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ABSTRACT:

Mil, K., Gołębiowska, B., Pieczka, A. and Włodek, A. 2024. Titanite from the NYF-type pegmatites of Szklarska 
Poręba Huta quarry, Karkonosze granite massif, SW Poland. Acta Geologica Polonica, 74 (3), e20.

Titanite, an accessory mineral of pegmatite related to aplogranite, was identified in the Szklarska Poręba Huta 
quarry within the Karkonosze granite massif in Lower Silesia, Poland. It formed during pegmatitic to hydro-
thermal stages. Besides the isovalent substitution Sn → Ti, the chemical composition of the mineral is charac-
terized by three coupled substitutions: (1) (Al, Fe, Sc)3+ + (OH, F)- → YTi + ZO, (2) XREE3+ + Y(Al, Fe, Sc)3+ 
→ XCa2+ + YTi4+, and (3) (Al, Fe, Sc)3+ + (Nb, Ta)5+ → 2YTi. These substitutions are strongly dependent on 
the composition of the magma in terms of its Al2O3/TiO2 activity ratio, with the first one also influenced by the 
H2O/HF fugacity ratio. Fluorine, which induced the most common substitution (1), had its source in high-tem-
perature F-bearing fluids released from rocks of the metamorphic envelope adjacent to the intruding granite. 
These fluids mobilized and transported various rock components (Sc, REE, Nb, Ta, etc.) among others in the 
form of fluoride complexes, enriching the aplogranite magma with some metallic elements. The substitution of 
Sn for Ti developed with decreasing temperature to the extent that in thin ore-mineralized quartz veins cutting 
aplogranite, titanite reaches Sn-bearing compositions up to the prevalence of Sn corresponding to malayaite.

Key-words:  Titanite; Malayaite; NYF pegmatite; Karkonosze granite massif; Szklarska Poręba.

INTRODUCTION

Currently, an informal titanite group comprises 
five different mineral species: titanite CaTi(SiO4)O 
(grandfathered), malayaite CaSn(SiO4)O (Alexander 
and Flinter 1965; Higgins and Ribbe 1977), vana do-
malayaite CaV4+(SiO4)O (Basso et al. 1994), natroti-
tanite (Na0.5Y0.5)Ti(SiO4)O (Stepanov et al. 2012), 
and żabińskiite, Ca(Al0.5Ta0.5)(SiO4)O (Pieczka et al. 
2017). The chemical formulae of these minerals can be 
generalized as XYTO4Z, where the symbol X denotes 
a 7-fold-coordinated site commonly occupied by Ca, 
which can be partially replaced by small amounts of 
cations with large radii, e.g. Na+, Mn2+, Sr2+, Pb2+, 
REE3+, Th4+, U4+; Y – an octahedral site usually occu-
pied by Ti4+, which can be substituted by common di- 

and trivalent cations such as Mg2+, Fe2+, Mn2+, Al3+, 
Fe3+, Mn3+, in addition to other (besides Ti4+) high-
field-strength elements (HFSE: V4+, Sn4+, Zr4+, Nb5+, 
Ta5+); T – a tetrahedral site occupied mainly by Si4+, 
and in the deficiency of Si4+ completed by subordinate 
Al3+ or Ti4+; Z – an anionic site that, in addition to O2- 
anion, can contain (OH)−, F−, and Cl− (e.g. Zachariasen 
1930; Černý and Riva di Sanseverino 1972; Clark 
1974; Higgins and Ribbe 1976; Speer and Gibbs 1976; 
Ribbe 1980; Černý et al. 1995; Della Ventura et al. 
1999; Tiepolo et al. 2002; Chakhmouradian et al. 
2003; Cempírek et al. 2008). The highly diverse com-
positions of the group minerals are the result of an 
extensive stability field that is slightly dependent on 
the composition of the evolving parental magmatic 
systems and the kinetics of crystallization (Franke and 



2 KAROLINA MIL ET AL. 

Ghobarkar 1980; Brugger and Gieré 1999; Liferovich 
and Mitchell 2005). Magmatic titanite typically has a 
composition close to the end-member constituent, with 
only minor substitutions.

The structure of titanite is formed by [YTiO6] oc-
tahedra chains linked by isolated [TSiO4] tetrahedra, 
forming a framework of [TiOSiO4], which encloses 
XCa2+ in irregular 7-fold coordination. At room tem-
perature, titanite crystallizes in the monoclinic P21/a 
space group, but with significant substitutions at the 
Y or X + Y sites a phase transition results in transfor-
mation to the monoclinic A2/a space group (Higgins 
and Ribbe 1976; Speer and Gibbs 1976; Bismayer 
et al. 1992; Zhang et al. 1995; Meyer et al. 1996; 
Kek et al. 1997; Beirau et al. 2014). Additionally, a 
triclinic A-1 structure has been observed in Ta- and 
Nb-enriched titanite from the Heftetjern pegmatite in 
Tørdal, southern Norway (Lussier et al. 2009), and in 
holotype żabińskiite from the Piława Górna pegma-
tite in Poland (Pieczka et al. 2017).

In this paper, we describe titanite of post-mag-
matic evolutionary stages (pegmatitic to hydro-
thermal) in the Karkonosze granite exposed in 
Szklarska Poręba Huta quarry. Our studies focus 
on the evolution of the mineral in order to better un-
derstand the processes leading to its compositional 
heterogeneity.

