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This paper presents the results of preliminary research aimed at developing a method for rapid, non-
contact diagnostics of the electric drive of car seats. The method is based on the analysis of acoustic signals
produced during the operation of the drive. Pattern recognition and machine learning processes were used in
the diagnosis. A method of feature extraction (diagnostic symptoms) using wavelet decomposition of acoustic
signals was developed. The discriminative properties of a set of diagnostic symptoms were tested using the
“Classification Learner” application available in MATLAB. The obtained results confirmed the usefulness of
the developed method for the technical diagnostics of car seats.
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1. Introduction

The subject of this study is the mechanical con-
struction of a car seat with a driving device allowing
to change the angle of the seat backrest. The device
consists of an electric motor and a gearbox (Fig. 1)
and is a compact module without the possibility of dis-
assembling it, for example, for repair. In the event of
failure or malfunction, the manufacturer replaces the
entire module.
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mechanism 

Fig. 1. Appearance of the drive mechanism of a car seat.

The main goal of the research is to develop a quick
method for diagnosing the seat construction at the pro-
duction stage. Due to the postulated speed of diagnosis
and the small size of the drive device, it is decided to
look for a solution based on the analysis of acoustic
signals generated by the operating drive device. This
choice is justified due to the generally well-known high
content of relevant information about the state of the
object in the acoustic signal generated during its op-
eration (Basztura, 1996; Lin, 2001; Głowacz, 2014;
Pawlik, 2019).

The starting point for the study was a small batch
of seats (11 pieces) supplied by the manufacturer.
Some of the seats were marked as good (meeting the
manufacturer’s requirements) and the rest as defective.
According to the manufacturer’s requirements, diag-
nostics of subsequent batches of seats should catego-
rize them into two classes: good (technically efficient)
and bad (defective) without identifying the specific de-
fective component. The problem presented here falls
under a topic referred to in literature as pattern recog-
nition. It deals with the recognition of the affiliation of
various objects to certain predefined classes. Objects
within each class may differ more or less from each
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other, and the number of objects within each class can
be any.

The pattern recognition process is divided into two
parts called feature extraction and classification. In the
first part, characteristic features are extracted from
the measured signal. In the second part, calculations
are performed on the set of these features using the in-
formation contained in the so-called learning sequence.
A learning sequence is a previously prepared set of fea-
tures representing objects for which the correct clas-
sification is known. As a result of these calculations,
a decision is made as to which class the recognized ob-
ject belongs to (Duda, Hart, 1973; Sun et al., 2004;
Xi et al., 1997).

2. Test stand and measurement database

The work is performed on a test stand used in the
laboratory for measuring the sound power level of me-
chanical equipment, which was adapted to the needs
of the present work (Fig. 2).
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Fig. 2. View of test stand.

The stand is located in a laboratory hall measur-
ing 9.3 m× 7 m× 5.2 m. The hall has smooth walls and
a floor covered with ceramic tiles to reflect acoustic
waves. The room is partially filled with laboratory fur-
niture. Following the guidelines in Annex A of (Inter-
national Organization for Standardization, 2010), the
mentioned test environment was classified as a rectan-
gular industrial room with an average sound absorp-
tion coefficient of a = 0.15.

The seat structure is fixed to the floor by loading
the seat base with two heavy steel fittings, ensuring
its immobilization during testing (Fig. 2). In the ini-
tial stage of testing, microphones mounted on measure-
ment stands were placed at the vertices and in the cen-
ter of the walls of the virtual cuboid surrounding the
test object – a total of 9 measurement points were es-
tablished (Fig. 3). The dimensions of the cuboid were
chosen so that the distance from the walls to the test

Fig. 3. Arrangement of microphones on test bench.

object was 0.5 m. The individual microphones were ori-
ented so that their axes:

– were perpendicular to the measurement plane for
measurement points no. 1, 2, 5, 6, and 9;

– indicated the point of intersection of the diagonals
of the perpendicular for measurement points no. 3,
4, 7, and 8.

