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Abstract. Traffic accident prediction is a crucial component of an intelligent traffic system, which is important to maintain citizen safety and
decrease economic losses. Current methods for traffic accident prediction based on deep learning fail to consider the driving mechanisms of
traffic accidents, so a novel traffic accident prediction method based on multi-view spatial-temporal learning is proposed, which represents the
driving mechanism of traffic accidents from multiple views. Firstly, for the urban regions divided by grids, a new augmentation was designed
to augment the spatial semantic information of regions through learnable semantic embedding, then deformable convolutional networks with
non-fixed convolution kernels are used to learn dynamic spatial dependencies between regions and gated recurrent units are used to learn temporal
dependencies, which can capture dynamic spatial-temporal evolution patterns of traffic accidents. Secondly, long short-term memory is employed
to learn the traffic flow breakdown from the flow difference of adjacent time steps in each region to recognize the traffic accident precursor in
the risk environment. Thirdly, accident patterns in different regions are learned from historical traffic flow to determine whether the flow is the
dominant factor and capture the spatial heterogeneity of traffic accidents. Finally, the above features are fused for accident prediction at the
regional level. Experiments are conducted on two real datasets, and the experimental results show that the proposed method outperforms eight
benchmark methods.
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1. INTRODUCTION

The traffic safety situation is becoming increasingly serious due
to the rapid development of motorized transportation, and traf-
fic accidents are becoming an important factor in influencing
the quality of life and safety level of people. Traffic accident
prediction aims to predict future accidents by analyzing prior
accidents and considering relevant factors comprehensively to
reduce property damage and casualties. Meanwhile, other re-
search fields in the traffic system [1–3] will also benefit from
the development of traffic accident prediction, such as intelli-
gent mobility [4], autonomous driving [5], and trajectory plan-
ning [6].

Traffic accident prediction is a typical spatial-temporal prob-
lem. The most recent paradigm employs deep learning tech-
niques to learn the spatial-temporal dependencies from spatial-
temporal grids or spatial-temporal graphs constructed by traffic
accidents, traffic flow, road network topology, etc. Generally,
convolutional neural networks (CNNs) [7] and graph convo-
lutional networks (GCNs) [8] are used to learn spatial depen-
dencies from spatial-temporal grids and spatial-temporal graphs
respectively, and recurrent neural networks (RNNs) [9, 10] are
used to learn temporal dependencies.
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Due to the strong nonlinear learning capability, deep learning
has demonstrated significant advancements in traffic accident
prediction in recent years. However, traffic accidents result from
multiple interacting factors, including individuals, vehicles,
road conditions, environment, unforeseen events, etc., and their
spatial-temporal dependencies are very complex. Current re-
search does not sufficiently consider multiple aspects, including:

Spatial dependencies. On the one hand, the traffic condi-
tions are constrained by the topology of the road network, so
the interplay between adjacent regions is intricate. However,
existing research often ignores the dynamic changes of mutual
influence between adjacent regions after establishing the ini-
tial influence [11, 12], such as vehicle diversion resulting from
road works. On the other hand, although there is physical lo-
cation information of the accidents in the traffic accident data,
the corresponding spatial semantic information of the accidents
is not provided explicitly, which affects the in-depth analysis of
the spatial pattern of traffic accidents. For example, shopping
malls and residential regions have different accident patterns.
Although Wang et al. [13] explored the semantic information
behind points of interest (POIs) through the similarity between
different regions, they ignored the dynamic changes of spatial
dependence like other works. In contrast, Trilat et al. [14] consid-
ered dynamic views but failed to mine the semantic information
behind specific regions.

Accident precursor. The initial phase of a traffic accident
typically exhibits gradual or sudden changes in traffic condi-
tions, which are manifested in varied degrees through traffic
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flow parameters. Traditional traffic accident analysis is usually
conducted from two scenarios: normal traffic environment and
risky traffic environment, because the mechanisms of the two
situations that trigger the change of traffic operation state are
different. Nevertheless, the existing research for traffic accident
prediction using deep learning focuses on capturing the nonlin-
ear correlation between traffic flow and traffic accidents [11–14],
disregards the underlying accident-caused mechanisms, and so
neglects the accident precursor thoroughly.

Spatial heterogeneity. The primary factors for accidents in
different regions are varied, leading to distinct accident patterns.
For example, in rural regions, adverse weather conditions often
cause the emergence of accidents, but in urban regions, acci-
dents are common during rush hours. Existing research tends to
handle diverse regions homogeneously, learning different acci-
dent patterns in various regions inadequately. Although a few
studies [11, 15] address heterogeneity by treating different re-
gions differently, these methods fail to explore the underlying
influencing factors while increasing costs.

To this end, a traffic accident prediction method based on
multi-view spatial-temporal learning (MVSTL) is proposed
based on analyzing the potential mechanism of traffic accidents.
MVSTL captures the complex spatial-temporal dependencies of
traffic accidents by learning the influence from multiple perspec-
tives among multi-source data such as traffic flow, POI, weather,
date, and traffic accidents. The main contributions of the paper
are as follows:
• MVSTL is proposed to investigate the occurrence rules of

traffic accidents from three perspectives, namely spatial-
temporal dependencies, accident precursor, and spatial het-
erogeneity.

• When learning spatial-temporal dependencies, on the one
hand, the semantics of POI and weather are augmented by
learnable semantic matrixes to strengthen spatial dependen-
cies. On the other hand, deformable convolutional networks
(DCNs) [16] are introduced to learn dynamic dependencies
between regions adaptively.