GEOLOGICAL SETTING

The Karkonosze granite massif, located in the 
Western Sudetes of Poland, lies at the northeastern 
margin of the Bohemian Massif. It represents a frag-
ment of the Central European Variscides, formed 
during multi-stage collision events and related met-
amorphic episodes (e.g., Berg 1913; Petrascheck 
1933; Kozłowski et al. 1975; Kozłowski 1978; Alek-
san drowski and Mazur 2002; Mazur et al. 2006; 
Mikulski 2007; Ilnicki 2011). The massif consists of 
a Carboniferous-age granite intrusion, extending for 
approximately 70 km from east to west. It is bounded 
by Jelenia Góra to the northeast, Kowary to the south, 
and follows the Polish-Czech boundary westward to 
Liberec in the Czech Republic (Text-fig. 1). The plu-
ton formed ~312–315 Ma ago (Duthout et al. 1991; 
Machowiak and Armstrong 2007; Žák et al. 2013; 
Kryza et al. 2014 a, b; Kusiak et al. 2014; Mikulski 
et al. 2020) ), on the active margin of a crystalline 
continental platform adjacent to oceanic crust, from 
granitic magmas in the temperature range of 990–
840°C (Kozłowski 2007). It is considered to be a 
syn-collisional magmatic arc intrusion originating 

from relatively reduced magmas that underwent com-
plex evolution (Duthou et al. 1991; Kröner et al. 1994; 
Mikulski 2007; Słaby and Martin 2008; Kryza et al. 
2014 a, b; Kozłowski et al. 2016). The Karkonosze 
granite massif is composed of three lithological vari-
eties: central / porphyritic granite, ridge / equigran-
ular granite, and granophyric granite / aplogranite 
(Borkowska 1966). These varieties are related to 
mixed crustal- and mantle-derived, highly-developed 
magmas of K-rich, calc-alkaline to subalkaline I-type 
and transitional I/S type (Wilamowski 1998; Oberc-
Dziedzic et al. 1999; Mazur et al. 2007; Mikulski 
2007; Słaby and Martin 2008). The pluton is hosted 
by a Neoproterozoic–Palaeozoic cover consisting 
of four distinct structural units: the Izera-Kowary 
Unit, Ješted Unit, Southern Karkonosze Unit, and 
Leszczyniec Unit. These units are interpreted as ele-
ments of a nappe structure that underwent Variscan 
regional metamorphism and contact metamorphism 
during the intrusion of the Karkonosze granite massif 
(Kryza and Mazur 1995; Mazur and Aleksandrowski 
2001; Aleksandrowski and Mazur 2002).

The Karkonosze granite massif is character-
ized by post-magmatic activity, evidenced by small 
polymetallic deposits located in the contact aureole 
of the granite, and by numerous intra-granitic peg-
matites. The pegmatites usually form zoned pods, 
small lenses and, more rarely, dykes of sizes up to 
several decimeters, exceptionally reaching several 
meters. In the past, they were mined for feldspar as 
raw material for the local ceramic industry. The ori-
gin of the pegmatites is related to the crystallization 
of late granitic magmas rich in volatiles followed 
by the hydrothermal-metasomatic recrystallization 
of the primary granite at a temperature range from 
560 to 160–90°C (Kozłowski 1978; Kozłowski and 
Sachabiński 2007; Kozłowski et al. 2016). Decreasing 
temperature and variations in pH, Eh, S, and ƒO2 of 
the highly-fractionated parental magma-fluid sys-
tem with increased abundance of metallic elements 
(Mikulski 2007) also resulted in the deposition of 
small amounts of ores, mined in the past as local 
polymetallic deposits. Signs of such mineralization 
extend across a considerable distance, especially 
near the granitic metamorphic rocks of the Kowary-
Izera Unit in the eastern metamorphic cover, e.g., the 
Miedzianka-Ciechanowice area, Rędziny, Czarnów, 
Kowary, Budniki, and Sowia Dolina, as well as to 
the northern metamorphic cover of the Izera region, 
e.g. Przecznica, Gierczyn, Krobica, Czerniawa (for 
details see Mochnacka et al. 2015).

The Szklarska Poręba-Huta quarry is the only ac-
tive locality in the Polish part of the massif for the ex-
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ploitation of Karkonosze granite. It is known for its di-
verse W-Sn-Mo-Bi and Th-U-REE associations with 
Nb- and Sc-bearing phases occurring in the NYF-
type pegmatite, quartz veins, and aplogranite (e.g., 
Gajda 1960; Karwowski et al. 1973; Kozłowski and 
Karwowski 1975; Olszyński et al. 1976; Pieczka and 
Gołębiowska 2002; Pieczka et al. 2003, 2022, 2023; 
Mikulski et al. 2004; Mikulski 2007; Kozłowski and 
Sachabiński 2007; Pieczka and Gołębiowska 2012; 
Kozłowski et al. 2016; Evans et al. 2018; Kozłowski 
and Matyszczak 2018). The wolframite-scheelite-cas-
siterite mineralization started to crystallize during the 
final stage of pneumatolytic processes and was suc-
cessively developed during a hydrothermal stage. It is 
associated with a sulphide assemblage represented by 
molybdenite, pyrite, chalcopyrite, pyrrhotite, sphaler-
ite, emplectite, nuffieldite, bismuthinite, marcasite, 
bismuth, some supergene minerals, and rare Bi sul-

