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Abstract
The Lithuanian national standard of voltage is maintained as the basis for calibration and measurement
capabilities of Lithuania published in the Key Comparison Database of the International Bureau of Weights
and Measures (BIPM). The stability and uncertainty of the voltage value measurements, performed since 2004
using the calibrated values of the Zener solid-state voltage standards (zeners) to predict their future behavior,
are discussed. Conclusions regarding short- and long-term predictability of their behavior, which can be used
for choosing an appropriate calibration period, are presented. An estimate of merit for approximations is
proposed; based upon the estimate, it is concluded that the hyperbolic approximation is the best one in the
most of the cases. Also discussed is the behavior of voltage dividers used in the zeners as well as the recovery
of the zeners after a failure of their power supply. It is concluded that the voltage standards operated by the
Lithuanian National Electrical Standards Laboratory feature stable drift of the voltage reproduced, which is
well predictable by means of linear or non-linear regression.
Keywords: measurement standards, electric voltage, calibration, uncertainty, prediction.

1. Introduction

Clarence Melvin Zener in 1934 proposed a theory describing electrical breakdown of solid
dielectrics [1]. The theory has been employed to develop the Zener diodes and solid-state DC
voltage standards, which contain the Zener diodes as a voltage reference and include additional
circuitry for thermostabilization, generation of other voltages based upon the reference, etc. Since
late 1980s, the devices called solid-state voltage standards, the Zener reference voltage standards,
or simply zeners (we use this term throughout the paper), have been replacing the conventional
Weston cell in the capacity of a primary standard of voltage [2, 3]. Nowadays, many national
metrology institutes (NMIs) use Josephson Voltage Systems (JVS) based upon the effect described
by Brian David Josephson in 1964 [4] as their national standards. However, as implies a recent
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publication [5] as well as some of the calibration and measurement capabilities published at the
Key Comparison Database of BIPM, NMIs of some countries still use zeners in this capacity; they
are also widely used as transfer and reference standards [6, 7] reproducing stable voltage at fixed
values of 10 V and 1.018 V

Since the development of zeners, several commercially available designs with predictable drift
of voltage, its low sensitivity to environmental conditions, and high stability have been created.
Relative rates of predictable drift of about 10−6/year and relative differences between predicted
and measured values as small as 2.5 · 10−7 have been reported [8].

Much effort is still devoted to the development of new designs of zeners [5,9], assessment of their
drift, stability, and sensitivity to ambient conditions [10–12]. On the other hand, research is aimed
at improving the properties of the devices, at their statistical assessment and modelling [13–17].
Zeners are used also in other applications, such as heating, temperature sensing, and generation of
microwave noise [18,19]. Also considered are effects of power supply disruptions on the operation
of zeners [20].

Because of inevitable drift of voltage reproduced by zeners, they are periodically calibrated
against JVS, while the voltage to be reproduced by them after the last calibration is determined
by means of prediction based upon the calibration history available. As the calibration is costly,
especially when it requires transporting a device abroad, employing the best prediction method
(usually, the linear regression is a default choice) and determining the right time for the next
calibration is of primary importance.

We describe the behavior from 2004 to 2022 of zeners operated by the Center for Physical
Sciences and Technology (FTMC) – the Lithuanian NMI – and calibrated regularly against the
FTMC’s JVS. We consider the results of the regression analysis (both linear and non-linear) of the
voltage values reproduced by our zeners, including their predictability using different regression
functions and different durations of calibration history. We also attempt to determine the best
prediction method and time for the next calibration necessary to ensure the desired prediction
accuracy for the voltage values reproduced between calibrations and consider the operation of
voltage dividers – deviation of their voltage division ratio from its nominal value.

The Lithuanian national standards of voltage and resistance were developed at the Electrical
Standards Laboratory (ESL) of FTMC, following the assignment by the Government of the
Republic of Lithuania, and were implemented in 2005. The national standard of the electric
resistance was described in detail in [21]. The national standard of voltage comprises both primary
and secondary standards. The primary voltage standard is made up of a Josephson voltage system,
while the secondary standard consists of a group of zeners. The diagram of traceability for DC
and AC voltage by means of the direct comparison method is presented in Fig. 1 (AC voltage is
out of the scope of this paper).

