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The article focuses on the load spectrum of a lightweight unmanned aircraft. It
examines the impact of load signal sampling frequency on the load spectrum derived
from the load signal. The flight sessions followed two scenarios: a maneuvering flight
causing a wide range of load factor variations and a calm photogrammetric flight.
The recorded load signals from two types of sensors were initially rescaled into
load factor time series, with an optional signal smoothing process. These series were
then downsampled by selecting every nth term, resulting in load factor sequences
recorded at a lower frequency. Next, all sequences were transformed into sequences
of local extremes of the Load Levels, resulting from quantifying the operational
load variability into 32 intervals. Two options were considered: without filtering or
with filtering of sequential pairs of terms generating small Load Level increments.
Subsequently, the Rainflow Counting algorithm was applied, producing 32×32 load
half-cycle arrays. Based on these arrays, incremental load spectra were calculated. The
study provides a detailed comparison of load spectra for different load signal sources
and recording frequencies. Additionally, calculations of the fatigue life of a structural
element subjected to various load spectra were performed, leading to the formulated
conclusions.

Nomenclature

𝑎𝑧 an acceleration signal along the z-axis measured at the center of mass of the
unmanned aircraft

D a fatigue damage (see Palmgren-Miner formula)
FC-array a full-cycle array
HC-array a half-cycle array
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ILS an incremental load spectrum
IMU_az an acceleration signal has been recorded in the autopilot log
LL Load Level – a standardized value of the load acting on the aircraft wings,

expressed as integers, by dividing the total variability range into 32 intervals
LE_LL Local Extremes chain of the Load Level time-series
LE_nz Local Extremes chain of the load factor time-series
LS a load spectrum
𝑛𝑧 load factor
P-M Palmgren-Miner hypothesis or formula
PSE a principal structural element
REJ_az a raw acceleration signal recorded by a supplementary measurement system
RE_ts a raw wings-deflection signal recorded by a supplementary measurement system
REJ_tsw smoothed signal REJts
SLI-FILT a filter of small load increments; (in the ILS charts, the signal descriptions use

the designations “_0” or “_1” to indicate whether SLI-FIT was applied in signal
processing)

ΔLL the load level increment

1. Introduction

The increasing use of unmanned aviation in various civilian and military
sectors [1–5], along with the growing density of UAV traffic in shared airspace, has
underscored the importance of air operation safety [6, 7]. Safety is multifaceted,
encompassing various aspects: starting from the human factor related to the drone
operator’s work [8], potential threats from interference in radio communication
bands used in UAV operations [9], safety concerns related to the wear and tear
of UAV propulsion systems [10], and the reliability of servomechanisms [11].
A critical safety factor is reliability, particularly the strength and fatigue life of
the primary load-bearing structure of a UAV [12–14]. To demonstrate the fatigue
durability of an aircraft’s structure, it is essential to understand the load spectra
acting on the aircraft. These spectra depend on its dynamic characteristics, air
turbulence, control methods, and the specific mission being performed [15, 16].
The basis for determining the load spectrum is a thorough understanding of the
time courses of loads on the key elements of the aircraft structure.

In the case of General Aviation aircraft, a load spectrum database was created
in the 1970s [17]. This database is the result of extensive NASA research conducted
for eight operational categories: (1) twin-engine executive, (2) single-engine exec-
utive, (3) personal, (4) instructional, (5) commercial survey, (6) aerial application,
(7) commuter, and (8) aerobatic. The collected data enabled the statistical develop-
ment of load spectra for gusts, maneuvers, and landings, as well as many other data
concerning the distribution of load factor values and operational speeds and alti-
tudes. This included examining the probability distributions of exceeding normal
load factor values for a given flight condition. This database was systematically
expanded by NASA until the late 1980s [15]. The data collected during the im-
plementation of this program is still used today for fatigue calculations, both with
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the classic Palmgren-Miner damage accumulation model and the methods based
on fracture mechanics and damage tolerance [18].