phides and sulphosalts, as aikinite series, cuprobis-
mutite homologues, galenobismutite, cannizzarite, 
cosalite, ikunolite, and joséite-A. The crystallization 
sequence of the mineral assemblage was determined 
to be: magnetite 525–465°C, wolframite 520–390°C, 
cassiterite 515–470°C, molybdenite 455–390°C, 
sphalerite 415–390°C, bismuthinite 270–245°C, and 
bismuth about 265 and 135°C (Kozłowski et al. 2002). 
In addition, ilmenite, pyrophanite, hematite, titanite, 
malayalite, zircon, epidote, pumpellyite-(Mg), pum-
pellyite-(Fe), clinochlore, chamosite, laumontite, 
chabazite and stilbite have been recognized in the 
locality. The post-magmatic Th-U-REE assemblage 
is represented by numerous REE-bearing phases, 
e.g., xenotime-(Y), monazite-(Ce), allanite-(Ce), yt-
trialite-(Y), gadolinite-(Y), gadolinite-(Ce) and hing-
ganite-(Y); Nb-bearing phases by fergusonite-(Y) or 
fergusonite-(Y)-beta, columbite-(Fe), fersmite; and 

Text-fig. 1. Geological sketch map of the Karkonosze-Izera Massif (modified after Mazur 1995; Majka et al. 2018).
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Sc-bearing phases by thortveitite, nioboheftetjernite, 
scandian columbite-(Fe) and rare sorosilicates: kris-
tiansenite, kozłowskiite, and silesiaite; all of which 
contain Sc.

METHODS

Electron-probe micro-analysis (EPMA) was 
carried out in wavelength dispersive spectroscopy 
(WDS) mode using a JEOL SuperProbe JXA-8230 
instrument at the Laboratory of Critical Elements 
AGH-KGHM (AGH University of Krakow, Poland). 
Small fragments of pegmatite, mineralized quartz 
veins, and host granite from the Szklarska Poręba 
Huta quarry were embedded in epoxy, prepared as 
1-inch discs, then polished and coated with carbon. 
The following analytical conditions were applied: 
acceleration voltage 15 kV; beam current 40 nA, 
peak-count time 10–20 s, and 40 s for U, Pb, Sc, 
and HREE; beam diameter 2–3 µm. Backscattered 
electron (BSE) images were acquired under identical 
operating conditions. The standards, analytical lines, 
diffraction crystals, and mean detection limits (ele-
ment wt.%) used were as follows: F – fluorite (Kα, 
TAPH, 0.07), Na – albite (Kα, TAP, 0.01), Mg – diop-
side (Kα, TAPH, 0.02), Al – albite (Kα, TAPH, 0.03), 
Si – albite (Kα, TAP, 0.03), Ca – diopside (Kα, PETJ, 
0.02), Sc – metallic Sc (Kα, PETJ, 0.02), Ti – rutile 
(Kα, PETJ, 0.03), V – vanadium (Kα, PETJ, 0.03), 
Mn – rhodonite (Kα, LIFL, 0.02), Fe – hematite (Kα, 
LIFL, 0.02), Y – YPO4 (Lα, PETJ, 0.03), Zr – zircon 
(Lα, PETJ, 0.05), Nb – LiNbO4 (Lα, PETJ, 0.06), Sn 
– cassiterite (Lα, PETJ, 0.02), Ce – CePO4 (Lα , LIF, 
0.05), Gd – GdPO4 (Lβ, LIFH, 0.08), Dy – DyPO4 
(Lα, LIFH, 0.04), Ho – HoPO4 (Lβ, LIFL, 0.06), Er 
– ErPO4 (Lα, LIFH, 0.05), Tm – TmPO4 (Lα, LIFL, 
0.05), Yb – YbPO4 (Lα, LIFL, 0.05), Lu – LuPO4 
(Lα, LIFH, 0.06), Ta – manganotantalite (Lα, LIFH, 
0.09). W, La, Ce, Pr, Nd, Sm, Eu, Tb, Pb, U, Th were 
below the respective detection limits. Raw data were 
reduced using the ZAF routine (Z – atomic number, 
A – absorption, F – fluorescence). This set of EPM 
analyses was supplemented by several unpublished 
analyses of Sn-bearing titanites previously per-
formed by one of the authors (AP) in a specimen SP5 
containing the holotype for silesiaite and kozłowski-
ite (Pieczka et al. 2017, 2022, 2023). The empirical 
formulae of titanite were normalized with respect to 
three X + Y + T atoms per formula unit (pfu). The 
content of H2O, present in titanite in the form of OH- 
groups, was calculated based on the stoichiometry of 
the titanite-group minerals assuming Fetotal is Fe3+.

CHEMICAL COMPOSITION OF THE 
SZKLARSKA PORĘBA HUTA TITANITES

Text-figure 2 shows representative backscattered 
electron (BSE) images of mineral aggregates from 
pegmatites of the Szklarska Poręba Huta quarry, 
where titanite occurs. Individual grains of the mineral 
vary in sizes, ranging from hundredths of microme-
ters to 1–1.2 millimeters. They are usually intensively 
zoned, with the most common patterns being oscilla-
tory and mosaic, and less commonly irregular patchy 
zoning. Typical associated minerals with titanite in-
clude common minerals such as bismuth, bismuthi-
nite, cassiterite, pyrite, chalcopyrite, rutile, ilmenite, 
pyrophanite, scheelite, scolecite, and chlorite, as well 
as rarer phases such as stokesite CaSnSi3O9·2H2O, and 
hingganite-(Y) (Y,REE,Ca)2(◻,Fe2+)Be2[SiO4]2(OH)2. 
Repre sentative EPMA analyses of titanite are summa-
rized in Table 1.