1.1. Primary voltage standard

ESL’s Josephson Voltage System (JVS) – a closed-cycle system made by Hypres, USA – is
shown in Fig. 2. The array of the Josephson junctions is installed in a vacuum cryostat evacuated
by a pump (not shown in the figure) and cooled down to the operating temperature of 4 K
by a closed-cycle system, where helium is supplied to the cryo-cooler by a CNA-11 helium
compressor. Microwave field necessary for the Josephson phenomenon is provided by a loop of
locked frequency made up of a Gunn oscillator, a mixer, a GS1002 power supply-modulator, and
an EIP 578B locking microwave counter. Microwave frequency generated by the loop is stabilized
using the 10 MHz reference signal coming from the Lithuanian national standard of time and
frequency, also operated by FTMC. Microwaves of a selected frequency (usually, it is close to
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Fig. 1. Traceability of DC and AC voltage in ESL.

Fig. 2. Calibration setup using the ESL’s Josephson voltage system.
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75 GHz), within its uncertainty of less than 15 Hz, propagate by the waveguide to the array of the
Josephson junctions. Contacts of the Josephson array are connected to the wires, which, through
the output filters in a shielded box, are connected to a special connector to which a cable coming
from the control unit of JVS 1002 is connected. Via this cable, both the bias and the voltage of
the Josephson array are transmitted. Outputs A and B of a Data Proof 160B low thermal e.m.f.
(electromotive force) scanner in series-opposition are connected to the JVS 1002 through the
device under test (DUT) cable. An Agilent 3458A digital multimeter connected to the control
unit of JVS 1002 is to measure directly the voltage generated by a zener in order to calculate
the number of the necessary Josephson step or to operate as a null detector while measuring the
difference between voltages of the Josephson array and the zener (this function is enabled by
connecting the scanner outputs to the DUT cable in series opposition). For automation of the
calibration activities, the devices are connected to the computer via a GPIB interface.

1.2. Secondary voltage standard

The secondary voltage standard consists of a group of five zeners connected to the scanner as
well as an Agilent 3458A digital multimeter (DMM) operating as a null detector, which compares
the voltages generated by the zeners and the DUT. To this end, the DMM is connected to the
scanner having the “Lo” terminals of the scanner’s outputs A and B short-circuited and connecting
DMM’s “Hi” to the terminal “Hi” of the scanner’s output B, while DMM’s

“Lo” – to the terminal “Hi” of the scanner’s output A.
The values of DC voltage at the primary level can be realized in the range of ±10 V At

the secondary metrological level, there are five zeners made by Fluke, each having fixed value
outputs of 10 V and 1.018 V. The output of 10 V is realized by means of transforming the voltage
produced by the Zener diode itself, while that of 1.018 V is realized by dividing the 10 V voltage
as described in [22]. The traceability to the SI unit of voltage is ensured by calibrating regularly
all the five zeners to JVS. Although the values of 10 V and 1.018 V can be realized by the JVS
with the relative uncertainty of the order of 10−13, the zeners, due to their internal noise, can be
calibrated with the relative uncertainty not better than 5 · 10−8 and 6 · 10−8, respectively. Those
uncertainties were confirmed by the results of international comparisons in 2005. As well as the
above-mentioned JVS, the set of zeners can be used for calibration of DC voltage sources and
multimeters at fixed values of 10 V, 1.018 V, and 1 V (see Fig. 1). For this purpose, it is important
to know the behavior of each zener, most importantly, its stability.

The output voltage of a zener is affected by ambient temperature, air pressure, and relative
humidity. Moreover, voltage values drift due to aging. A zener’s sensitivity to environmental
conditions and other properties depends on materials and construction chosen by the manufacturer.
All the zeners in our set have been manufactured by Fluke with their proprietary technology. They
feature relative voltage drift of about 8 · 10−7/year, relative temperature dependence of voltage of
about 10−6/K, and relative pressure dependence of voltage of about 2 ·10−9/hPa, while the humidity
dependence is not specified. The influence of ambient temperature is mostly eliminated by the
construction of the zeners themselves, where the sensitive chip is placed in a thermostabilized
oven. Additional thermostabilization is achieved by keeping ambient temperature in the laboratory
room at 23◦C ±1◦C and relative humidity at 43% ± 10%.