• The accident precursor is learned from the flow difference of
adjacent time steps. The accident pattern of different regions
is represented by the ratio of the current flow to the histori-
cal flow of the regions to learn the spatial heterogeneity of
accidents.

• Experimental results in real datasets demonstrate that
MVSTL outperformed the benchmark methods.

The rest of the research paper is organized as follows. Sec-
tion 2 is a review of related work. The proposed method is
detailed in Section 3. In Section 4, the effectiveness of the
proposed method is demonstrated through experiments. Fi-
nally, Section 5 summarizes the research and directs future
research.

2. RELATED WORKS

Research on traffic accident prediction can be roughly divided
into two categories, statistical methods and machine learning-
based methods.

2.1. Statistical methods

The statistical methods explore the relationship between vari-
ables based on statistical theory. Typical methods include the
vector autoregressive model (VAR), autoregressive integrated
moving average model (ARIMA), seasonal autoregressive in-
tegrated moving average model (SARIMA), and exponential
smoothing (ES). For example, Li et al. [17] analyzed the different
influences of traffic, weather, and socioeconomic characteristics
on traffic collisions by VAR and Bayesian inference and found
that different types of collisions have different trends during the
prediction period. Getahun [18] modelled the trend of traffic
accidents by ARIMA and found that traffic accidents within a
week have an uneven distribution. Rabbani et al. [19] predicted
the number of accidents by SARIMA and ES and found traf-
fic accidents have considerable seasonality and non-stationarity.
These studies are suitable for analyzing the influencing factors of
accidents since they can reveal the characteristics of accidents,
such as causality and randomness. However, while statistical
methods are good at analyzing low-dimensional data, they are
challenging to handle high-dimensional traffic data.

2.2. Machine learning-based methods

2.2.1. Traditional machine learning-based methods

Combining domain expert experience, early research based on
traditional machine learning predict traffic accidents through
learning the relationship between accident-related factors and
accidents in high-dimensional data. Typical methods include
Bayesian networks (BNs), support vector machines (SVMs), ar-
tificial neural networks (ANNs), etc. For example, Castro and
Kim [20] explored variables that affect the degree of accident
risk by BNs and found that lighting conditions and road types
are the decisive factors of traffic accidents. Xiong et al. [21]
studied the impact of precipitation and weather conditions on
accidents based on SVMs. Lee et al. [22] used ANNs and k-
nearest neighbours to explore the factors that influence accident
duration. Fallah Tafti and Roshani [23] identified the most ef-
fective factors influencing accidents that occurred on the final
sections of main access roads to the cities through ANNs. These
works improve prediction accuracy compared to the statistical
methods but rely on artificial feature extraction.

2.2.2. Deep learning-based methods

Both the statistical methods and the traditional machine
learning-based methods only consider the temporal dependen-
cies and ignore the spatial dependencies, so traffic accident pre-
diction in these methods will be restricted by the road topology
and fail. To learn the potential temporal and spatial character-
istics of traffic accidents automatically and further improve the
prediction accuracy, deep learning is applied to traffic accident
prediction.

The deep learning-based method fuses heterogeneous data
from multiple sources to realize grid division or graph con-
struction and then extracts spatial-temporal dependencies using
the powerful nonlinear learning capability of deep learning. The
accident-related multi-source heterogeneous data include road
network structure, weather, traffic flow, and other information.
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Among them, the road network structure is often used to build
topology, while other data are used as features of grids or nodes.
As an early representative method, a stacked denoising autoen-
coder was used by Chen et al. [24] to learn the relationship be-
tween traffic accidents and human activities. On this basis, Chen
et al. [25] added a CNN to analyze the spatial dependence of
adjacent regions. In contrast, Sameen and Pradhan [26] learned
the temporal dependencies between accidents based on long-
short term memory (LSTM) [10]. However, these studies only
model single spatial or temporal dependencies.

With the deepening of research, for spatial-temporal grid data,
the current typical method is to learn spatial dependencies by
a CNN and learn temporal dependencies by an RNN, and for
spatial-temporal graph data, the spatial dependencies are learned
by a GCN to adapt its non-European structure, and the tempo-
ral dependencies are learned by RNN-like methods, and then
spatial-temporal dependencies are combined. For example, a
CNN and an LSTM were combined to learn spatial-temporal
dependencies from multi-source data by Yuan et al. [11]. Yu et
al. [12] used roads as nodes to construct road network graphs and
then learned spatial-temporal dependencies by combining GCN
and temporal convolutions. Nevertheless, these methods learn
spatial-temporal dependencies from fixed structures. To over-
come this obstacle, Wang et al. [13] combined a CNN and a gated
recurrent unit (GRU) [9] to learn spatial-temporal dependencies
and additionally construct graphs by the similarity of accident
risks, roads, and POIs between grids to learn global semantic
spatial dependencies through a GCN. Trilat et al. [14] considered
the time factor in calculating similarity and learned various de-
pendency relationships between regions besides the traditional
adjacency matrix through a GCN after constructing the graph.
Wang et al. [27] constructed a graph based on learned features,
hoping to learn spatial-temporal dependencies adaptively.