The small distance, compared to the size of the
hall, minimizes the influence of the reflected wave on
the recorded signal. Nevertheless, it should be noted
that in the case of the presented research, it is not
important to determine the exact value of the sound
pressure level, but rather to determine the interrela-
tionships of the different parts of the signal spectrum,
as will be discussed later in the article.

The acoustic signal was recorded during the op-
eration of the driving device for two directions of
seat backrest movement: forward and backward. The
time of backrest movement between extreme positions
was approximately 20 s. The signals were recorded
on a PULSE digital recorder, manufactured by Brüel
& Kjær. The time courses of these signals and their
measured features allow them to be classified, in ac-
cordance with the systematics used in the literature
on signal analysis, as transient non-stationary sig-
nals (Piersol, 1989; Szabatin, 2000). An example
of the time course of the recorded signals is shown
in Fig. 4.

Measurements of the acoustic background noise in
the hall indicate that the S/N ratio of the recorded
acoustic signals was more than 13 dB. This testifies
to the negligible influence of the acoustic background
noise on the signal under study.

It is necessary to ensure that the acoustic environ-
ment at the future location of the manufacturer’s di-
agnostic station is comparable to the current one.

Initially, the signals were recorded in the acoustic
range up to 20 kHz. Frequency analysis indicates that
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a)

b)

Fig. 4. Time course of the acoustic signal generated by the seat drive device: a) technically efficient seat; b) defective seat.

the spectra of these signals are dominated by compo-
nents in the range of 20 Hz–60 Hz, and the maximum
frequency practically does not exceed 200 Hz. Figure 5
shows an example of the spectra of the signals gen-
erated by the technically efficient and defective seats,
respectively. Unfortunately, it was found that in each
case, the differences of the spectra are not as clear as il-
lustrated in the figures. Differences were also observed
in the spectra of the signals generated for different di-
rections of backrest movement for both the technically
efficient and defective seats.

Measurements were made on all 11 seats – 5 seats
marked as good and 6 seats marked as not meeting the

a)

b)

Fig. 5. Acoustic signal spectrum: a) technically efficient seat; b) defective seat.

manufacturer’s requirements. The recordings of mea-
sured signals, in the form of samples of instantaneous
values, constituted the measurement database for the
further part of the work.

The levels of signals recorded at particular points
of the grid did not differ significantly; however, at mea-
surement points 1, 2, and 5 (at the height of h =
0.60 m) this level was higher. Finally, for the planned
future measurements, one point of microphone installa-
tion was selected, i.e., point 5, located near the drive
mechanism of a seat, and for the recordings made at
this point further signal processing and calculations
were performed.
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3. Feature extraction

Vibroacoustic signals produced during the opera-
tion of mechanical equipment carry important infor-
mation about the dynamic processes within them.
Therefore, the analysis of vibroacoustic signals is one
of the most important methods used in condition mon-
itoring and technical diagnostics of equipment.

In practice, many methods of signal analysis, e.g.,
FFT, STFT, Wigner-Ville distribution are used in this
area (Tang et al., 2010). Among these, wavelet analy-
sis is currently one of the most advanced tools of sig-
nal analysis, confirmed by numerous practical appli-
cations. It covers almost all aspects of technical di-
agnostics of mechanical equipment, including time-
frequency analysis of signals, fault feature extraction,
singularity detection for signals, denoising and extrac-
tion of weak signals, compression of signals, and system
identification (Batko et al., 2005; Han et al., 2022;
Tang et al., 2010; Peng, Chu, 2004; Lin, Qu, 2000;
Staszewski, 1998; Huang, Solorzano, 1971; Yang
et al., 2022).

The review of the results of the spectral analysis of
the acoustic signals produced by the working seat drive
device indicates that there are differences in the spec-
tra between the objects marked, according to the man-
ufacturer’s criteria, as good and bad. However, there
are also differences between both good and bad ob-
jects.