All the calibration and measurement capabilities (CMCs) of the Lithuanian NMI in the area
of electricity and magnetism now in effect are described in the Key Comparison Database of
BIPM [23]. Here, we consider the behavior and prediction of metrological characteristics of the
DC voltage standard in the years 2003–2020.
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2. Determination of the reference voltage

The calibration of a DUT – e.g., a zener – against the Josephson Voltage Standard (JVS) is
performed using the NISTVolt software, whose operating principles are outlined below. The basic
principle is connecting the JVS and the DUT in series opposition and measuring the difference
between the array and DUT voltages with a precision digital voltmeter (DVM) as shown in Fig. 3.
The circuit explicitly includes extra signal sources to emulate random noise in the measurement
(Vnoise) as well as thermal voltages existing in the cryoprobe and wiring of the measurement loop
together with the zero offset of the DVM and its drift with time – the effects described as Vo + mt,
where m is the drift rate, and t is the time. An algorithm to eliminate these effects in order to
obtain the best estimate of VDUT is used. The measurement is repeated with reversed polarity P to
reduce their influence on the measurement furthermore.

Fig. 3. Measurement circuit including noise, thermal voltages, zero offset of the DVM and its drift, and the reversing
switch.

The workflow of the measurement is as follows. At first, the voltage of the Zener reference
standard, VDUT, is measured with the DVM to obtain Ve – an estimate of VDUT. Then, the Zener
reference standard is connected to the JVS. As it is known, the voltage generated by a Josephson
array is described as

Va = n f /KJ, (1)
where KJ = 483597.84841698 GHz/V is the Josephson constant, f is the frequency of the driving
microwave signal, which is derived from a reference 10 MHz signal generated by the cesium
atomic clock of the Time and Frequency Standard Laboratory, and n is an integer step number.

Four sets of measurements are performed – two with the reversing switch in the normal
position, that is, P = +1, and two with the reversing switch in the reversed position, that is, P = −1.
Each set consists of ten measurements. After the collection of the first data set, the polarity of the
reversing switch is reversed (P = −1), and the second set of data is acquired. Two more reversals
generate the third and the fourth data sets. Best estimates for VDUT, V0, and m are obtained from
the least-squares regression analysis.

The algorithm used by NISTVolt to calibrate a zener has the following features:
1. The parameter Nsamp controls the measurement bandwidth by specifying the number of

DVM readings to be averaged for each value Vi .
2. Any of about fifty steps near the null point may be used for the measurement.
3. Spontaneous switching between voltage steps during the measurement is tolerated.
4. The DVM and thermal offsets and first-order drifts are fully compensated. However, if the

drift exceeds 80 nV/min, the measurement set is rejected and then repeated.

435

https://doi.org/10.24425/mms.2024.149703
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3. History of behavior of ESL’s Zener reference voltage standards

Since 2004, the output voltages of all our zeners have been periodically measured using our
JVS as described in Section 3; the results are shown in Fig. 4 and summarized in Table 1. The
results give a clear hint that the stability of each voltage standard has been different, which may be
related to their different sensitivity to environmental conditions, particularly, relative humidity.
The standard No. 47003 at its 1.018 V terminal had an almost twice as large drift rate as the others.

Fig. 4. Output voltages of our zeners at their 10 V terminals (left) and their 1.018 V terminals (right) computed as the
session averages. The symbols used for different zeners in the right graph correspond to those used in the left one and are

defined in its legend.

Table 1. Drift per year rates of the voltages at the 10 V and 1.018 V terminals of ESL’s zeners computed from the results
covering the whole period of measurements before the accident, the last four years before the accident, and the period after

the accident.