In titanites, the X site is dominantly occupied by 
Ca (23.60–29.62 wt%; 0.848–1.008 Ca apfu) and sup-
plemented by Y (0.00–6.83 wt% Y2O3; 0.000–0.122 
Y apfu) and lanthanides (0.00–2.47 wt% Ln2O3; 
0.000–0.026 Ln apfu), mainly represented by heavy 
rare-earth elements (HREE). Sodium was noted only 
in crystals of Sn-bearing titanite and malayaite from 
specimen SP5 (0.13–0.64 wt% Na2O; 0.006–0.028 
Na apfu). However, despite their maximum Y2O3 
content of 0.07 wt% (0.001 Y apfu) and Ce2O3 of 
0.14 wt% (0.001 Ce apfu), these crystals exhibited 
minimal REE. A co-variation (in apfu) of REE ver-
sus Ca (Text-fig. 3A) is described by the equation 
REE = -0.916 · Ca + 0.917 (R2 = 0.976). Due to the 
heterovalent nature of this substitution, the resulting 
charge excess must be balanced by a substitution in 
another structural site. This is only possible in the 
coupled substitution XCa2+ + YTi4+ = XREE3+ + Y(Al, 
Fe, Sc)3+ at the X and Y sites (Text-fig. 3A). Text-
figure 3B shows the relationships between XREE3+ 
and Y(Al, Fe, Sc)3+. For some analytical spots, the in-
creasing content of XREE together with the increase 
of trivalent Y-site occupants (Al, Fe, Sc)3+ reaches the 
limit value indicated by the XREE / Y(Al, Fe, Sc)3+ 
ratio of 1:3. The ratio corresponds to the substitution: 
REE(Al, Fe, Sc)3+

3(F, OH)2  Ca-1Ti-3O-2, indicating 
that at most ~1/3 of the total Y(Al, Fe, Sc)3+ is in-
volved in this replacement. All data points below the 
1:3 line indicate titanite spots where this substitution 
becomes negligible due to the absence of REE in the 
crystallization environment.

The Y-site occupation is more heterogeneous. 
Typically, predominant in this site is Ti (17.00–34.53 
wt% TiO2; 0.458–0.846 Ti apfu), with lower Ti con-
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tents only in the specimen SP5 (11.18–18.83 wt% 
TiO2; 0.341–0.529 Ti apfu). Titanium is typically 
substituted by other tetravalent elements, mainly by 

Sn (up to 15.88 wt% SnO; 0.228 Sn apfu), to a lesser 
extent by V (up to 1.89 wt% VO2; 0.045 V apfu), and 
by scarcely noticeable Zr (up to 0.43 wt% ZrO2; 0.007 

Text-fig. 2. Representative BSE images of titanite crystals from the Szklarska Poręba Huta pegmatites: (A) subhedral titanite with distinct 
patchy zoning; (B) Sn- and Bi-bearing ore mineralization associated with titanite; (C) anhedral titanite in matrix of the rock-forming minerals; 
(D) titanite crystal with pyrophanite inclusions overgrown by chlorite; (E) titanite associated with hingganite-(Y); (F) anhedral titanite with 
weak zoning pattern. Mineral symbols: Bi – bismuth, Bin – bismuthinite, Chl – chlorite; Cst – cassiterite, Hin-Y – hingganite-(Y), Pph – pyro-

phanite; Py – pyrite, Sch – scheelite, Sks – stokesite; Ttn – titanite. The abbreviations are after Warr (2021)
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Nb2O5 0.14 b.d. 0.16 0.39 6.58 0.38 0.57 0.83 9.85 6.19 0.40 7.59 9.17 9.06 3.64 1.70 1.80
Ta2O5 b.d. 0.10 0.15 0.36 7.65 0.49 0.79 1.18 0.28 1.52 0.14 0.66 1.05 1.73 0.48 0.43 0.41
SiO2 30.46 30.22 30.47 29.68 29.22 29.00 29.33 29.05 27.75 27.60 28.76 27.30 23.77 23.11 24.17 21.14 23.08
TiO2 25.39 22.13 24.50 25.97 19.48 26.08 27.15 27.71 17.21 18.62 23.73 17.77 14.15 11.40 14.03 0.65 0.64
VO2 1.71 0.10 0.10 0.12 0.26 0.18 0.12 0.09 0.27 0.18 0.09 0.26 – – – – –
ZrO2 b.d. b.d. b.d. 0.11 0.36 0.12 0.12 0.11 0.19 0.24 b.d. 0.18 b.d. 0.06 0.11 b.d. b.d.
SnO2 b.d. 0.52 1.13 4.91 5.81 6.79 7.16 9.91 12.55 14.41 14.78 15.88 19.52 25.68 28.70 50.25 50.40
Al2O3 7.41 9.27 8.22 4.68 3.86 3.71 3.13 1.81 2.97 2.00 3.47 2.03 0.18 0.04 0.03 b.d. b.d.
Sc2O3 0.43 0.20 0.21 0.96 0.27 0.57 0.54 0.09 0.91 1.90 b.d. 1.23 – – – b.d. b.d.
Fe2O3 1.21 1.21 1.18 1.26 1.39 1.29 1.29 1.10 1.41 1.18 0.66 1.32 5.08 2.94 2.49 2.85 2.85
Y2O3 5.03 6.83 3.94 3.50 b.d. 3.12 2.38 0.98 b.d. b.d. b.d. b.d. b.d. b.d. 0.04 b.d. b.d.
Ce2O3 b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. 0.10 0.13 0.09 – –
Gd2O3 0.32 b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. – – – – –
Dy2O3 0.24 0.33 0.14 0.21 b.d. 0.13 0.07 b.d. b.d. b.d. b.d. b.d. – – – – –
Ho2O3 b.d. 0.18 0.18 0.19 0.18 0.13 0.22 0.17 0.20 0.16 0.11 0.15 – – – – –
Er2O3 0.36 0.51 0.26 0.26 b.d. 0.23 0.18 0.07 b.d. b.d. b.d. b.d. – – – – –
Tm2O3 0.07 0.06 b.d. b.d. 0.08 b.d. b.d. b.d. b.d. b.d. b.d. b.d. – – – – –
Yb2O3 0.76 1.03 0.59 0.35 b.d. 0.32 0.23 0.08 b.d. b.d. b.d. b.d. – – – – –
Lu2O3 0.19 0.24 0.12 0.11 b.d. 0.08 b.d. b.d. b.d. b.d. b.d. b.d. – – – – –
MnO 0.09 0.05 0.08 0.04 b.d. 0.03 b.d. 0.04 b.d. b.d. 0.06 b.d. 0.10 0.11 0.18 0.19 0.16
CaO 24.84 23.60 25.56 25.44 26.28 25.26 25.67 26.29 26.45 26.34 26.97 26.11 23.95 22.33 23.11 21.07 21.17
MgO 0.15 0.35 0.15 0.10 b.d. 0.05 0.05 b.d. b.d. b.d. b.d. b.d. – – – b.d. b.d.
Na2O – – – – – – – – – – – – 0.45 0.87 0.18 b.d. b.d.