In general, early statistical methods are good at discovering
the relationship between the influencing factors of traffic acci-
dents, and can effectively reveal the mechanism of traffic acci-
dents, but they ignore the spatial characteristics and have low
accuracy. On the contrary, the deep learning-based methods as
current mainstream methods can improve prediction accuracy,
because they can learn high-dimensional and complex character-
istics from traffic data automatically. However, existing studies
usually ignore the mechanism analysis of traffic accidents and
cannot fully consider the characteristics of accidents. On in-
stinct, if the mechanism of traffic accidents can be considered
in deep learning methods, working together with their com-
plex nonlinear learning ability, the corresponding deep learning
methods could be proposed, and the accuracy of traffic accident
prediction should be further improved.

To this end, for spatial-temporal grid data, MVSTL combines
a DCN and a GRU to learn the dynamic spatial-temporal de-
pendencies of traffic accidents after using learnable embedding
matrixes to augment semantics. And then, the accident precursor
is learned by the flow difference of adjacent time steps by an-
alyzing the occurrence mechanism of traffic accidents. Finally,
considering that accident patterns have spatial heterogeneity,
accident patterns in different regions are learned from the ratio
of current flows to historical flows.

3. METHOD

3.1. Problem formulation

The traffic data are first introduced and then the traffic accident
prediction problem is formalized.

3.1.1. Multi-source traffic data

Traffic data are divided into three categories: spatial data, tem-
poral data, and spatial-temporal data. Among them, the spatial
data is only related to the location, including the region and
POI; the temporal data change over time, such as calendar infor-
mation; the spatial-temporal data are affected by both location
and time, including weather, traffic flow per unit time, accident
risk level, and so on. Due to the inconsistent numerical range
of these data, normalization is required. For enumerated data,
such as weather and POI, one-hot encoding is used; for numer-
ical data, normalized numerical encoding is used. The specific
definition of multi-source data is explained below.

Traffic grid. Research city is divided into 𝐼× 𝐽 grids accord-
ing to latitude and longitude, each grid represents a region.

Traffic accident. Firstly, the accidents are matched to differ-
ent time steps of the traffic grids based on the location and time.
Then the accidents are divided into three levels according to the
number of casualties: mild, moderate, and severe, and the cor-
responding accident levels are assigned as 1, 2, and 3. Finally,
the accident risk of each grid at each time step is calculated
by the weighted sum based on weights assignment to different
accident levels [28]. At time step 𝑡, the accident risk of region
𝑚 is 𝑌𝑚,𝑡 ∈ R and the accident risk distribution of all regions is
𝑌𝑡 ∈ R𝐼×𝐽 .

Traffic flow. Traffic flow consists of the inflow and outflow
of vehicles at each time step in each region. For example, the
inflow and outflow of region 𝑚 at time step 𝑡 are 𝑋

𝐹𝐼

𝑚,𝑡 , 𝑋
𝐹𝑂

𝑚,𝑡 ∈ R,
respectively, and the traffic flow of all regions is [𝑋𝐹𝐼

𝑡 , 𝑋
𝐹𝑂

𝑡 ] ∈
R𝐼×𝐽×𝑑𝐹 , where the feature dimension 𝑑𝐹 = 2.

POI. POIs generally refer to all geographical objects that can
be abstracted into points, especially some geographical entities
that are closely related to people’s lives, such as shopping malls,
hospitals, gas stations, and so on. According to the relationship
with traffic accidents, seven types of POIs are used in this pa-
per: residence, school, culture facility, recreation, social service,
transportation, and commercial premises. Since the distribution
of POIs does not change with time in the short term, the number
of POIs in each traffic grid reflects the geographic character-
istics of different regions. 𝑋𝑃

𝑚 ∈ R𝑑𝑃 is used to represent the
distribution of POIs in region 𝑚, where 𝑑𝑃 = 7. All regional
POI distribution is denoted as 𝑋𝑃 ∈ R𝐼×𝐽×𝑑𝑃 .

Weather. The weather includes temperature and weather
conditions, which are collected consistent with the time interval
of traffic data. While the temperature is represented by a nor-
malized numerical value, the weather conditions are enumerated
and represented by one-hot encoding, including five categories:
sunny, rainy, snowy, cloudy, and foggy. Therefore, the weather of
region 𝑚 at time step 𝑡 is denoted as 𝑋𝑊

𝑚,𝑡 ∈ R𝑑𝑊 , where 𝑑𝑊 = 6,
and the weather of all regions is denoted as 𝑋𝑊

𝑡 ∈ R𝐼×𝐽×𝑑𝑊 .
Calendar. Calendar information is represented by one-hot

encoding. A specific time in a day is represented by 24-bit one-
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hot encoding, a week is represented by 7-bit one-hot encoding,
and whether it is a holiday is represented by 1-bit one-hot en-
coding. The calendar information of region 𝑚 at time step 𝑡 is
𝑋𝐶
𝑚,𝑡 ∈ R𝑑𝐶 , where 𝑑𝐶 = 32. The calendar information for all

regions is 𝑋𝐶
𝑡 ∈ R𝐼×𝐽×𝑑𝐶 .