Standard No. Nominal voltage
Unom

Relative drift p1,
(µV/V)/ year,

from November
of 2004 to

March of 2018

Relative drift p1,
(µV/V)/ year,
from February
of 2014 to

March of 2018

Relative drift p1,
(µV/V)/ year,
from August of
2018 to January

of 2022

46995 10 V –0.87 –0.59 –0.69

1.018 V –0.95 –0.60 –0.56

46998 10 V –1.00 –0.63 –0.56

1.018 V –1.08 –0.60 –0.53

47000 10 V –0.87 –0.80 –0.69

1.018 V –0.88 –0.79 –0.69

47001 10 V –0.83 –0.64 –0.64

1.018 V –0.89 –0.68 –0.67

47003 10 V –0.99 –0.70 –0.63

1.018 V –2.09 –1.14 –1.24
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In July of 2018, an unexpected loss of line power resulted in a discharge of all the batteries of
our zeners, and their voltages slightly changed. However, the drift rates have not changed notably.
As seen from the graphs, generally, drift rates tend to slightly decrease with time. This trend
remains present also after the accident, however, it is not possible to infer whether the trend is less
or more pronounced than before. It is clear that the standard No. 47003 at its 1.018 V terminal still
features a significantly larger drift rate than the others.

The first-order approach to evaluate the behavior of a zener or another device is the linear
approximation of its output parameters obtained by means of linear regression analysis (the least
squares method) as

Uapprox = U0 +Unomp1t, (2)

where U0 is the value of approximation at the initial moment of time t = 0 corresponding to
the beginning of measurements, Unom is the nominal voltage of the output considered (10 V or
1.018 V), and p1 is the relative voltage drift.

Another feature investigated is the stability of the voltage ratio at the two terminals of the
zeners. Figure 5 shows the relative deviation of the ratio of the voltages measured at the two
terminals from its mean value. The magnitude is defined as:

Γ =
U10 V/U1.018 V − 〈U10 V/U1.018 V〉

〈U10 V/U1.018 V〉
, (3)

where U10 V and U1.018 V are the voltages measured at the terminals of a zener at a certain time,
while 〈U10 V/U1.018 V〉 is the mean ratio of the voltages obtained throughout all the measurement
history. We can see that one of our zeners, S/N 47003, has had a significant drift of the ratio.
However, as already mentioned, 1.018 V is produced by dividing the 10 V voltage obtained from
the voltage realized by the Zener diode itself. Therefore, the drift of the above ratio does not imply
any deviation of the 10 V voltage from its nominal value.

Fig. 5. Relative deviation Γ (defined in (3)) of the ratio of the voltages measured at the two terminals of our zeners from
their mean values.
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4. Predictability of behavior of the zeners

Predictability of behavior of the zeners as well as that of any other devices is of primary
importance because the time period for which it can be predicted within the necessary limits defines
the necessary period of calibration. Figures 6 and 7 present estimates of the short- and long-term
predictability of the voltage at the 10 V and 1.018 V terminals of our zeners. The estimates have
been obtained by taking the calibration results left to a vertical bar representing the cut-off time
(the time period denoted as the approximation region on the graphs) and approximating them by
the least squares method while using different approximation functions – linear (4), parabolic (5),
exponential (6), and hyperbolic (7):

Uapprox = U0 + p1t, (4)
Uapprox = U0 + p1t + p2t2, (5)
Uapprox = U0 + a1e−a2t, (6)
Uapprox = U0 + b1/(b2 + t), (7)

where U0, p1, p2, a1, a2, b1, and b2 are the coefficients of the approximating functions, which
are individually determined for every case. Expressions for the coefficients, including those for
the linear and hyperbolic function introduced further, are given in Appendix A. Equation (4) is
actually the same as (2), rewritten in another form. The magnitude depicted is the relative deviation
χ of the actually measured voltage Umeas from that given by the approximating function, Uapprox:

χ =
Umeas −Uapprox

Unom
(8)

versus time. As regards Fig. 6, the calibration history is as long as 15 years, while in the case of
Fig. 7, it amounts to 9 years, whereas the time for which the behavior is predicted (the time period
denoted as the prediction region on the graphs) is 2 and almost 8 years, respectively. Note that
approximating functions were obtained not from all the data obtained before the cut-off time, but
only from some of the data points available – roughly one per year. We have excluded a large
part of our data set to get closer to the reality of the NMIs which use the zeners as their national
standards and cannot afford their frequent calibration against a foreign JVS. On the other hand,
we present all the values of relative deviation computed to obtain a better understanding of how
adequate our approximations are.

