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Abstract: Radiofrequency (RF) ablation is a popular therapeutic technique for heating solid
tumors that are medically unsuitable for resection or other treatments. Thermal ablation
applicators create high-frequency electromagnetic fields (EMFs) within the tumor site,
which causes heating, coagulation, and ultimately death of the cancer cells. The aim of this
study is the numerical analysis of the temperature distributions, ablation zones, and specific
absorption rates (SAR) during RF ablation in relation to an ellipsoidal shaped tumor placed
in the model of liver tissue. The source of heat is a three-element system of RF needle
applicators operating at a frequency 100 kHz, with a given electrode potential, inserted into
the tumor. In order to obtain an appropriate temperature distribution in the target area, the
Laplace equation coupled with the Pennes equation were solved using the finite element
method (FEM). The arrangement effect of three needle-type applicators on the resultant
thermal profiles and the volumes of ablation zones were analyzed and compared. In addition,
the ablation zones for various angles of the RF applicator placed in the center of the tumor
were analyzed. The paper shows that in order to control temperature distribution and ablation
zones the proposed system of RF applicators and the arrangement of electrodes can be
successfully applied in hepatocellular carcinoma treatment.
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1. Introduction

Hepatocellular carcinoma stands as the prevailing malignant tumor affecting the human liver
of expanding part of the general population [1,2]. In the majority of instances, hepatic malignancies
cannot be eradicated by a simple surgical resection. This is principally attributed to the large
tumor dimensions and complex structure of multifocal liver tumors, their specific placement, and
densely vasculared blood network. Hence, the pursuit for novel and less invasive methods of
generating therapeutic heat within the cancer, thereby sparing healthy liver tissue while focusing
heat exclusively into the targeted tumor volume, remains a pressing endeavor [3, 4]. Examples
of these heat focused therapies are referred to as interstitial hyperthermia and thermal ablation
procedures [5–7], both of which harness radiofrequency (RF) energy [8, 9] or microwaves [10, 11]
to destroy cancerous cells. The interstitial needle-like applicators, owing to their straightforward
construction [12,13], obviate the necessity for laparotomy and can be administered percutaneously
under general anesthesia [14]. The typical instruments employed for thermotherapy can be
regulated based on temperature or EM power changes [4]. In addition, the positions of temperature
sensors may be controlled by image-guided techniques during the whole treatment [15]. Tissue
temperatures during the ablation process may escalate to substantial levels, ranging from 50◦C to
100◦C and even more [4], and when coupled with precise timing, may ultimately culminate in
coagulation and necrosis of cancerous tissue [16–18]. It is worth noting that the thermal damage
of hepatic tumors transpires with a specific margin of ablative tissue necrosis, challenging its
unequivocal identification through existing imaging modalities during ablation treatments. This
presents the potential for thermal harm to adjacent nerves, blood vessels, and adjacent tissues,
thus constraining the utility of this treatment method [19]. Additionally, the unsuitable structure
of employed applicators, their placements, and the applied power deposition can contribute to
incomplete destruction of cancerous cells and foster the resurgence of neoplastic disease.

In the literature, new technological solutions are being sought to obtain conformal ablation
adapted to the type and shape of the tumor, as well as the dielectric properties of the cancerous
tissue and its surroundings. For this purpose, researchers design various types of applicators
operating at radio (RF ablation) and microwave (MW ablation) frequencies. The thermal ablation
applicators used take the shape of a needle [3, 15] or more complex multi-tines structures [4, 16].
In most cases, the applicator design process involves selecting the optimal antenna sizes to obtain
the best possible impedance matching of the applicator to the tissue, which is reflected in the
lowest value of reflection coefficient/return loss (S11) [20]. Kernot et al. [21] compared the four
most popular probe concepts used in ablation therapies: monopoles, single-slot, dual-slot, sleeve
needle applicators, and showed that the most sensitive to tissue dielectric changes is the sleeve
antenna, which has almost circular shape of temperature and specific absorption rate (SAR)
patterns. Multi-slot coaxial antennas [6, 20], having additional air gaps in their structure, are
characterized by more oval shapes of the ablation zones, and increasing the number of coaxial slots
increases the therapeutic range and the possibility of treating tumors of extended sizes. As shown
by Xu et al. [22], adding π-matching networking in the multi-slot coaxial antenna structure, creates
near-spherical ablation zones and minimizes thermal damage of healthy tissues surrounding the
tumor [7]. It is also possible to optimize the antenna structure to obtain optimal shapes of ablation
zones without analyzing the S11-distribution [10]. Satish and Repaka [16] proposed a novel L
shaped dual-frequency trocar with two tines: flexible curved one and static longitudinal one.
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The authors noticed that irregular ablation areas could be obtained for the applicator in which
individual tines were supplied by two different frequencies (2.45 GHz and 6 GHz) at the same
time. The observed sizes of ablation zones were larger than when using a single frequency of
2.45 GHz. However, when a higher frequency was used (6 GHz), more spherical shapes of tumor
tissue damage with a diameter up to 3 cm were found. Larger tumors, with a diameter above
5 cm, should be treated using applicators combined in the array of two or more probes [18].
Avishek et al. [23] investigated the influence of materials properties of Ni–Ti, Pt–Ir, Au, and Cu
electrodes employed in hepatic RF ablation. However, they observed a marginal difference both in
maximum temperatures and in ablation volumes.