F 1.38 1.91 1.82 0.97 0.20 0.69 0.45 0.31 0.18 0.34 0.75 0.27 – – – – –
H2O(calc.) 0.53 0.68 0.68 0.57 0.00 0.51 0.46 0.20 0.23 0.25 0.67 0.11 0.33 0.17 0.13 0.51 0.14
-O = F2 -0.58 -0.81 -0.76 -0.41 -0.08 -0.29 -0.19 -0.13 -0.08 -0.14 -0.31 -0.11 0.00 0.00 0.00 0.00 0.00

Total 100.12 98.70 98.88 99.76 101.54 98.88 99.71 99.88 100.35 100.78 100.27 100.74 97.85 97.63 97.39 98.79 100.65
(atom per formula unit)
X-site

Y3+ 0.088 0.122 0.070 0.063 0.000 0.057 0.044 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
Ce3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 – –
Gd3+ 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 – – – – –
Dy3+ 0.003 0.004 0.001 0.002 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 – – – – –
Ho3+ 0.000 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.002 – – –  – –
Er3+ 0.004 0.005 0.003 0.003 0.000 0.002 0.002 0.001 0.000 0.000 0.000 0.000 – – –  – –
Tm3+ 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 – – –  – –
Yb3+ 0.008 0.011 0.006 0.004 0.000 0.003 0.002 0.001 0.000 0.000 0.000 0.000 – – –  – –
Lu3+ 0.002 0.002 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 – – –  – –
Mn2+ 0.002 0.001 0.002 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.002 0.000 0.003 0.004 0.006 0.007 0.006
Ca2+ 0.875 0.848 0.908 0.923 0.988 0.936 0.944 0.977 1.011 1.010 1.004 1.009 0.996 0.963 0.987 1.005 0.979
Na+ – – – – – – – – – – – – 0.034 0.068 0.014 0.000 0.000

ΣX-site 0.98 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.01 1.01 1.01 1.01 1.03 1.04 1.01 1.01 0.98
Y-site

Nb5+ 0.002 0.000 0.002 0.006 0.104 0.006 0.009 0.013 0.159 0.100 0.006 0.124 0.161 0.165 0.066 0.034 0.035
Ta5+ 0.000 0.001 0.001 0.003 0.073 0.005 0.007 0.011 0.003 0.015 0.001 0.007 0.011 0.019 0.005 0.005 0.005
Ti4+ 0.628 0.558 0.611 0.662 0.514 0.678 0.701 0.723 0.462 0.501 0.620 0.482 0.413 0.345 0.421 0.022 0.021
V4+ 0.045 0.003 0.003 0.003 0.007 0.005 0.003 0.002 0.008 0.005 0.003 0.007 – – – – –
Zr4+ 0.000 0.000 0.000 0.002 0.006 0.002 0.002 0.002 0.003 0.004 0.000 0.003 0.000 0.001 0.002 0.000 0.000
Sn4+ 0.000 0.007 0.015 0.066 0.081 0.094 0.098 0.137 0.179 0.206 0.205 0.228 0.302 0.412 0.456 0.891 0.867
Al3+ 0.287 0.366 0.321 0.187 0.160 0.151 0.127 0.074 0.125 0.084 0.142 0.086 0.008 0.002 0.001 0.000 0.000
Sc3+ 0.012 0.006 0.006 0.028 0.008 0.017 0.016 0.003 0.028 0.059 0.000 0.039 – – – 0.000 0.000
Fe3+ 0.030 0.031 0.029 0.032 0.037 0.034 0.033 0.029 0.038 0.032 0.017 0.036 0.148 0.089 0.075 0.096 0.093
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Zr apfu). In the specimen SP5, SnO2 was present 
in amounts ranging 13.15–28.70 wt% (0.196–0.456 
Sn apfu), locally reaching a prevalence over Ti cor-
responding to the species malayaite CaSn(SiO4)O. 
Trivalent Al, Fe and Sc are the main substituents for 
the YR4+ occupants: 0.70–10.88 wt% Al2O3 (0.028–
0.406 Al apfu), 0.07–5.99 wt% Fe2O3 (0.002–0.151 
Fe apfu), and to 1.90 wt% Sc2O3 (0.059 Sc apfu). In 
contrast, in more Sn-enriched titanite crystals of the 
SP5 specimen, trivalent substituents were dominated 

