the square base edge (in plane (001)) and h [nm] is the height (in direction [001]) of the mean

crystallite and e is the mean-absolute second-order strain.

Table 10. Averaged microstructural characteristics of the indium arsenide specimen in the centres of square areas: b [nm] is
the length of the square base edge and h [nm] is the height of the mean crystallite and e is the mean-absolute second-order

strain; the estimate of dislocation density ρ from size b of the mean crystallite is added.

Area n κ b = n · a [nm] h = n · κ · a [nm] e ϕ(nκe) ρ
[
m−2]

(–1,1) 177.8 5.52 107.7 595 0.000169 0.0421 1.73 · 1014

(0,1) 143.7 5.59 87.0 487 0.000163 0.0724 2.64 · 1014

(1,1) 136.9 6.09 82.9 505 0.000159 0.0647 2.91 · 1014

(–1,0) 96.5 27.7 58.4 1618 0.000169 0.0945 5.86 · 1014

(0,0) 98.1 25.2 59.4 1499 0.000166 0.1125 5.67 · 1014

(1,0) 92.9 31.6 56.2 1777 0.000167 0.1105 6.33 · 1014

(–1,–1) 131.8 59.8 79.8 4778 0.000176 0.0764 3.14 · 1014

(0,–1) 132.0 57.3 79.9 4585 0.000174 0.0781 3.13 · 1014

(1,–1) 128.9 66.0 78.0 5154 0.000174 0.0793 3.28 · 1014

between model and experimental widths. Then microstructural characteristics were computed by
the same algorithm and eventually the mean and standard deviation for the whole sequence of
resulting values were calculated for each microstructural parameter. The rounding of the quotient
of a standard deviation divided by a mean serves as estimate of relative error in corresponding
parameter value. They are: 10% for b, 30% for h, 7% for e, and the details are shown in Table 12.
The mean values from ten-element sequences of experiments agree very well with those obtained
from experimental data.
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Table 11. Widths (FWHM) [milliradians of reflexion angle (θ)] of pure line profiles f calculated from pairs of experimental
h and standard g ones (measured) through representing all them as Voigt functions and widths calculated for a model of
the microstructure producing the best approximation for the whole set of widths for area (0,0); widths of hypothetical line
profiles from crystallite shape and sizes and from second-order strain contributing (as convolutive multipliers) into model

pure line profiles are also presented.

InAs area (0,0) Model Model Model Experiment Difference

hkl θ0 [rad] wf ,k [mrad] wf ,r [mrad] wf [mrad] w
f
V [mrad] (relative)

002 0.256988 0.048 0.129 0.145 0.143 0.010

004 0.533253 0.054 0.290 0.306 0.309 –0.008

115 0.721366 0.402 0.432 0.606 0.643 –0.061

135 0.851260 0.968 0.560 1.120 1.305 –0.165

006 0.867177 0.072 0.579 0.600 0.611 –0.019

335 0.985931 1.276 0.742 1.478 1.281 0.133

226 1.003161 0.870 0.770 1.179 0.946 0.198

Table 12. Averaged microstructural characteristics of the indium arsenide specimen in the central square area calculated
from widths of Gaussian and Lorentzian components of line profiles from measurements (0) and simulated (1-10) by
adding to them random disturbances with the resulting root-mean-square relative error around 0.05 (two last columns):
b [nm] is the length of the square base edge and h [nm] is the height of the mean crystallite and e is the mean-absolute
second-order strain; artificial data differ from those from measurements at the same level as the measured and modelled
ones; the standard deviation (S) and relative standard deviation (R) corresponding to series mean (M) are estimates of

errors in corresponding parameters.

(−1, 1) n κ b = n · a [nm] h = n · κ · a [nm] e ϕ(nκe) w
f
L w

f
G

0 177.6 5.52 107.6 594.7 0.000169 0.0421 0 0

1 184.7 5.29 111.9 592.3 0.000171 0.0463 0.0438 0.0317

2 146.0 5.30 88.4 468.6 0.000149 0.0443 0.0556 0.0413

3 194.2 5.45 117.6 641.7 0.000173 0.0645 0.0545 0.0437

4 172.3 4.63 104.3 482.8 0.000169 0.0322 0.0398 0.0465

5 189.6 8.09 114.8 929.2 0.000183 0.0540 0.0508 0.0338

6 160.0 4.74 96.9 459.7 0.000161 0.0550 0.0472 0.0359

7 195.3 6.89 118.3 815.3 0.000176 0.0168 0.0446 0.0536

8 156.4 4.92 94.7 466.2 0.000157 0.0858 0.0625 0.0489

9 180.6 5.84 109.4 639.5 0.000170 0.0164 0.0390 0.0590

10 156.8 4.52 94.9 429.0 0.000153 0.0439 0.0510 0.0602

M 174.0 5.56 105.3 592.6 0.000166 0.0456 0.0444 0.0413

S 16.9 1.07 10.3 159.8 0.000010 0.0200 0.0163 0.0167

R 0.097 0.192 0.097 0.270 0.062 0.439 0.368 0.405

R 10% 20% 10% 30% 7%
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3.8. Heterogeneity of crystalline state of the investigated indium arsenide specimen

The investigated thin plate of pure indium arsenide is a mosaic monocrystal with non-
homogeneous crystalline microstructure and deformed crystalline structure. Three zones of three
areas with similar characteristics are observed. For emphasising the similarities and differences
between zones, rough estimates of principal parameters are shown in Table 13.