During the process of designing therapeutic probes, researchers take steps to minimize the
level of backward heating at the antenna-tissue interface, which occurs by using a cooling
system for the internal structure of the applicator (water-cooled antennas) [10] or adding various
chokes in choke and cap-choke antennas [7]. Enhancing the therapeutic effect and shortening the
treatment time can be achieved by additionally placing magnetic nanoparticles (MNPs) in the
treated tissue [8, 12, 24]. As shown by Tang et al. [25], the use of a multi-criterion Nelder–Mead
optimization in magnetic hyperthermia treatment allows obtaining the optimal value of power
dissipated in the MNP-saturated tissue and better convergence rate of performed simulation.
Singla et al. [12] showed that the usage of the Nelder–Mead optimization works effectively in the
case of magnetic fluids heated by various needle applicators (monopoles, dipoles, coaxial-slot,
tapered-slot), but the lowest values of the S11-coefficient they recorded for the tapered-slot antenna
in the presence of gold coated iron based magnetite MNPs (Au@Fe3O4) with 20 nm magnetic
core. Other similar investigations are expounded in some papers [26–41].

Based on the papers [3,4], the authors created a 3Dmodel of three partially insulated RF probes
immersed inside a liver phantom tissue including hepatic tumor. The ellipsoid shape of liver tumor
was selected on the basis of previous authors’ investigation [3], as the optimal one corresponding
to the irregular shape of anatomical tumor. In this paper, the effect of the arrangement of three
voltage-supplied applicators on the resultant thermal profiles of the hepatic tumor and the shapes
of the result ablative zones were compared. In addition, the ablation zones for different rotation
angles of the RF applicator placed in the center of the hepatic tumor were analyzed, which is a new
authors’ contribution in the subject.

2. Basic equations governing the model

The anatomical model of liver tissue including the partially isolated probe and ellipsoid tumor
is shown in Figs. 1–2. In order to shorten the calculation time, the computational area was limited
to a cube with a side of 115 mm as depicted in Fig. 2. The RF applicator of 50 mm length was
inserted in the z-direction into the liver phantom. The electric potential of ϕ = 25 V was assumed
on the lower electrode (no. 2), whereas the upper electrode (no. 1) was grounded (ϕ = 0). The upper
dielectric (no. 1) with a length of 38.5 mm and a diameter of 0.5 mm was surrounded by a plastic
catheter measuring 37 mm in length and 0.7 mm in diameter, which served as a protective element.
All dimensions of the employed RF electric probe were adopted from [3] and listed in Table 1.
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Fig. 1. Model of the hepatic tissue including ellipsoidal tumor and RF applicator

(a) (b)

Fig. 2. Considered computational model of the:
(a) liver and tumor tissues, and (b) RF applicator employed in thermal ablation procedure

Table 1. Geometrical dimensions of the RF applicator

Applicator Elements Size (mm)
radius of the shaft (trocar) 0.7
radius of the insulator 0.5
radius of the electrodes 0.5
length of the shaft 38.5
length of the insulator 1.5
length of the electrodes 5.0
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In the analyzed 3D electro-conductive model, for simplicity, a quasi-static approximation was
assumed and therefore the following equations could be used [3]:

∇ · J = 0, (1)
J = σE, (2)

E = −∇ϕ, (3)

where: J (A/m3) and E (V/m) mean the vectors of current density and electric field strength,
σ (S/m) corresponds to the electric conductivity of a medium and ϕ (V) stands for the electric
potential supplied the RF electrodes.