3.1.2. Traffic accident prediction

Based on the above multi-source historical data, traffic accident
prediction aims to find a function 𝑓 = (·) to predict the accident
risk at the next time step. Let 𝑋𝑡 = [𝑌𝑡 , 𝑋𝐹

𝑡 , 𝑋
𝑃 , 𝑋𝑊

𝑡 , 𝑋𝐶
𝑡 ] be

the multi-source data collected before time step 𝑇 −1, then the
prediction of the traffic accident risk at the target time𝑇 is shown
in equation (1)

𝑌𝑇 = 𝑓
(
𝑋𝑇−1−𝐼𝑤×𝑛𝑤 , . . . , 𝑋𝑇−𝑛ℎ , . . . , 𝑋𝑇−1

)
, (1)

where 𝑛ℎ, 𝑛𝑤 denotes the number of hours and weeks before the
target time step, and 𝐼𝑤 is the number of time steps in one week,
as shown in Fig. 1. Such inputs are designed to learn proximity
and periodicity simultaneously.

Fig. 1. Time steps of historical data

3.2. Architecture of MVSTL

MVSTL consists of three modules, namely the data prepro-
cessing module, spatial-temporal feature learning module, and
prediction module, as shown in Fig. 2. The multi-source data is

processed by the data preprocessing module to usable input. The
spatial-temporal feature learning module is divided into three
submodules to learn the spatial-temporal dependencies, acci-
dent precursor, and spatial heterogeneity of accidents from the
perspective of accident driving mechanism. Among them, the
spatial-temporal dependencies learning submodule uses a DCN
to learn dynamic spatial dependencies based on augmenting the
spatial semantic information of accidents, then uses a GRU to
learn temporal dependencies; the accident precursor learning
submodule takes the flow difference and accident risk as input,
and learns the accident precursor through LSTM; the spatial
heterogeneity learning submodule learns accident patterns in
different regions from the ratio of current flow to historical flow
through a fully connected (FC) layer. The prediction module
fuses the outputs of the three submodules and then predicts the
accident risk in the next time step through FC.

3.3. Spatial-temporal dependencies learning submodule

The most crucial problem in traffic accident prediction is cap-
turing complex spatial-temporal dependencies. When learning
spatial dependencies, on the one hand, although existing re-
search has constructed the road network structure and learned
its spatial dependencies in different ways, they often ignore the
semantic information in the structure. There are various POIs
in cities, and the distribution of POIs determines whether the
current region belongs to a commercial region, office region,
or education region, which can help reveal the spatial seman-
tic pattern of the accident and explore the occurrence rules of
the accident. On the other hand, the existing research often uses
CNNs to learn the spatial dependencies of traffic grids. However,
a CNN has a limited capacity to learn long-distance dependen-

Fig. 2. Architecture of MVSTL
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cies and also lacks the ability to learn the dynamic changes of
spatial dependencies.

To solve the above problems, the learning of spatial-temporal
dependencies is divided into three steps:

(1) Semantic augmentation
Firstly, the semantic information of each region is augmented

by converting the original POI number into the semantic accu-
mulation of different POI through the embedding matrix. The
calculation process is shown in equation (2)

𝐸𝑃 = 𝑋𝑃 ×𝑊𝑃 ∈ R𝐼×𝐽×𝑑′
𝑃 , (2)

where 𝑊𝑃 ∈ R𝑑𝑃×𝑑′
𝑃 is a trainable embedding matrix, 𝑑′

𝑃
is

the embedding dimension of the enhanced POI, and 𝐸𝑃 is the
augmented POI.

Secondly, different weather conditions have varied impacts
on traffic patterns. For example, bad weather can lead to adverse
traffic conditions, such as traffic jams and mixed traffic of pedes-
trians and vehicles, which can easily cause accidents. Therefore,
the weather information 𝑋𝑊

𝑡 needs to be augmented as well. By
the augmented method same as the POI, the augmentation result
is 𝐸𝑊

𝑡 ∈ R𝐼×𝐽×𝑑′
𝑊 , where 𝑑′

𝑊
is the embedding dimension of

the enhanced weather information.
(2) Spatial dependencies learning
After augmenting the POI and weather information, a DCN

is employed to learn dynamic spatial dependencies for multi-
source data. Unlike a CNN, a DCN can learn the relationship
between grids adaptively by changing the shape mapping in the
target receptive field of the convolution kernel through an offset
adding, which can better capture the dynamic spatial dependen-
cies between traffic grids.

The augmented multi-source data is [𝑋𝑆𝑇
𝑇−1−𝐼𝑤×𝑛𝑤 , . . . ,

𝑋𝑆𝑇
𝑡 , . . . , 𝑋𝑆𝑇

𝑇−1], where 𝑋𝑆𝑇
𝑡 = [𝑌 𝑡 , 𝑋

𝐹
𝑡 , 𝐸

𝑃 , 𝐸𝑊
𝑡 , 𝑋𝐶

𝑡 ]. For each
time step, the specific convolution operation is

𝐻𝑙
𝑡 = 𝜎

(
𝐻𝑙−1

𝑡 ∗𝑊 𝑙
𝑐 + 𝑏𝑙𝑐

)
, (3)

where 𝐻0
𝑡 = 𝑋𝑆𝑇

𝑡 , ∗ indicates the convolution operation, 𝑊 𝑙
𝑐

𝑙and 𝑏𝑐  indicate the parameters of the DCN in the 𝑙-th layer, 𝜎

is the activation function Relu, and 𝐻𝑙
𝑡 is the representation of

the 𝑙-th layer at the time step 𝑡. Finally, the output of the 𝐿 layer
DCN is [𝐻𝐿

𝑇−1−𝐼𝑤×𝑛𝑤 , . . . , 𝐻
𝐿
𝑡 , . . . , 𝐻

𝐿
𝑇−1].