Table 13. Structural and averaged microstructural characteristics of the indium arsenide specimen in three zones (means
from three areas in each zone): [(−1, 1) , (0, 1) , (1, 1)], [(−1, 0) , (0, 0) , (1, 0)], [(−1, −1) , (0, −1) , (1, −1)]; symbols in the

headers as in Table 8 and Table 10; for the cubic lattice, the permanent parameter is ac = 0.60604 nm.

Zone a [nm] c [nm] c/a at /ac ct /ac V t /Vc − 1 b [nm] h [nm] e [%] ρ
[
m−2] δ [mrad]

1 0.60538 0.60616 1.00128 0.99891 1.00019 –0.00198 93 530 0.0169 2.4 · 1014 0.177

2 0.60537 0.60609 1.00126 0.99890 1.00015 –0.00206 58 1630 0.0168 6.0 · 1014 0.039

3 0.60541 0.60605 1.00120 0.99897 1.00017 –0.00190 79 4840 0.0175 3.2 · 1014 0.079

Another property of the specimen is visible in the values of shift δ of the diffraction angle scale.
The dependence of δ on experimental conditions (especially the configuration of a diffractometer) is
generally complex [58] but for an HR HRD diffractometer with an almost-parallel, well-collimated
and almost monochromatic X-ray beam, it is principally the effect of specimen displacement below
(δ < 0) or up (δ > 0 – toward the X-ray tube) the rotation axis at the stage sample level. The
specimen plate is bent along the central zone (central horizontal line in the diagrams in Figure 1
and Figure 5) and convex toward the X-ray tube and the detector. This deflection can be, to some
extent, caused by interaction of the gallium arsenide substrate with the indium arsenide cover
layer; the detailed analysis of stresses in the whole specimen is beyond the scope of this work.

4. Conclusions

In this work the crystalline homogeneity of an undoped indium arsenide epitaxial layer
deposited on gallium arsenide substrate by molecular beam epitaxy was studied using a high-
resolution X-ray diffraction technique and mathematical modelling of both crystalline structure
and crystalline microstructure based on analysing X-ray diffraction patterns. The goals were both
elaborating and testing the whole procedure for investigating similar materials (including the
experiment, modelling and computations) and studying the objective specimen.

The specimen was a 20 mm × 20 mm × 5.15 µm plate on which a regular 3 × 3 point grid
was plotted to select areas of exploration by high-resolution X-ray diffractometry. For each area
(of size determined by a section of the X-ray beam), an XRD pattern containing seven peaks was
recorded together with corresponding rocking characteristics. The full-widths-at-half-maximum of
the rocking curves for all measurement points and all reflexions were small and close to each other,
which evidenced high structural homogeneity of the sample with a low degree of disorientation of
crystallites and strong texture. It was realised that whole plate might be regarded as one mosaic
polycrystalline grain i.e. as an equivalent to a defected monocrystal containing dislocations. The
(2θ − ω) XRD line profiles for each specimen area were recorded and explored to determine
the averaged parameters of the crystal structure – unit-cell constants and crystal microstructure –
mean size and shape of crystallites and mean-absolute second-order deformation of the crystalline
lattice. The last exploration was based on a simplified mathematical model of the crystalline
microstructure.
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The unit-cell parameters were determined by exploring diffraction peak positions for a per-
manent cubic structure and for a pseudo-tetragonal structure enforced by interaction with the
substrate. The state of permanent (first-order) strain was recognised in the whole specimen.

The unit-cell constant of the cubic crystal lattice of pure indium arsenide was determined to be
0.606040 (±0.000010) nm.

The analysis of XRD data showed that the specimen (approximately) comprised elongated
rode-like cuboidal crystallites with the square base of edge-lengths of around 90 − 60 − 80 nm
(parallelly to the surface) and height of around 500 − 1600 − 5000 nm (perpendicularly to the
surface) in three three-area zones (as determined by the measurement point grid). In all areas, the
mean-absolute second-order strain turned out to be very small, i.e. around 0.000170 nm, although
contributing to XRD line profiles significantly.

Both structural and microstructural parameters appeared to change from one edge of the
square sample plate to the opposite one and be close to constant in parallel zones elongated in the
perpendicular direction. The plate itself turned out to be bent along the central axis parallel to
zone longer limits.

In this way, a new complete procedure to investigate thin semiconductor plates (epitaxial
layers), including HRXRD measurements with a mathematical structure and microstructure
modelling combined with computations, was proposed and successfully applied to determine both
the structural and microstructural characteristics of such a specimen.
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