The aim of processing recorded acoustic signals is
to extract information about the individual character-
istics of particular signals contained in their spectrum.
In the discussed situation, it concerns the information
allowing to make a decision about the technical condi-
tion of the tested object.

As the basic idea of creating the feature vector, we
have established the development of a discrete repre-
sentation of the acoustic signal into a functional se-
ries, followed by the separation of components of this
expansion that carry significant energy of the signal.
Coefficients of the selected components of this expan-
sion will constitute the components of the feature vec-
tor (Peng, Chu, 2004).

In this paper, it was decided to use the method
of wavelet analysis of signals to implement the feature
extraction process. The basis of this analysis is the de-
composition of the signal based on a set of orthogonal
basis functions, called wavelets. The set of basis func-
tions is generated by scaling and shifting the so-called
mother wavelet in the time domain. The decomposi-
tion allows the signal to be represented as a super-
position of wavelets. The coefficients of this superpo-
sition, called wavelet coefficients, are determined by
the wavelet transform of the signal. The values of the
wavelet coefficients measure the degree of correlation
between the signal and the wavelet, making the proper
choice of wavelet type crucial.

The values of the components of the feature vec-
tors are a function of the type of wavelet selected for
analysis. The purpose of selecting a particular wavelet
is to obtain the strongest possible correlation between
the signal with a small number of basis wavelets. As
mentioned earlier, the values of wavelet coefficients are
a measure of the degree of correlation between the
wavelet and the signal.

The selection of the wavelet was done experi-
mentally. A test was performed by decomposing the
recorded signals using different wavelets and selecting
the wavelet showing the highest degree of correlation
with the signal. The parameter to be evaluated in this
experiment was chosen as the maximum value of the
modulus of the wavelet coefficients for each level of
decomposition, according to the formula:

cDkMAX =max
{dk}

∣dk [i]∣, (1)

where k is the decomposition level index, i is the index
of the element in the sequence of wavelet coefficients,
dk[i] is the sequence of coefficients at the k-th decom-
position level.

The wavelets from the Daubechie, Symlet, and
Coiflet families were examined. In light of these stud-
ies, no specific wavelet type was found to be particu-
larly advantageous for the feature extraction process.
However, several wavelets performed favorably in this
regard. For this reason, further studies were limited to
two wavelets, i.e., db10 and sym7.

A key challenge in the effectiveness of the diag-
nostics is the correct selection of features and their
number, which determines the structure of the feature
vector. A review of the literature on the subject indi-
cates that there are many ways to optimize the pro-
cess of feature selection. It is worth mentioning the
main approaches for solving this problem. These in-
clude: thresholding methods, using wavelet entropy to
optimize parameters of the wavelet function, selecting
the proper coefficients using statistical criteria, em-
ploying wavelet packet coefficients as features, and us-
ing principal component analysis (PCA) to reduce the
size of the feature space extracted from wavelet coeffi-
cients (Białasiewicz, 2004; Peng, Chu, 2004; Syed,
Muralidharan, 2022; Qiu et al., 2006; Ding et al.,
2023).

For the sake of completeness, it is worth noting
that the above-mentioned method of feature extrac-
tion based on wavelet coefficient selection does not ex-
haust the possibilities offered by wavelet analysis of sig-
nals. Other methods mentioned in the literature, which
are not the subject of this paper, can be classified as:
wavelet energy-based, singularity-based, and wavelet
function-based methods, etc. (Peng, Chu, 2004).

In the classical wavelet analysis method, the sig-
nal is decomposed into two lower-resolution repre-
sentations of the signal: a detailed representation
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and a coarse representation (signal approximation).
The coarse representation can also be represented
as the sum of the detailed and coarse representa-
tions from the previous resolution level. Thus, the de-
tailed representation at a given resolution level does
not change after each subsequent decomposition step,
while the sequence of detailed representations, which
characterize the analyzed signal, increases by one ele-
ment (Fig. 6).

a j

a j+1

a j+2

a j+3

d j+1

d j+2

d j+3

Fig. 6. Multiresolution signal decomposition scheme
for three resolution levels.