From Fig. 6 describing predictability of the behavior of our zeners at their 10 V terminals for
relatively short term (two years), we see that the linear approximation reveals the same trend for all
of them, which implies that all of them feature a similar kind of non-linearity, whereas parabolic,
exponential, and hyperbolic approximations for different zeners behave differently. Note that the
zener No. 47003, which features a drift larger than the others, as indicated by the Table 1, does not
feature larger deviation of the output voltage from the approximations. Therefore, its predictability
is not worse than that of the others. Non-linear approximations are clearly better than the linear one.

The behavior of the voltage differences at the 1.018 V terminals features the same trends as that
of the 10 V ones. Relative differences between the voltage values measured and those predicted
are up to 2.5 times larger than those at the 10 V terminals. They are not shown here for brevity.

Now, let’s consider the predictability of output voltage of the zeners for relatively long term
(8 years) revealed in Fig. 7. The differences between different approximations here are more
pronounced. As well as in the short-term case, non-linear approximations are better than the linear
one, moreover, those exponential and hyperbolic are more symmetric and generally better than the
parabolic one.
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Fig. 6. Short-term predictability of the behavior of our zeners. Relative deviation χ (see (8)) of the actual measured voltage
at the 10 V terminals from that given by different approximations defined by (4)–(7).

Once again, the behavior of the voltage differences at the 1.018 V terminals (not shown)
features trends similar to those observed at the 10 V terminals and, similarly, is worse than in the
case of short-term prediction. Moreover, all the predictions for the 1.018 V terminal of the zener
No. 47003, which features a significant drift with respect to the 10 V one (see Fig. 5), are clearly
worse than those for the 1.018 V terminals of the others.

After a short disruption of the power supply in July of 2018, due to which the back-up batteries
of the zeners had discharged, no tangible changes of the voltage drift rates have occurred, and the
accident has had no significant effect on the predictability of the output voltages of the zeners.
The results presented by so far, although clearly indicating that approximations do work, do not
imply in a straightforward way which method is the best one. It may seem that the curve fitting
the measurement results used for approximation in the best way should be expected to predict in
the best way also their future behavior, however, in reality, it is not the case. Therefore, we have
introduced a magnitude to serve as an estimate of merit for an approximation. We expect it to
depend not only on the method and measurement data, but also on the length of the calibration
history available and the length of the time period for which the behavior is to be predicted.

We define the magnitude σ(M, N, τ) as

σ(M, N, τ) =

√√√
1
R

5∑
Z=1

k∑
p=1

∑
i=1
{UmeasZ (ti) −UapproxZ,M,N,p(ti)}2 (9)
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Fig. 7. Long-term predictability of the behavior of our zeners. Relative deviation χ (see (8)) of the actual measured voltage
at the 10 V terminals from that given by different approximations defined by (4)–(7).

where UmeasZ (ti) is the value of voltage measured at the terminals of the Zth zener at time ti ,
beginning with the first measurement after the approximation time, t1, and ending with a point
measured roughly time τ after the first point (therefore, summation over i in the last sum is
performed while ti ≤ t1 + τ), whereas UapproxZ,M,N,p(ti) is the value of voltage predicted by
the approximation method M for the Z-th zener at time tiand obtained by taking N yearly
measurements, which begin with the p-th one, and R is the number of terms making up the sum.
The last point for the medium sum, k, is selected so that there is sufficient time since the end
of approximation period till the last measurement available. While computing the last sum, we
include all the measurement data available, not only the yearly measurement points. The reduced
set of measurements is used only for obtaining the coefficients of the approximating function. In
our calculations, we have selected the value of τ to be equal to three years as a reasonable period
of time for prediction because it is a longer than usual calibration interval. On the other hand,
usually for such a time period the behavior of the zeners can be predicted with an adequate relative
accuracy (well below 10−6).