by Fe3+ (1.74–3.55 wt% Fe2O3; 0.075–0.148 Fe apfu), 
while Al content was subordinate (0.03–0.42 Al2O3; 
0.001–0.019 Al apfu). The Al/(Al + Fe3+) ratio ranges 
from 0.27 to 0.99, and in Sn-bearing titanite and ma-
layaite of SP5 specimen from 0.01 to 0.12. Besides 
the substitution XCa2+ + YTi4+ = XREE3+ + Y(Al, Fe, 
Sc)3+ mentioned above, the trivalent Y-site occupants 
result from two other substitutions: YTi4+ + ZO2- = 
Y(Al, Fe, Sc)3+ + Z(F, OH)- and 2YTi4+ = Y(Al, Fe, 
Sc)3+ + Y(Nb, Ta)5+. The co-variation (F + OH) vs 
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Mg2+ 0.007 0.017 0.007 0.005 0.000 0.003 0.003 0.000 0.000 0.000 0.000 0.000 – – – 0.000 0.000
ΣY-site 1.01 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 1.01 0.99 1.01 1.04 1.03 1.03 1.048 1.020

Si4+ 1.00 1.01 1.01 1.01 1.03 1.00 1.01 1.01 0.99 0.99 1.00 0.98 0.922 0.930 0.964 0.940 0.996
O2- 4.72 4.68 4.70 4.79 4.97 4.82 4.86 4.91 4.92 4.90 4.82 4.93 4.91 4.96 4.96 4.92 4.98
OH- 0.14 0.11 0.11 0.10 0.00 0.10 0.09 0.06 0.05 0.06 0.10 0.03 0.09 0.04 0.04 0.08 0.02
F- 0.14 0.20 0.19 0.10 0.02 0.08 0.05 0.03 0.02 0.04 0.08 0.03 – – – – –

Table 1. Representative chemical compositions of the Szklarska Poręba titanites (wt.% and apfu). Notes: W, La, Ce, Pr, Nd,  Sm, Eu, Tb, Pb, 
U, Th were below the detection limit.

Text-fig. 3. Compositional relationships in the Szklarska Poręba Huta titanite: (A) XREE vs XCa; (B) XREE vs YR3+; (C) Z(F + OH) vs YR3+; 
(D) YR3+ – Z(F + OH) vs YR5+. YR3+ = Al + Fe3+ + Sc; YR5+ = Nb + Ta. All data are presented in atoms per formula unit. Black continuous 
line – statistical trends, dashed line – 1:1, 1:2, or 1:3 trends between the selected groups of constituents. Full squares at (d) correspond to the 

titanite-malayaite data collected in specimen SP5.



8 KAROLINA MIL ET AL. 

YR3+ (= Al, Fe, Sc) shows the dominant substitution 
mechanisms (Text-fig. 3C). Most of the data points 
fall within the range defined by the two lines corre-
sponding to the (F + OH) / YR3+ ratios of 1:1 and 1:2, 
which indicate the coupled substitutions: Y(Al, Fe, Sc) 
Z(F, OH)YTi-1ZO-1, and Y(Al, Fe, Sc)2

Y(Nb, Ta) Z(F, 
OH)-YTi-3ZO-1. The data below the 1:2 line indicate 
compositions with negligible Z(F, OH), where some 
amount of Y(Al, Fe, Sc) occupancy may result from 
YR3+ + YR5+ = 2 YTi4+ substitution.

The co-variation YR3+ – Z(OH + F) vs (Nb, Ta)5+ 
(Text-fig. 3D) reveals two different substitution mech-
anisms for the introduction of pentavalent Nb5+ and 
Ta5+ into the titanite structure. Typically, these cat-
ions enter the structure via the substitution YR3+ + 
YR5+ = 2 YTi4+ (a line with the 1:1 YR3+/YR5+ ratio 
in Text-fig. 3D). However, the arrangement of data 
points from Sn-bearing titanite and malayaite from 
specimen SP5 suggests a substitution mechanism in-
dependent of the YR3+ content. This could imply an 
alternative substitution, for example, related to the 
presence of divalent Y-site occupants: YFe2+ + 2 Y(Nb, 
Ta)5+ = 3 YTi4+, or direct substitution for the deficient 
Si detected in these crystals. The F/(F+OH) varies 
widely from 0.10–1.00, with F- generally predominant 
over OH-. Text-figure 4 illustrates the classification of 

the Szklarska Poręba Huta titanites in the Z(O-OH-F) 
system. All of them represent titanite evolving into 
F,Al-bearing titanite, and Sn-bearing analyses col-
lected in the SP5 specimen, either Sn-bearing titanite 
(Ti > Sn) or Ti-bearing malayaite (Sn > Ti).