The signal separation operation, which is a single
level of wavelet decomposition from a signal of a given
resolution level, is equivalent to its filtering by a set
of digital quadrature low-pass and high-pass filters,
and a subsequent downsampling operation (Fig. 7).

a j
g

h 2

2
d j+1

d j+1

Fig. 7. Single level signal decomposition: h – low pass filter;
g – high pass filter; ↓2 – decimation symbol.

Fig. 8. Division of the signal band as a result of signal decomposition.

Table 1. Bandwidth of selected signal decomposition components.

Feature vector component 1 2 3 4 5 6
Component designation D6 D5 D4 D3 D2 D1
Frequency range f [Hz] 4–8 8–16 16–32 32–64 64–128 128–256

The result of low-pass filtering is a sequence of sam-
ples that is the coarse approximation of the signal (ai),
while the result of high-pass filtering is a sequence
of samples representing the details of the signal (di)
at the immediately lower resolution level. Decimation,
which involves removing every second sample from the
resulting sample sequences at the output of the fil-
ters, prevents the introduction of redundant informa-
tion into these sequences. The described iterative algo-
rithm for determining the discrete wavelet transform
(defined for discrete values of scale and shift parame-
ters) is named, after its creator, the Mallat algorithm
(Mallat, 1989).

A decomposition of the signals up to level 8 reso-
lution was performed. The components of the feature
vector x were computed from a sequence of wavelet co-
efficients of individual level decompositions. The indi-
vidual components of the feature vector contain infor-
mation about individual features of the signal, con-
tained in a specific frequency range resulting from
the division of the band into halves in subsequent
stages of the decomposition of the analyzed signal
(Fig. 8).

Considering the bandwidth of the measurement
path for the acoustic signals, the decomposition com-
ponents labeled D7 and D8 were excluded, as they fall
outside the measurement bandwidth. Finally, the num-
ber of components in the feature vector, and thus the
dimension of the feature space is n_wt = 6. The band-
widths of the decomposition components at the se-
lected resolution levels, from which the individual com-
ponents of the feature vectors were calculated, are
shown in Table 1.
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Fig. 9. Block diagram of the process of creating a feature vector.

The feature vector component value was defined as
the root mean square (RMS) value of the reconstructed
decomposition components based on the sequence of
wavelet coefficients at a given decomposition level:

xj =

¿
ÁÁÀ 1

Nk
⋅
Nk

∑
i=1

(dk [i])2, (2)

where j – the designation of the component of the fea-
ture vector, k – the decomposition level indicator, Nk –
the number of wavelet coefficients for the k-th decom-
position level, and dk[i] – the i-th wavelet coefficient
of the k-th decomposition level.

Feature extraction is only one, but nevertheless an
essential, component of the feature vector creation pro-
cess. The entire process is shown in Fig. 9.

Files downloaded from the recorder (*.uff), con-
taining samples of instantaneous values of the acoustic
signal are processed into format suitable for MATLAB
(*.txt). The sampling frequency during recording was
fs = 65536 Hz. This value was chosen during the pre-
liminary research stage for problem recognition. Con-
sidering the found spectrum of the studied acoustic sig-
nals, this frequency can be significantly reduced, which
allows for a decrease in the size of the registration files
without losing the information contained in the spec-
trum. The recordings were resampled (decimated) to
a sampling frequency of fs_res = 512Hz. After normal-
izing the signal energy, the recordings are subjected
to wavelet decomposition as described above, and the
feature vector values are calculated from the obtained
sample sequences.

In classical wavelet analysis of signals, one should
pay attention to high bandwidth of most decomposi-

Fig. 11. Division of the signal band as a result of signal decomposition using wavelet packets.

tion components that may mask differences in the spec-
tra of signals generated by objects in different techni-
cal conditions. Therefore, it was decided to investigate
whether improving the frequency resolution of signal
analysis by increasing the resolution would enhance
the discriminative properties of the feature vectors.
The decomposition of signals with the use of wavelet
packets makes it possible to perform such tests.