In current model a quasi-static approximation is valid since for frequency of 100 kHz, the
wavelength in vacuum (λ0 = c0/ f ≈ 3 km) and inside the liver tissue (λeff = λ0/

√
(ε′r ) = 34.617 m),

where ε′r is the tissue permittivity) [20] are many times larger than the largest dimension of
RF applicator (see Table 1). Consequently, displacement currents are many times lower than
conduction currents and can be negligible [3]. Additionally, in the computer simulation of all the
modeled tissues are assumed as isotropic, homogeneous and linear media with constant parameters.
Since the electric potential voltaged RF electrodes generate the electric field inside computational
domain, the generalized Laplace equation is used to solve the problem [4, 23]:

∇ · (−σ∇ϕ) = 0. (4)

On the other hand, the temperature field distribution inside biological objects under RF heating
can be computed using the Pennes bioheat transfer equation [42]:

ρC
∂T
∂t
+ ∇ · (−κ∇T) = ρbCbωb(Tb − T) +Qext +Qmet, (5)

where ρ, C, and κ correspond to the density (kg/m3), specific heat (J/(kg·K)), and thermal
conductivity of a given medium (W/(m·K)), respectively, T means the tissue temperature (K), and
t is the treatment time (s); the blood parameters are marked with a subscript ‘b’and the blood
perfusion rate inside biological tissues is denoted as ωb (1/s). Moreover, the penultimate term
Qext (W/m3) stands for the volumetric power density due to the Joule heating produced by the RF
needle-type applicators, namely [4, 11, 29]:

Qext = J · E = 0.5σ |E|2 = 0.5σ |∇ϕ|2 , (6)

where |E| (V/m) stands for the maximum value of electric field intensity. On the other hand, Qext
can be express in the terms of specific absorption rate SAR (W/kg) which measures the EM energy
deposited in unit mass of tissue and can be given by [3, 43]:

SAR =
σ

2ρ
|E|2 = σ

2ρ
|∇ϕ|2 . (7)

The last term in Eq. (5), Qmet = ρHGR (W/m3) means the volumetric power density due
to tissue cells metabolism, where HGR (W/kg) is the heat generation rate [3, 44]. The cooling
effects of blood perfusion through the liver tissue are often expressed by the heat transfer rate
HTR (mL/min/kg), namely ωb = α · ρHTR (1/s), where α is the scaling factor [44].
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To simulate the analyzed multphysics problem, the additional initial/boundary conditions for
main Eqs. (4) and (5) are necessary. An electric potential has a zero value (ϕ = 0) at initial time.
The Direchlet boundary conditions (ϕ = 0) were set at the external boundaries of 3D model and
the electrode no. 1. The voltage of ϕ = 25 V was applied on the electrode no. 2 (Fig. 1). Moreover,
the normal components of the current density vector were assumed as continuous at the internal
boundaries of the considered model, namely [13, 23]:

n · (J1 − J2) = 0, (8)

which, depending on the electric potential, takes the form as below [3]:

n · (σ1∇ϕ1 − σ2∇ϕ2) = 0. (9)

The similar conditions should be defined for the temperature field. The initial temperature
in whole model is equal to T0. On the external boundaries of the model, thermal insulation
(∂T/∂n = 0) was assumed. At the internal boundaries, the heat flow continuity was adopted
according to the formula [23]:

n · (κ1∇T1 − κ2∇T2) = 0, (10)

where n stands for the normal vector perpendicular to a given boundary. The subscripts 1 and 2
correspond to values of given quantity at two different sides of the same boundary.

3. Simulation results

The current model assumes a quasi-static approximation and is valid for a frequency of
f = 100 kHz. The parameters used for modelling liver tissue, blood and an RF applicator have
been taken from [3, 44] and listed in Table 2. The dielectric components of the RF applicator
(dielectrics and plastic catheter) were modeled using polyethylene material with an electrical
conductivity of σ = 0.5 mS/m and a mass density of ρ = 1000 kg/m3. The electrodes were
modeled as perfect electric conductor (PEC) materials. The initial tissue temperature was assumed
as T0 = 37◦C and the blood temperature had constant value of Tb = 37◦C. All FEM-based
calculations are performed using the commercially available Sim4Life software [45].