(3) Temporal dependencies learning
The temporal dependencies between different time steps are

learned by a GRU after the spatial dependencies learning. Taking
𝐻𝐿

𝑡 as an example, the calculation process of the GRU is as
follows:

𝑟𝑡 = 𝜎

(
𝑊𝑟𝐻

𝐿
𝑡 +𝑈𝑟 ℎ

𝑆𝑇
𝑡−1

)
, (4)

𝑧𝑡 = 𝜎

(
𝑊𝑧𝐻

𝐿
𝑡 +𝑈𝑧ℎ

𝑆𝑇
𝑡−1

)
, (5)

ℎ̃𝑆𝑇𝑡 = tanh
(
𝑊ℎ𝐻

𝐿
𝑡 + 𝑟𝑡 ⊙𝑈ℎℎ

𝑆𝑇
𝑡−1

)
, (6)

ℎ𝑆𝑇𝑡 = 𝑧𝑡 ⊙ ℎ𝑆𝑇𝑡−1 + (1− 𝑧𝑡 ) ⊙ ℎ̃𝑆𝑇𝑡 , (7)

where 𝑊𝑟 and 𝑈𝑟 , 𝑊𝑧 and 𝑈𝑧 , 𝑊ℎ and 𝑈ℎ are the weights of
the reset gate, update gate, and 𝑡𝑎𝑛ℎ function, respectively, ℎ𝑆𝑇

𝑡−1

is the hidden state of the previous moment, and ⊙ denotes the
Hadamard product. The output of the last time step is the output
of the spatial-temporal dependencies learning submodule

𝑌𝑆𝑇 = ℎ𝑆𝑇𝑇−1 . (8)

3.4. Accident precursor learning submodule

The occurrence of traffic accidents is accidental. However, ex-
isting research has proved that the occurrence of accidents is
also inevitable in some cases from the perspective of traffic flow
changes, since the traffic flow parameters will change in some
pattern before and after the accident [29]. This change is called
accident precursor. From the perspective of accident causes, ac-
cident precursor is mainly divided into two situations. One is a
sudden change in traffic conditions, and the other is the cascad-
ing effect brought by an existing accident, namely a secondary
accident.

In the first case, traffic accidents are triggered by changes
in traffic flow due to the increase in traffic demand. But in the
second case, a sharp drop in traffic capacity caused by the occur-
rence of existing traffic accidents leads to traffic flow breakdown
and is often accompanied by the risk of secondary accidents. So,
the change in traffic flow can reflect the accident precursor to
some extent.

To learn the accident precursor, the flow difference of ad-
jacent time steps is calculated first, and then it is com-
bined with the accident risk to form sequence data, recorded
as [𝑋𝐴𝑃

𝑇−𝑛ℎ , . . . , 𝑋
𝐴𝑃
𝑡 , . . . , 𝑋𝐴𝑃

𝑇−1], where 𝑋𝐴𝑃
𝑡 =

[
𝑌𝑡 , 𝑋

𝐷𝐼

𝑡 , 𝑋
𝐷𝑂

𝑡

]
,

𝑋
𝐷𝐼

𝑡 and 𝑋
𝐷𝑂

𝑡 represent the difference between the inflow and
outflow at time step 𝑡 and time step 𝑡−1, respectively, and the
calculations are shown in equations (9) and (10)

𝑋
𝐷𝐼

𝑡 = 𝑋
𝐹𝐼

𝑡 − 𝑋
𝐹𝐼

𝑡−1 , (9)

𝑋
𝐷𝑂

𝑡 = 𝑋
𝐹𝑂

𝑡 − 𝑋
𝐹𝑂

𝑡−1 . (10)

Then, LSTM is used to learn the accident precursor. Take
𝑋𝐴𝑃
𝑡 as an example, the calculation is as follows:

𝑓𝑡 = 𝜎

(
𝑊 𝑓 ·

[
ℎ𝐴𝑃
𝑡−1, 𝑋

𝐴𝑃
𝑡

]
+ 𝑏 𝑓

)
, (11)

𝑖𝑡 = 𝜎

(
𝑊𝑖 ·

[
ℎ𝐴𝑃
𝑡−1, 𝑋

𝐴𝑃
𝑡

]
+ 𝑏𝑖

)
, (12)

𝑐𝑡 = tanh
(
𝑊𝑐 ·

[
ℎ𝐴𝑃
𝑡−1, 𝑋

𝐴𝑃
𝑡

]
+ 𝑏𝑐

)
, (13)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡 , (14)

𝑜𝑡 = 𝜎

(
𝑊𝑜 ·

[
ℎ𝐴𝑃
𝑡−1, 𝑋

𝐴𝑃
𝑡

]
+ 𝑏𝑜

)
, (15)

ℎ𝐴𝑃
𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡 ) , (16)

where ℎ𝐴𝑃
𝑡 is the hidden state at time step 𝑡, 𝑐𝑡 denotes the state

of the memory unit, 𝑊 𝑓 and 𝑏 𝑓 , 𝑊𝑖 and 𝑏𝑖 , 𝑊𝑜 and 𝑏𝑜, 𝑊𝑐

and 𝑏𝑐 denote the weight and bias of the forgetting gate, input
gate, output gate, and tanh function, respectively. The output of
the last time step is used as the output of the accident precursor
learning submodule

𝑌 𝐴𝑃 = ℎ𝐴𝑃
𝑇−1 . (17)
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3.5. Spatial heterogeneity learning submodule

There are different causes of accidents in different geographic
regions. For example, some regions may be prone to traffic
accidents due to road design defects, while others may be due
to heavy traffic. Therefore, different regions may have different
accident patterns, namely spatial heterogeneity. There are many
factors that affect spatial heterogeneity, but some are not easy
to learn, so we only learn spatial heterogeneity from the traffic
flow.