Wavelet packets are a generalized method of sig-
nal decomposition using discrete wavelet transform. In
this approach, the subsequent decomposition of the
signal can be subjected to both a coarse representa-
tion and a detailed representation of the signal. This
creates the possibility of analyzing different selected
parts of the signal spectrum with higher resolution.
A schematic of signal decomposition using wavelet
packets, for example at three levels of resolution, is
shown in Fig. 10.

w0,0

w1,0 w1,1

w2,2w2,1w2,0

w3,4w3,3w3,2w3,1w3,0 w3,5 w3,6 w3,7

w2,3

Fig. 10. Signal decomposition scheme using wavelet
packets.

The division of the analyzed signal’s frequency
band corresponding to this decomposition scheme is
shown in Fig. 11.
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Signal decompositions for the seventh resolution lev-
el were performed. The number of decomposition com-
ponents is 27 = 128 and the frequency bandwidth of
individual decomposition components is Bi = 2 Hz. On
the basis of the analysis of the registration spectra
(Fig. 5), it should be expected that certain features
of the acoustic signal, being a function of the dynamic
properties of the seat mechanical system design, will
manifest themselves in the frequency range of a few to
several tens of Hz. Therefore, limiting the signal analy-
sis to this frequency range allowed us to significantly
reduce the number of decomposition components taken
into account in further processing. This number was
reduced to n_wp = 26.

The method for calculating the values of the in-
dividual components of the feature vector remained
the same as previously described (Eq. (1)). Also, the
signal processing operations, preceding the process of
calculating the values of feature vector components,
remained unchanged (Fig. 9).

Programming work, related to the implementation
of the developed algorithms, was carried out using the
MATLAB software platform. An example of the ap-
plication’s interface for signal decomposition using the
classical wavelet analysis method is shown in Fig. 12.

The application was designed to support research
related to the generation of a feature vector based on
acoustic signal recordings produced during the opera-
tion of the seat drive device. It includes the last three
stages of the feature vector generation process, shown
in Fig. 9, i.e., wavelet decomposition, feature extrac-
tion, and save feature vector.

Fig. 12. Appearance of wavelet decomposition application interface.

The application’s input data are digital recordings
of acoustic signals, provided as files containing sam-
ples of the signal’s instantaneous values, after prepro-
cessing (i.e., conversion to uff/txt format, decimation,
normalization (Fig. 9)).

Pressing the “get and show” button expands the
window to display a list of all registrations contained
in the specified directory, indicated by the path. After
selecting a registration, the time waveform and signal
spectrum are displayed. Additional information, such
as sampling frequency, number of registration samples,
name of the downloaded file, parameters of the FFT
algorithm is also displayed. The spectrum graph can
be changed, to highlight important parts by chang-
ing some parameters of the FFT algorithm and ac-
tivating these changes with the “change and show”
button.

The main part of the algorithm, after selecting the
type of wavelet, is initiated with the decomposition
button. As a result, it displays the time waveforms of
the reconstructed components for the assumed eight
decomposition levels. They illustrate the energy of the
signals representing each decomposition level. A graph
and a table containing the RMS values of the wavelet
coefficient sequences for the selected decomposition
levels are also displayed. These values represent the
components of the feature vector.

The result of the application is saved to disk in
the directory specified by the path in the “folder for
saving vector” after pressing the save vector button.
Successful completion of this operation is indicated by
the green color of the LED indicator.
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4. Classification

The described algorithms were used to create sets
of feature vectors, which serve as input data for the
classification algorithms.

Each component of feature vector can be consid-
ered as a coordinate in a space called feature space.
In this context, each diagnosed object corresponds to
a point in that space called a picture, and a set of
objects, belonging to one class corresponds to a cer-
tain area encompassing set of their pictures. From the
point of view of diagnostics (the recognition process),
a desirable situation occurs when, as a result of an ap-
propriate choice of the structure of the feature space,
images of objects of different categories occupy discon-
nected areas. In practice, these areas partially overlap
(intermingle), causing diagnostic errors.