In other words: let’s start with, e. g., our first zener and compute the coefficients of the linear
regression (let’s say, the method number M = 1) obtained by taking N = 4 yearly measurement
points starting with the very first measurement. Then, compute the differences between the values
predicted and measured for the time period of about three years starting just after the end of the
approximation period and add them in quadrature. Next, compute the linear regression coefficients
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obtained by taking four yearly measurement points starting with the second measurement and
once again compute the differences between the values predicted and measured and add them
in quadrature, and so on – until the last point reaches the end of the measurement period –
a principle similar to that employed in the Allan and other variances [24]. Finally, repeat the same
with the second zener, etc., and also add the differences in quadrature. In this way, we obtain
σ2(1, 4, τ = 3 years) as both time and ensemble average. Then, let’s take another number of yearly
measurement points N and repeat the job; finally, let’s take parabolic, exponential approximation,
etc., which will allow us to see which method can be expected to yield the best results for the given
length of the measurement history. Note that in some cases exponential, hyperbolic, or linear and
hyperbolic approximation may not exist as a function with meaningful coefficients.

An algorithm for the calculation of an estimate of merit for the selected approximating method
with N yearly measurement points used for approximation, assuming that the number of zeners
available is NZ , is described in Appendix B.

In addition to the four approximating functions for which the prediction results have already
been considered, we have introduced one more approximation – linear and hyperbolic one, defined
by the van Deemter equation used for fitting the data of experimental gas chromatography [25]:

Uapprox = U0 + d1t +
d2

d3 + t
(10)

where U0, d1, d2, and d3 are the coefficients of the approximating function. We included it while
computing the estimates of merit for the approximation methods. Figure 8 shows normalized
estimates of merit for different methods and different number of yearly measurement points used
for the approximation (the results were obtained with 10 V terminals). We see that the hyperbolic
approximation is the best one in almost all cases, even if the measurement history is short. Even
the linear and hyperbolic approximation is not better than the hyperbolic one, however, it may
be expected to outperform the others for longer histories of measurement. Linear regression is
clearly inferior to all the non-linear estimates if the measurement history is longer than seven
yearly measurements. Another inference: if one has a long enough history of yearly calibrations,
an ordinary calibration can be postponed for up to three years while still maintaining the relative
accuracy of the voltage reproduced at the level of about 3 · 10−7.

Fig. 8. Normalized estimate of merit σ(M, N, τ = 3 years)/Unom for different methods and different numbers of yearly
measurement points N used for approximation.
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5. Conclusions

The behavior of all our zeners at their 10 V outputs is adequately predictable by means of
a linear (if the measurement history is relatively short – containing up to 7 yearly measurements)
or nonlinear (in the opposite case) regression. The zener with a drift larger than that of the other
devices does not feature predictability worse than that of the others. As far as it can be expected
that other zeners of similar type should behave alike, the results obtained imply that, having
acquired a reasonably long (about 10 years or longer) history of a single measurement per year
and using a hyperbolic or exponential approximation, it is possible to predict the behavior of the
zener adequately for several years. An estimate of merit for approximation methods based upon
the mean standard deviation of actually measured voltages from their predictions computed for
three years since the end of approximation period implies that the hyperbolic approximation is
the best one almost in all the cases, except for a history as short as four yearly measurements,
when the linear approximation is not inferior to the hyperbolic one. The linear and hyperbolic
approximation does not surpass the hyperbolic one for measurement histories available.

The voltages at the 1.018 V terminals, which are produced from 10 V internally, have been
stable with respect to the 10 V within ±0.3 ppm, except for the zener featuring a significant drift
at the 1.018 V output with respect to the 10 V one. The 1.018 V voltage generated by the zeners is
also predictable; however, its prediction accuracy is inferior to that of the 10 V.
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APPENDIX

A. Expressions for the coefficients of the approximating functions

Assume that we have a set of values y(i) measured at times x(i); i = 1. . . N . Let’s consider
approximation of y(i) by means of the least square method using various approximating functions.