Firstly, the average value of historical traffic flow is calculated,
and the ratio of the traffic flow at the current moment to the
historical average traffic flow is calculated to learn accident
patterns in different regions. Specifically, for the target time
step 𝑇 , the input is recorded as 𝑋𝑆𝐻 = [𝑋𝐴𝐼

𝑇−1, 𝑋
𝐴𝑂

𝑇−1], where
𝑋

𝐴𝐼

𝑇−1, 𝑋
𝐴𝑂

𝑇−1 ∈ R are the ratios of the current inflow and outflow
to the average value of historical flow, respectively:

𝑋̄
𝐹𝐼

𝑇−1 =
1
𝑁𝑤

𝑁𝑤−1∑︁
𝑖=0

𝑋
𝐹𝐼

𝑇−1−𝑖×𝐼𝑤 , (18)

𝑋̄
𝐹𝑂

𝑇−1 =
1
𝑁𝑤

𝑁𝑤−1∑︁
𝑖=0

𝑋
𝐹𝑂

𝑇−1−𝑖×𝐼𝑤 , (19)

𝑋
𝐴𝐼

𝑇−1 =
𝑋
𝐹𝐼

𝑇−1

𝑋̄
𝐹𝐼

𝑇−1 +1
, (20)

𝑋
𝐴𝑂

𝑇−1 =
𝑋
𝐹𝑂

𝑇−1

𝑋̄
𝐹𝑂

𝑇−1 +1
, (21)

where 𝑋̄
𝐹𝐼

𝑇−1 and 𝑋̄
𝐹𝑂

𝑇−1 denote the average inflow and outflow of
each region, and 𝑁𝑤 represents the number of historical weeks
in the dataset. In the equation (20) and (21), 𝑋̄𝐹𝐼

𝑇−1 and 𝑋̄
𝐹𝑂

𝑇−1 are
added 1 to prevent calculation errors when the traffic is 0.

Accident patterns 𝑌𝑆𝐻 is learned by FC for 𝑋𝑆𝐻

𝑌𝑆𝐻 = 𝐹𝐶

(
𝑋𝑆𝐻

)
. (22)

3.6. Prediction module

The prediction module fuses the outputs of the above three sub-
modules for the final prediction. Considering the impact of the
fusion method on the final prediction result, the 1∗1 convolution
is used for vector reduction and redundant information elimi-
nation, and then the Hadamard product is used for fusion. The
accident risk prediction is performed through FC after fusion.

𝑌𝑇 = 𝐹𝐶

(
𝑊𝑆𝑇 ∗𝑌𝑆𝑇 ⊙𝑊𝐴𝑃 ∗𝑌 𝐴𝑃 ⊙𝑊𝑆𝐻 ∗𝑌𝑆𝐻

)
, (23)

where ∗ represents the convolution operation, ⊙ represents the
Hadamard product. 𝑊𝑆𝑇 , 𝑊𝐴𝑃 and 𝑊𝑆𝐻 are parameters of the
convolution kernel, and 𝑌𝑇 is the accident risk of all regions at
the target time step.

3.7. Model training

Since traffic accidents are sparse compared to normal travel data,
the model will be more inclined to predict non-accident for the
target moment, which makes model training difficult.

To address the sparsity of accidents, a joint loss function is
used in training [30]. Among them, the mean square error (MSE)
loss function focuses on reflecting the distribution of low-risk
accidents, and the mean absolute error (MAE) loss function fo-
cuses on reflecting the distribution of high-risk accidents. The
sparsity problem can be alleviated by combining these two loss
functions. The calculation process of MSE and MAE is as fol-
lows:

LMSE =
1
𝑁

𝑁∑︁
𝑖=1

𝜆𝑖
(
𝑌 (𝑖) −𝑌 (𝑖)

)2
, (24)

LMAE =
1
𝑁

𝑁∑︁
𝑖=1

𝜆𝑖
��𝑌 (𝑖) −𝑌 (𝑖)�� , (25)

where 𝑁 represents the number of samples, each sample is
composed of accident risk values of all regions at a specific
time. 𝑌 (𝑖) and 𝑌 (𝑖) represent the true value and predicted value
of the 𝑖-th sample, respectively, and 𝜆𝑖 represents the weight of
the 𝑖-th sample, and different weights are given according to the
risk of the corresponding sample [13].

The final joint loss function is

L = LMSE +LMAE . (26)

4. EXPERIMENTS AND ANALYSIS

In this section, MVSTL is evaluated on two datasets, and the
experiments are designed to answer the following questions.
1. Question 1: Does MVSTL outperform competing baselines?
2. Question 2: Are the key components of MVSTL helpful for

prediction?
3. Question 3: How does the fusion method affect the method’s

performance?
4. Question 4: How efficient is MVSTL?

4.1. Experiment preparation

4.1.1. Datasets

The experimental data comes from the public data of the govern-
ments of New York (NYC) and Chicago (Chicago). It contains
five types of data on the two cities, including traffic accidents,
taxi orders, POI, weather, and time data. The specific informa-
tion is shown in Table 1.