To test discriminative properties of the feature vec-
tors we used the “Classification Learner” application
available in MATLAB program. This application in-
cludes a set of classification algorithms allowing exper-
imental selection of the optimal algorithm for a specific
application. The classification results presented below
were obtained for the K-nearest neighbor algorithm
(for K = 3) and decision trees. It should be noted that
the final choice of the classification algorithm should
be made on a much larger dataset of diagnosed objects,
and will most likely differ from the already indicated
algorithms. Nevertheless, the obtained results suggest
that the feature vectors generated using wavelet analy-
sis of the signal exhibit discriminatory properties, en-
abling the effective diagnosis of the tested seats.

Due to the small number of tested objects, and the
consequently small length of the learning sequence,
the testing of particular algorithms included in the

a) b)

Fig. 13. Results of classical wavelet analysis: a) scatterplot of points in feature space for the two components of the learning
sequence; b) confusion matrix.

mentioned application was performed according to
the method known in the literature as leave-one-out
(Sobczak, Malina, 1985). From the set of feature
vectors, one feature vector is selected and treated as
the test vector. The rest of the set is treated as the
learning set. This procedure is repeated for each vec-
tor in the set.

Figure 13 shows an example of a scatterplot in fea-
ture space for two selected components and the so-
called confusion matrix for the learning sequence ob-
tained by classical wavelet analysis.

What draws attention is the grouping of images
(points) in the feature space corresponding to dam-
aged objects (blue dots). For this learning sequence,
two objects were incorrectly diagnosed, as indicated
by the confusion matrix.

For feature vectors generated using wavelet pack-
ets, their discriminatory properties were tested with
a feature space dimension of n_wp = 26, as already
noted.

Figure 14 shows an example of the scatter of points
in the feature space, for two selected components and
the so-called confusion matrix, for the learning se-
quence, obtained by analysis using wavelet packets.

The feature space images corresponding to both
good and bad objects occupy disjoint areas, although
their close proximity may cause misdiagnosis. Qualita-
tively, the test results are somewhat better than the
results of the testing a set of feature vectors obtained
with the classical method. In this case, one object was
misdiagnosed, as shown in the confusion matrix.

Due to the very small number of test objects and
the consequently short length of the learning sequence,
no far-reaching conclusions can be drawn from the
above results, although they are promising.
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a) b)

Fig. 14. Results of wavelet packed analysis: a) scatterplot of points in feature space for the two components of the learning
sequence; b) confusion matrix.

The small number of research objects was caused
by the Coronavirus pandemic and the resulting mini-
mized possibilities of contacts with the seat manufac-
turer and the successive delayed acquisition of addi-
tional research objects. It is assumed that the possibil-
ity of accessing a large number of tested seats will soon
be restored, allowing for the successive expansion of the
measurement database, as was originally planned.

5. Conclusions

The obtained results indicate the potential of using
wavelet analysis of acoustic signals generated during
the operation of the diagnosed mechanical device in
technical diagnostics. The feature vectors generated
according to the presented algorithms have discrimi-
native properties, allowing for diagnostics of the tested
devices using machine learning methods.

As predicted, due to the increased frequency reso-
lution of the diagnostic signal analysis, feature vectors
generated using wavelet packets showed better discrim-
inatory properties than those generated using classical
wavelet analysis method.

Despite the fact that the obtained results are sat-
isfactory, the effectiveness of the diagnostic method
cannot be reliably assessed due to the small number
of tested objects. This limitation was caused by objec-
tive difficulties.

The research is planned to be continued as orig-
inally intended. The machine learning method re-
quires access to a large number of diagnosed objects
and the creation, as a result of their research, of
a database of diagnostic symptoms (features vectors).
Based on these database resources, learning and test-
ing sequences will be created. For optimal selection of

the classifier algorithm and to determine the effective-
ness of the developed diagnostic method, it is necessary
to use independent learning and testing sequences dur-
ing testing.
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