1. Linear approximation:
f (x) = a + bx. (A.1)

From the condition of the minimum mean standard difference between y(i) and the

approximation, σ2 =
1
N

N∑
i=1
( f (x(i)) − y(i))2 obtained by zeroing the derivatives of σ2 with

respect to a and b, we obtain the solution. Introducing the following sums:

X1 =

N∑
i=1

x(i), X2 =

N∑
i=1

x2(i), Y1 =

N∑
i=1

y(i), T1,1 =

N∑
i=1

x(i)y(i) (A.2)

allows expressing it in a compact form:

b =
T1,1 −

X1Y1
N

X2 −
X2

1
N

, a =
Y1 − bX1

N
. (A.3)

2. Parabolic approximation:
f (x) = a + bx + cx2. (A.4)

Having employed the same condition with respect to a, b, and c and introduced the sums

X1 =

N∑
i=1

x(i), X2 =

N∑
i=1

x2(i), X3 =

N∑
i=1

x3(i), X4 =

N∑
i=1

x4(i),

Y1 =

N∑
i=1

y(i), T1,1 =

N∑
i=1

x(i)y(i), T2,1 =

N∑
i=1

x2(i)y(i), and

Q =
N∑
i=1

x2(i) −
1
N

(
N∑
i=1

x(i)

)2

= X2 −
(X1)

2

N
(A.5)

we can express c as:

c =
N(T1,1X1X2 + X1X3Y1) − NQX2Y1 − (X1)

2X2Y1 − N2T1,1X3 + N2QT2,1

2N X1X2X3 − (X1X2)2 − NQ(X2)2 − (N X3)2 + N2QX4
, (A.6)

and finally, obtain the values of b and a:
b =

1
Q

(
cX1X2

N
−

X1Y1
N
−cX3 + T1,1

)
a =

Y1 − bX1 − cX2
N

. (A.7)
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3. Exponential approximation:
f (x) = a + be−cx . (A.8)

The solution cannot be found fully analytically. Let’s select a positive value of c and compute
the sums:

X1 =

N∑
i=1

e−cx(i), X2 =

N∑
i=1

e−2cx(i), Y1 =

N∑
i=1

y(i), and T1,1 =

N∑
i=1

y(i)e−cx(i). (A.9)

Now, we can express corresponding values of b and a using the same expression as in the
case of the linear approximation (A.3).
Then, let’s compute the derivative with respect to c of the mean standard difference between
y(i) and the approximation:

∂σ2

∂c
=

∂

∂c
1
N

N∑
i=1

(
a + be−cx(i) − y(i)

)2
=

−
2b
N

N∑
i=1

(
a + be−cx(i) − y(i)

)
e−cx(i)x(i). (A.10)

Depending on whether ∂σ2/∂cis positive or negative, let’s choose another value of c,
compute b and a until we find numerically the place where ∂σ2/∂c, while being increasing
with increasing c, crosses zero. At this point σ2assumes its minimum value.

4. Hyperbolic approximation:

f (x) = a +
b

c + x
. (A.11)

The solution also cannot be found fully analytically. In the same way as in the case of the
exponential approximation, let’s select a positive value of c and compute the sums:

X1 =

N∑
i=1

1
c + x(i)

, X2 =

N∑
i=1

1
(c + x(i))2

, Y1 =

N∑
j=1

y( j)T1,1 =

N∑
i=1

y(i)
c + x(i)

. (A.12)

Now, we can find corresponding values of b and a using the already considered expres-
sion (A.3).
Then, let’s compute the derivative of the mean standard difference between y(i) and the
approximation with respect to c:

∂σ2

∂c
=

∂

∂c
1
N

N∑
i=1

(
a +

b
c + x(i)

− y(i)
)2
=

−
2b
N

N∑
i=1

(
a +

b
c + x(i)

− y(i)
)

1
(c + x(i))2

. (A.13)