Table 1
Datasets

Dataset NYC Chicago

Time range 01/01/2013–
31/12/2013

01/02/2016–
30/09/2016

Number of traffic accidents 147 K 44 K
Number of taxi orders 173 179 K 1744 K
Number of POIs 15 625 –
Number of weather 8760 5823

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151955, 2024



Traffic accident prediction method based on multi-view spatial-temporal learning

4.1.2. Baseline

The baseline includes two classic machine learning-based meth-
ods and six latest deep learning-based methods, in order:
1. XGBoost: The ensemble learning model uses a regression

tree as the base learner.
2. MLP: Multilayer Perceptron.
3. GRU: Gated RNN approach, good at learning temporal de-

pendencies in data.
4. SDCAE [25]: Introducing CNNs to learn spatial dependen-

cies in stacked denoising autoencoders.
5. ConvLSTM [11]: Combining CNNs with LSTMs to learn

spatial-temporal dependencies.
6. ST-RistNet [28]: Combining GCNs and GRUs to learn

spatial-temporal dependencies in traffic flow.
7. GSNet [13]: GCNs and GRUs are used to learn spatial-

temporal dependencies; the semantic spatial-temporal de-
pendencies are learned through GCNs based on three se-
mantic graphs constructed according to road features, POI,
and risks.

8. MG-TAR [14]: GCNs and temporal attention are used to
learn various dependencies from graphs constructed from
environmental data besides the traditional adjacency matrix.

Among them, XGBoost and MLP represent efficient machine
learning methods. In deep learning methods, a GRU and an SD-
CAE, respectively, represent methods that only learn temporal
or spatial dependencies. The remaining methods are designed
based on spatial-temporal dependencies.

4.1.3. Experimental environment and settings

The operating system environment is Ubuntu 18.04, and the de-
velopment framework is Pytorch 1.8.1. The hardware equipment
uses NVIDIA RTX3080Ti GPU for training, and its CPU is In-
tel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz, and the memory
is 32 GB.

The number of training batches is 32 and the learning rate
is 1e–6. The early stopping mechanism is enabled during the
training process, and the patience is 5.

4.1.4. Evaluating metrics

Traffic accident risk prediction is a regression task, for which
root mean square error (RMSE) is used as an evaluation index.
At the same time, considering that the prediction result is the
accident risk distribution and contains multiple prediction re-
gions, the recall rate and mean average precision (MAP) are
introduced to evaluate the hit rate of each time step for the risk
regions:

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(
𝑌 (𝑖) −𝑌 (𝑖)

)2 (27)

𝑅𝑒𝑐𝑎𝑙𝑙 =
1
𝑁

𝑁∑︁
𝑖=1

��𝑅𝑖 ∩ 𝑅̂𝑖

��
|𝑅𝑖 |

, (28)

𝑀𝐴𝑃 =
1
𝑁

𝑁∑︁
𝑖=1

∑ |𝑅𝑖 |
𝑗=1 𝑝( 𝑗) × 𝑟 ( 𝑗)

|𝑅𝑖 |
, (29)

where 𝑅𝑖 and 𝑅̂𝑖 are the sets of actual and predicted top |𝑅𝑖 |
highest risk regions for sample 𝑖, respectively. 𝑝( 𝑗) represents
the precision ranking list from 1 to 𝑗 . 𝑟 ( 𝑗) = 1 indicates that
accidents have occurred in region 𝑗 , otherwise 𝑟 ( 𝑗) = 0.

4.2. Experiment 1: Comparative experiment

For question 1, Experiment 1 compared the performance of
MVSTL with each baseline. Table 2 shows the comparison re-
sults in the two data sets, where ∗ represents the Chicago dataset.

Table 2
Performance comparison

Methods RMSE Recall MAP RMSE∗ Recall∗ MAP∗

XGBoost 10.513 21.56% 0.103 15.104 12.01% 0.048

MLP 8.488 27.41% 0.119 11.948 16.71% 0.056

GRU 7.852 30.43% 0.151 11.617 17.63% 0.069

SDCAE 8.020 31.08% 0.152 11.613 17.59% 0.066

ConvLSTM 7.674 31.27% 0.173 11.717 19.38% 0.079

ST-RiskNet 7.660 32.46% 0.181 11.487 20.04% 0.083

GSNet 7.671 33.42% 0.185 11.373 21.11% 0.090

MG-TAR 7.810 30.19% 0.184 10.607 18.43% 0.091

MVSTL 7.622 34.55% 0.195 11.868 21.98% 0.105

The bold ones in the table are the optimal results, and the
underlined ones are the suboptimal results. It can be seen from
Table 2 that MVSTL generally has lower RMSE and higher recall
and MAP. Lower RMSE indicates that MVSTL is more accurate
in predicting the risk of all regions. Higher recall and MAP
indicate that MVSTL has a higher hit rate for the prediction of
high-risk regions, and the prediction results are more correlated
with the real risk distribution. Therefore, considering all metrics,
MVSTL outperforms all baselines.