Table 2. Electro-thermal parameters for 100 kHz employed in the analyzed model [3, 44]

Tissues σ
(mS/m)

ρ
(kg/m3)

C
(J/(kg·K))

κ
(W/(m·K))

HGR
(W/kg)

ρbCbωb
(kW/m3/K)

ωb
(1/s)

Blood 703.0 1050 3617 0.520 0 664.6 0.1750
Liver tissue 84.6 1079 3540 0.520 9.93 62.7 0.0165
Liver tumor 400 1040 3437 0.563 12.0 51.0 0.0134

In our case, three scenarios of placement of needle probes inside the hepatic tissue were
analyzed: forming single- (probe no. 1), double (probes no. 1 and 2), and triple- (probes no. 1, 2,
and 3) applicator systems for RF ablation, as shown in Fig. 3. All needle probes, placed 2 mm
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apart, were inserted into an ellipsoidal liver tumor along the shorter axis of the ellipse lying
along the z-axis and the applicator no. 3 was located exactly in the center of the tumor. Such
arrangement of the RF electrodes was intended to ignore the effect of tumor symmetry on the
resulting temperature profiles of the cancer tissue. Additionally, the point P is marked in Fig. 3,
where the transient temperature curves were observed.

(a) (b) (c)

Fig. 3. Analized scenarios of arrangements of RF probes in the case of: (a) single-; (b) double-, and (c) triple-
applicator system for RF ablation treatment

Figure 4 compares the spatial temperature distributions inside hepatic tumor tissue in the
steady-state derived from all considered RF ablation systems. In all analyzed cases, the highest
temperatures were observed in the vicinity of the insulator separating the two electrodes of each
RF probe. As expected, with the number of active applicators, the therapeutic range of temperature
operation extends along the y-axis, while changes in heat penetration in other directions are
relatively small. This is also seen in the time-dependent heat profiles of the liver tumor shown in
Fig. 5, measured in the observation point P = (0,−3, 0) mm located in middle height of insulator, in
the middle distance separating two electrodes in the double-probe system (see Fig. 3(b)). After 10
min-ablation procedure, the tumor temperature reached a therapeutic level of 96◦C for 3 employed
probes and respectively 91◦C and 80◦C for 2 and 1 used probes.

Next Fig. 6 presents the SAR distributions inside liver tissues in the steady-state for three
considered arrangements of the employed RF probes. The SAR values were presented in decibel
scale compared to the maximum SAR level for better graphical illustration. In the following
drawings, it can be seen that the SAR values are enhanced inside the tumor site, which results
from the specific electrical properties of the malignant liver tissue and the geometry of the tumor.

From the medical point of view, isothermal (ISO) surfaces above 50◦C can be considered as
characteristic ablative zones. Figure 7 illustrates three sample ISO-surfaces (ISO-50, ISO-60 and
ISO-75) in the yz-plane after 10 min treatment for temperatures levels of 50◦C, 60◦C, and 75◦C,
respectively. The conclusions are similar to those resulting from the temperature distributions
shown in Fig. 4, however, this time the exact volumes of the ablation zones can be computed
and compared with the volume of ellipsoidal hepatic tumor (Vtumor = 1047.46 mm3), as gathered
together in Table 3 for various active RF probes configurations. The performed calculations show
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(a) (b)

(c)

Fig. 4. Temperature distributions inside liver tumor tissue in the case of: (a) single-; (b) double-, and (c) triple-
applicator system for RF ablation treatment in the steady-state

Fig. 5. Transient temperature distributions inside liver tumor tissue at the observation point P = (0,−3, 0) mm
in the case of: (a) single-; (b) double-, and (c) triple-applicator system

that the ablation zones increase with the number of active applicators and in the best case of
triple-probe RF ablation system, they are 71.5%, 18.9% and 5.5% of the tumor volume, respectively
for ISO-50, ISO-60 and ISO-75 surfaces.
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(a) (b)

(c)