Like in the previous case, depending on whether ∂σ2/∂c is positive or negative, let’s choose
another value of c, compute b and a until we numerically find the point where ∂σ2/∂c,
while increasing with increasing c, crosses zero, and while σ2assumes its minimum value.
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5. Linear and hyperbolic approximation:

f (x) = a + bx +
c

d + x
. (A.14)

Having selected a positive value of d and computed some more sums than before:

X1 =

N∑
i=1

x(i), X2 =

N∑
i=1

x2(i), Y1 =

N∑
i=1

y(i), T1,1 =

N∑
i=1

x(i)y(i),

L =
N∑
i=1

y(i)
d + x(i)

, M =
N∑
i=1

1
d + x(i)

, R =
N∑
i=1

1
(d + x(i))2

,

S =
N∑
i=1

x(i)
d + x(i)

, and Q =
N∑
i=1

x2(i) −
1
N

(
N∑
i=1

x(i)

)2

= X2 −
(X1)

2

N
(A.15)

we can express c as:

c =
N2QL + N(M X1T1,1 + SX1Y1) − M (X1)

2 Y1 − NQMY1 − N2ST1,1

N2QR + 2N MSX1 − (M X1)2 − NQM2 − N2S2 , (A.16)

and compute b and a: 
b =

1
Q

(
cM X1

N
−

X1Y1
N
− cS + T1,1

)
a =

Y1 − bX1 − cM
N

. (A.17)

Now, let’s compute the derivative of the mean standard difference between y(i) and the
approximation with respect to d:

∂σ2

∂d
=

∂

∂d
1
N

N∑
i=1

(
a + bx(i) +

c
d + x(i)

− y(i)
)2
=

−
2c
N

N∑
i=1

(
a + bx(i) +

c
d + x(i)

− y(i)
)

1
(d + x(i))2

. (A.18)

Like in the two previous cases, depending on whether ∂σ2/∂d is positive or negative, let’s
choose another value of c, compute b and a until we numerically find the point where
∂σ2/∂d while increasing with increasing d, crosses zero, and σ2 assumes its minimum
value.
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B. An algorithm for calculation of an estimate of merit for an approximating method
defined by (9)

Fig. B.1. Block diagram for the algorithm. Explanations are given further in the text.
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General: Sigma_2 is the sum of squared differences between the predicted and measured
values, R is the counter of the terms of the sum, Z is the number of the zener under consideration,
and Z_N is the number of the zeners available.

Step 1: select N yearly measurement points (one measurement per year) starting with the p-th
one and obtained by the Z-th zener (note that the value of N cannot be less than the number of
constants which define the approximating function). The time period comprising those N yearly
measurement times will be referred to as the approximation region. Compose an array t_a (1 . . . N)
with their measurement times and an array Umeas_a (1 . . . N) with their results.

Step 2: compose an array t_b (1 . . . L) with the measurement times starting with the time of
the first measurement after the selected N yearly measurements, t_b(1), and ending with the time
of the last measurement made, t_b(L). This time period will be referred to as the prediction region.
Compose an array Umeas_b (1 . . . L) with the corresponding measurement results. The arrays
shall include all the measurement results available.

Step 3: from the measurement points of the approximation region stored in the arrays
t_a (1 . . . N) and Umeas_a (1 . . . N), compute the coefficients of the selected approximating
function as described in Appendix A.

Step 4: using the coefficients obtained in Step 3, compute the value assumed by the selected
approximating function at the measurement time t_b(i), Uapprox_i.

The condition t_(L) − t_b(1) ≥ tau implies that the duration of the prediction region available
is not shorter than the time period for which we are going to evaluate the ability of an approximation
method to predict the behavior of our zeners. If it is so, we proceed with the calculation of the
inner sum of (9), if not – take data of another zener, if that under consideration is not the last one.

The condition t_b(i) − t_b(1) ≤ tau implies that we are still in the area selected for evaluation
of an approximation method. If so, we add the corresponding term to Sigma_2, if not – we take
the next starting point of yearly measurements by adding 1 to p.

Finally, having processed the data of the last zener available (Z = Z_N), we obtain the mean
standard deviation Sigma for the selected approximating method, selected number of N yearly
measurement points taken for the approximation, and the duration of the prediction time tau.
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