Among baselines, the machine learning-based methods XG-
Boost and MLP perform poorly because they process each piece
of data individually and ignore the spatial dependencies between
data. The performance of deep learning-based methods has im-
proved. For example, a GRU performs better in modelling the
time series of accident data because it can capture short-term
proximity and long-term periodicity, further confirming the im-
portance of modelling temporal dependencies in traffic accident
prediction. SDCAE models the spatial dependencies of adjacent
regions by stacking multi-layer convolutional neural networks
but ignores the temporal dependencies and spatial dependen-
cies of the global region. ConvLSTM can capture the temporal
and spatial dependencies of traffic accidents simultaneously by
combining convolutional neural networks and long short-term
memory networks. ST-RiskNet and GSNet achieve good results
by modelling local spatial-temporal dependencies and global
spatial-temporal similarities based on static convolution ker-
nels and fixed graph structures. The above two methods can
capture the global spatial dependencies to a certain extent by
constructing the global similarity graph but cannot capture its
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dynamic changes. MG-TAR considers dynamic changes by con-
sidering time factors but ignores accident precursors. In contrast,
MVSTL considers the dynamic spatial-temporal dependencies
between regions and deeply explores the problem of accident
precursor and spatial heterogeneity. At the same time, the hidden
semantic information behind POI and weather is also extracted
to learn the traffic accident mode better, so the best results are
obtained. The experimental results illustrate that it is feasible
and effective to capture multiple accident characteristics from
the perspective of accident driving mechanisms.

4.3. Experiment 2: Ablation experiment

For question 2, Experiment 2 verified the impact of different
submodules in MVSTL on the prediction results. To this end,
three model variants, MVSTL-ST, MVSTL-AP, and MVSTL-
SH, were designed, representing the removal of the spatial-
temporal dependencies learning submodule, the accident pre-
cursor learning submodule, and the spatial heterogeneity learn-
ing submodule, respectively. Figure 3 shows the results in the
NYC dataset. The results obtained on the Chicago dataset are
similar and will not be repeated here.

Fig. 3. Ablation experiments in NYC

It can be seen that MVSTL has the best overall performance
because it considers the occurrence mode of accidents from mul-
tiple perspectives. Removing any one of the modules ignores a
certain characteristic of the accident, resulting in a decline in the
effect. This phenomenon reflects that each accident characteris-
tic is helpful to the prediction, and the combination of different
accident characteristics also has a positive impact.

4.4. Experiment 3: Parameter experiment

For question 3, Experiment 3 discusses the impact of differ-
ent fusion methods on performance. There are six common
fusion methods, including concatenate (C), LSTM (L), point-
wise addition (P), CNN (N), max-pooling (M), and Hadamard
product (H). To find a suitable fusion method for the predic-
tion module, six variants were designed, denoted by MVSTL-C,
MVSTL-L, MVSTL-P, MVSTL-N, MVSTL-M, and MVSTL-
H. The experimental results are shown in Fig. 4.

Fig. 4. Fusion methods in NYC

As shown in Fig. 4, the Hadamard product has the best effect
when used to fuse the output results of the three sub-modules.
This is because it can expand the importance of variables to a
certain extent and increase attention to important information.
LSTM may filter out some important information through the
gating mechanism, so the result is lower than the Hadamard
product fusion method. Concatenate and point-wise addition
average the importance of information without considering the
interaction between different space-time vectors, and certain
semantic information will be lost. Max pooling will cause some
hidden information to be lost. Therefore, Hadamard is used for
the final feature fusion.

4.5. Experiment 4: Efficiency experiment

For question 4, Experiment 4 compared the model efficiency by
recording the single-step prediction time of each model on the
two data sets, and the results are shown in Fig. 5.

Fig. 5. Prediction time (s) in NYC and Chicago

As shown in Fig. 5, the prediction time of each model is
within 0.5 s. Machine learning-based methods have short pre-
diction times, while deep learning-based models have high time
complexity, resulting in long prediction times. Compared to the
improvement in performance, the increased time cost of deep
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learning methods is acceptable, and the efficiency of MVSTL
can support its practical application.

Overall, the results of four experiments show that MVSTL
can effectively predict traffic accidents.

5. CONCLUSIONS

This paper proposes a new deep-learning method for traffic ac-
cident prediction, namely MVSTL. MVSTL is designed from
the perspective of accident driving mechanism, which makes
up for the shortcomings of existing research. The key design of
MVSTL is to take different modules to extract relevant features
from the data by analyzing three accident characteristics, includ-
ing dynamic spatial-temporal dependencies, accident precur-
sor, and spatial heterogeneity. After fusing the learned features,
MVSTL can achieve regional-level accident risk prediction.

Three metrics are used to evaluate the proposed method, and
the experimental results show that MVSTL outperformed all
baseline, especially in terms of the accuracy of predictions for
regions with high accident risk. This proves that introducing
traffic accident driving mechanisms can improve the accuracy
of prediction results, which can bring new thinking to related
research and further introduce theoretical knowledge to guide
model design. It is worth mentioning that MVSTL designed
based on accident characteristics is more interpretable com-
pared to other methods and may be helpful for some applicable
occasions. Moreover, experimental results prove that MVSTL
prediction speed is fast enough to meet the needs of an intelli-
gent traffic system for real-time accident prediction.

However, MVSTL has limitations. On the one hand, it is de-
signed for grid data to predict the risk of accidents in the region.
We may hope to be able to predict the risk of accidents at the
road level, which also places higher demands on the granularity
of data. On the other hand, it fails to consider the cascading effect
of traffic accidents in depth. The occurrence of an accident may
lead to a series of chain reactions, resulting in the probability
of subsequent accidents. Therefore, we will collect fine-grained
data in the future to study road-level accident prediction, and
further study the cascading effects of traffic accidents through
the theory of complex network dynamic evolution.
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