Fig. 6. SAR distributions inside liver tumor tissue in the case of: (a) single-; (b) double-, and (c) triple-applicator
system for RF ablation treatment in the steady-state

Table 3. Calculated ablation volumes for different isothermal (ISO) surfaces

Numbers of
Active RF

Probes

Ablation Volumes

VISO-50
(mm3)

VISO-50
(%)

VISO-60
(mm3)

VISO-60
(%)

VISO-75
(mm3)

VISO-75
(%)

1 219.838 21.0 43.767 4.2 3.963 0.4

1, 2 473.837 45.2 116.145 11.1 25.243 2,4

1, 2, 3 749.455 71.5 197.634 18.9 53.382 5.1

Finally, the influence of rotation angles of the RF applicator on the resultant SAR values
(Fig. 8) and ablation zones (Fig. 9) in the steady state were analyzed.

This time a needle applicator no. 3 was inserted into the center of the ellipsoidal hepatic tumor
the angle φ that formed by the axis of the RF probe with the shorter axis of the tumor ellipse lying
along the z-axis. The RF applicator rotation angle was changed from 0◦ to 90◦. Figure 8 shows
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(a) (b)

(c)

Fig. 7. The isothermal (ISO) surfaces inside liver tumor tissue for temperature 50◦C, 60◦C and 75◦C in the
case of: (a) single-; (b) double-, and (c) triple-applicator system in the steady state

that the rotation of the needle applicator, from the shorter axis to the longer axis of the tumor
ellipse, causes the uniformity of SAR distributions, and the best match was obtained when the RF
probe was inserted along the z-axis. At the same time, changing the position of the applicator
does not cause significant changes in the size of the ablative zones (Fig. 9). Increasing the rotation
angle of the applicator slightly increases ablation volumes from 17.7% to 19.5% of ellipsoid liver
tumor volume as given in Table 4.

Table 4. Ablation volumes for ISO-50◦C surface in the case of various RF applicator rotation angles

RF Probe
No. 3

(in the liver
tumor centre)

RF Applicator Rotation Angles

φ = 0◦ φ = 30◦ φ = 60◦ φ = 90◦

Ablation Volumes

VISO-50 (mm3) VISO-50 (mm3) VISO-60 (mm3) VISO-75 (mm3)

185.806 188.887 201.133 203.648

VISO-50 (%) VISO-50 (%) VISO-50 (%) VISO-50 (%)

17.7 18.0 19.2 19.4
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(a) (b)

(c) (d)

Fig. 8. SAR distributions inside liver tumor tissue in the case of various RF applicator rotation angles:
(a) φ = 0◦; (b) φ = 30◦; (c) φ = 60◦, and (d) φ = 90◦

(a) (b) (c) (d)

Fig. 9. The ISO-50◦C surfaces inside liver tumor tissue the case of various RF applicator rotation angles:
(a) φ = 0◦; (b) φ = 30◦; (c) φ = 60◦, and (d) φ = 90◦
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4. Conclusions

Radiofrequency (RF) ablation is a minimally invasive technique for heating inoperable solid
tumors including hepatic tissue. The type of applicator, the number of needle probes employed in
thermal ablation system, the electrodes arrangement in relation to each other and their location
within the targeted cancer tissue may affect the temperature level, the size and shape of the ablation
zones and the shorten ablation time during hepatocellular carcinoma treatment. The proposed
simulation model employed a specific voltaged needle applicator (operating at 100 kHz) inserted in
the model of human liver with tumor. In our case, the irregular tumor was replaced by an equivalent
ellipsoid that has the same surface and volume as the naturalistic tumor. The electro-thermal
model, including the coupled Laplace equation with the modified Pennes equation, was solved
using commercially available FEM-based software. The paper shows that the proposed matrix of
applicators employed in single-, double- and triple-probe RF ablation system and the arrangement
of electrodes generate temperature levels in the liver tumor tissue, which may play an important
role in the ablation of hepatocellular carcinoma. It was observed that increasing the number of
applicators causes a rise in temperature of the tumor, increases the volumes of ablation zones
and improves the expected therapeutic effect of the modeled hepatic tumor. What is more, it has
been proven that the rotation of the RF probe relative to the liver tumor longitudinal axis does not
significantly increase the ablation zones.
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