GENETIC IMPLICATIONS

The pegmatites exposed in the Szklarska Poręba 
Huta quarry belong to the NYF (Nb-Y-F) petroge-
netic family in the pegmatite classification by Černý 
and Ercit (2005). In the latest classification system 
of granitic pegmatites (Wise et al. 2022), these peg-
matites are related to the products of residual melts 
from granite magmatism (RMG). However, despite 
the I-type to transitional I/S type signature of the 
Karkonosze granite magmas (Duthou et al. 1991; 
Wilamowski 1998; Oberc-Dziedzic et al. 1999; Mazur 
et al. 2007; Mikulski 2007; Słaby and Martin 2008), 
the presence of prominent accessory minerals – such 
as biotite, magnetite, ilmenite, fergusonite-(Y), gado-
linite-(Y), allanite-(Ce), monazite-(Ce), xenotime-(Y), 
and others – indicate Group 2 RMG pegmatites en-
riched in Y, Ln, Be, Fe, Ti, Nb, Ta, and P, suggesting 
the A-type granite affiliation. The two distinct assem-

Text-fig. 4. Position of the studied titanites in the Z(O-F-OH) system.
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blages of ore mineralization – Th-U-REE and W-Sn-
Mo-Bi – are mainly attributed to apophyses of highly 
fractionated and evolved fine-grained aplogranite. 
These apophyses penetrate the porphyritic / central 
granite in the northwest part of the quarry, enriching 
the post-magmatic pneumatolytic and hydrothermal 
system with some of these elements.

Titanite, an accessory mineral of the Szklarska 
Poręba Huta pegmatite, shows marked compositional 
heterogeneity. However, most of its crystals share the 
same inventory of XCa and YTi substituents: Y + Ln, 
Al, Fe3+, Sc, Sn, Nb + Ta, and F and OH replacing ZO. 
The observed differentiation in the concentration of 
these elements likely results from their local and / or 
temporal concentrations in the fluid-hydrothermal 
system, which progressively decrease with the tem-
perature. For example, Franz and Spear (1985) sug-
gested that high total pressure and low temperature 
favour Al for Ti substitution, although their conclu-
sion refers to aluminous titanite in the eclogite zone. 
Alternatively, Markl and Piazolo (1999) concluded 
that the chemical composition of Al-bearing titanite 
is not only a complex function of P and T, but, more 
importantly, a function of the composition of the co-
existing fluid phase in terms of the H2O/HF fugacity 
ratio, and the composition of the host rock in terms 
of its Al2O3/TiO2 activity ratio. At Szklarska Poręba, 
the typical crystallization environment for REE-
bearing titanite is associated with gadolinite-(Y) and 
hingganite-(Y), indicating high local concentrations 
of Y + HREE charge-balanced by the replacement of 
trivalent Y-site cations (mainly Al + subordinate Fe3+ 
and Sc) for Ti: (Y, HREE)3+ + (Al, Fe, Sc)3+ → XCa2+ 
+ YTi. With decreasing local REE concentrations, 
e.g. due to the occurrence in different mineral associ-
ations, other substitution mechanisms (Al, Fe, Sc)3+ + 
(OH, F)- → YTi + ZO and (Al, Fe, Sc)3+ + (Nb, Ta)5+ 
→ 2YTi start to play the dominant role.

The increasing role of tin in the Szklarska Poręba 
pneumatolytic-hydrothermal system is evidenced by 
the crystallization of cassiterite. These cassiterite 
crystals are often deficient in typical tin substitu-
ents like Nb, Ta, Fe, Mn, W, and Ti (usually total < 
0.5 wt%), and thus having a composition typical of 
high-temperature pneumatolytic-hydrothermal cas-
siterite (AP, unpublished data). Higher-temperature 
Nb + Ta oxides (fergusonite, nioboheftetjernite, 
columbite) contain only minor Sn. Fluid inclusion 
studies on this cassiterite indicate that it crystal-
lized at temperatures of 515–470°C (Kozłowski et 
al. 2002), consistent with typical pneumatolytic to 
high-temperature hydrothermal conditions. In the ti-
tanites mentioned above, the Sn content is typically 

minor, ranging from a few to a dozen wt% SnO2. 
However, in sample SP5, which represents the silesi-
aite and kozłowskiite holotype (Pieczka et al. 2022, 
2023), more Sn-enriched titanite crystals with up to 
28.70 wt% SnO2 (~0.46 Sn apfu) have been found. 
Some of them reach compositions corresponding to 
malayaite CaSn(SiO4)O. In this sample, which is a 
fragment of a quartz vein cutting aplogranite, titanite 
and malayaite are associated among others by chal-
copyrite, pyrite, bismuthinite, fersmite, Sc-bearing 
columbite-(Mn), kristiansenite, silesiaite, kozłows-
kiite, and green andradite, in majority indicating the 
crystallization of high- to moderate-temperature hy-
drothermal fluids poor in Al3+. On the eastern side of 
the Karkonosze granite massif, malayaite has been 
detected in disseminated polymetallic mineraliza-
tion hosted by metamorphic calc-silicate rocks in 
the Rędziny dolomite marble quarry (Pieczka et al. 
2009). The mineralization consists of high-to me-
dium-temperature pyrrhotite, arsenopyrite, hema-
tite, cassiterite (412–285°C; Mochnacka et al. 2001), 
chalcopyrite, other base-metal sulphides, numerous 
Ag(Cu)-Pb-Bi-sulphosalts, Bi sulphides, sulphosel-
enides and tellurides, bismuth and Sn-sulphides of 
the stannite group, chatkalite, stannoidite, and maw-
sonite (Pieczka et al. 2009). Undoubtedly, ore min-
eralization in both localities corresponds to similar 
post-magmatic activity stages associated with the 
Karkonosze granite intrusion. In the case of the 
Szklarska Poręba locality, the mineralization shows 
characteristics typical of pegmatite conditions, 
evolving towards high-temperature hydrothermal, 
overprinted by lower-temperature hydrothermal sul-
phide and quartz + chlorite + zeolite mineralization 
in small nests in aplogranite. In turn, the ore as-
semblage of Rędziny represents almost exclusively 
continuous hydrothermal ore mineralization, ranging 
from high to low temperatures.

The fluid systems related to ore mineralization 
in both localities show differentiation. Studies of the 
homogenization temperatures of fluid inclusions in 
the Rędziny cassiterite indicated crystallization at 
temperatures of 412–285°C and pressures of 0.9–
0.8 kbar from acid hydrothermal solutions contain-
ing dissolved NaCl with small admixtures of CaCl2 
(Mochnacka et al. 2001). In the case of the Szklarska 
Poręba melt-fluid system, the fluoride anion played 
a more important role. Fluorine has been detected, 
at least in concentrations of ~1 wt% in schorlitic 
tourmaline, unrecognized REE-bearing fluoro-car-
bonates and silicates (up to ~4 wt%), and in titanite 
itself (up to ~3 wt%). Kozłowski and Matyszczak 
(2022) characterized the parental magma of the 
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Karkonosze intrusion as F-poor and concluded that 
the early post-magmatic fluids preserved in second-
ary inclusions in magmatic quartz were also F-poor. 
As sources of the F-bearing fluids that migrated into 
the pluton, the authors consider rock complexes of the 
metamorphic envelope, including fluorite veins and 
metasomatites.

The presence of Sc as an accessory constituent 
in the Szklarska Poręba mineralization suggests a 
mechanism for the enrichment of the aplogranite 
magma with certain metallic elements. Scandium 
is an incompatible element in mantle-derived felsic 
melts. It can be concentrated to economic levels by 
magmatic and/or fluid-mediated processes in a vari-
ety of rock types at temperatures ranging from mag-
matic to ambient (Williams-Jones and Vasyukova 
2018). Scandium is highly immobile, characterized 
by very low DSc

fluid/mineral partition coefficients rang-
ing from 0.01 to 0.10 (Kessel et al. 2005; Rustioni et 
al. 2021). Experimental evidence shows that scan-
dium, like the other REE, partitions very strongly 
into the fluoride liquid (Shchekina and Gramenitskii 
2008). F-bearing fluids are the most efficient com-
plexing agents in mobilization of Sc, which forms 
very stable fluoride complexes with the element 
that can migrate in pegmatites and high-tempera-
ture post-magmatic metasomatic rocks like greis-
ens, skarns, and albitized granites (Gramaccioli 
et al. 2000; Shchekina and Gramenitskiy 2008). 
Gramaccioli et al. (2000) and Williams-Jones and 
Vasyukova (2018) suggest that other Sc complexes 
such as those with hydroxyls, carbonates, and even 
chlorides may play an important role in the mobili-
zation and transport of Sc. High-temperature fluids 
containing F-, Cl-, and OH- are reported to be the 
most effective agents in the mobilization, transport, 
fractionation, and deposition of REE species, form-
ing complexes with these elements, that are only 
slightly less stable than the Sc complexes (Gieré 
1990; Gramaccioli et al. 2000; Jiang et al. 2005; 
Migdisov and Williams-Jones 2014; Williams-Jones 
2015; Migdisov et al. 2016). However, due to the 
dominant abundance of Cl- in natural melt-fluid sys-
tems, the chloride complexes are mainly responsible 
for the transport of Sc, REE, and many other rare 
metals, e.g. Nb, Ta, Sn, etc. The presence of Sc in the 
Szklarska Poręba aplogranite melt-fluid system indi-
cates that the system was open, and at least a portion 
of the metallic elements enriching the aplogranite 
could have an external source in the metamorphic 
envelope of the granite from where they could be 
mobilized by F, Cl, OH-bearing fluids migrating 
into the late pegmatite-forming magmas.

CONCLUSIONS

Titanite is an accessory mineral found in granitic 
pegmatite and ore-mineralized hydrothermal quartz 
veins cutting aplogranite exposed in Szklarska Poręba 
Huta quarry. The chemical composition of this mineral 
was formed by external high-temperature F-bearing 
fluids, which were released from rock complexes in 
the metamorphic envelope adjacent to the intruding 
granite. These rock complexes include metasoma-
tites and fluorite veins. The fluids mobilized certain 
components of the metamorphic rock complexes (e.g. 
Sc, REE, Nb, Ta, …) and transported them, among 
others, in the form of fluoride complexes, finally en-
riching the aplogranite magma with some metallic 
elements. The composition of the titanite which crys-
tallized during the pegmatitic to high-temperature hy-
drothermal stages, was constrained by local equilibria 
in the aplogranite melt-fluid system. This dependence 
was influenced by the H2O/HF fugacity ratio and the 
composition of the magma in terms of its Al2O3/TiO2 
activity ratio. Therefore, all substitution processes ob-
served in titanite are strongly H2O/HF or Al2O3/TiO2 
dependent: (1) XREE3+ + Y(Al, Fe, Sc)3+ → XCa2+ + 
YTi4+, (2) (Al, Fe, Sc)3+ + (OH, F)- → YTi + ZO, and (3) 
(Al, Fe, Sc)3+ + (Nb, Ta)5+ → 2YTi. Late Sn-bearing ti-
tanite found in ore-mineralized quartz veins is almost 
free of Al, but markedly enriched in Sn, reaching 
local compositions corresponding to malayaite.
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