Similar to manned aircraft, the loads on the primary load-bearing structure of
unmanned aerial vehicles can be determined either by directly measuring struc-
tural deformations (which is the preferred method) or by analyzing time series of
accelerations along the main structural axes recorded in the autopilot logs. This
study investigates how the frequency of measuring and recording load data in the
autopilot’s digital memory impacts the resulting load spectrum and, consequently,
the calculated fatigue life. Another area of interest is the effect of signal filtering on
the obtained load spectrum. Specifically, the raw acceleration signal acting on the
aircraft is affected by measurement noise, which can influence the results. Further-
more, the frequency spectrum of the acceleration signal is generally more complex
than the frequency spectrum of the aircraft’s structural response to applied accel-
erations. In this case, it pertains to deflection of wings which react to accelerations
like an inertial component. This characteristic is due to the inertia of the wing
structure, its stiffness, and damping coefficients, which depend on the construction
material. These factors act as a natural low-pass filter, causing the wing deflections
to lag behind rapidly changing accelerations beyond a certain frequency.

2. Experiments preparation

The research was conducted using the Sky Surfer, a small unmanned aircraft
built from a commercially available kit. The aircraft’s structure is made of expanded
polypropylene (EPP) foam, reinforced with carbon rods (CFRP) that serve as the
primary load-bearing framework. Fig. 1 illustrates the parameters of this model.

An autopilot model MATEK F405-WMN has been installed in the aircraft. For
communication with the autopilot, mission planning, and log reading and review,
an open-source software Mission Planner v.3.9 was used. In addition to its primary
functions of controlling and stabilizing the aircraft during flight and enabling
automatic navigation, each autopilot system includes a data acquisition system that
gathers information from various sensors, including accelerometers. This data can
be essential for analyzing load spectra. To determine the load spectrum of the
primary load-bearing structure, it is necessary to record the acceleration signal
along the z-axis measured at the aircraft’s center of gravity (𝑎𝑧-acceleration) [16].
The recording of the 𝑎𝑧 signal in the autopilot log is particularly significant for
the research conducted in this study, as it can be treated as a reference signal. This
recording results from a complex process of processing the raw signal sampled
at up to 1kHz (depending on settings), which is passed through low-pass and
band-pass filters, and then logged at approximately 50 Hz. This frequency is an
order of magnitude higher than what was possible with popular autopilots used a
decade ago, allowing for more detailed analysis and comparison of how the logging
frequency affects the calculated load spectrum.
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Fig. 1. Technical data of the flying platform used for experiments

Fig. 2 shows a fragment of the autopilot log, highlighting data related to an
instantaneous value of acceleration 𝑎𝑧 .

Additionally, the plane was equipped with a second, independent data acqui-
sition system during measurement flights. This system used two sensors. The first
was a 3-axis accelerometer with a range of ±10𝑔, mounted very close to the air-
craft’s center of gravity, just above the autopilot, to ensure it experiences the same
acceleration values as the autopilot sensor. The second sensor was a specially de-
signed extensometer for measuring wing deflections, adhered to the upper surface
of the wing (see Fig. 3). The measuring component in the extensometer was a bent
spring made from a thin aluminum alloy sheet, with a strain gauge configured as a
Wheatstone bridge attached. Wing deflection caused the spring to deform, resulting
in a change in the signal from the strain gauge bridge. A miniature strain gauge
amplifier powered by a 1s-LiPo battery was used to power the bridge and output
the signal. The amplified signal from the strain gauge bridge was fed into one of the
channels of a Logomatic v2 digital recorder. Signals from the 3-axis accelerometer,
including the 𝑎𝑧 signal, were fed into the other channels. Data was recorded at a
frequency of 500 Hz per channel. No hardware signal filters were deliberately used
in the independent data acquisition system. This was done to distinguish the load
spectra derived from the raw signal and from the same signal after preliminary
smoothing operations.
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Fig. 2. The fragment of MATEK F-405 data-log; the text-line labeled IMU contains the records
from gyroscopes and accelerometers

 

Fig. 3. Sensors of wings deflection
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With two alternative sources of load signal (from an accelerometer and from
a wing deflection sensor) recorded at a frequency of 500 Hz, it was possible not
only to demonstrate the differences in load spectra derived from these alternative
sources but also to compare the differences in load spectra obtained from signals
recorded at different frequencies. By selecting every nth value from the sequence
recorded at 500 Hz, sequences corresponding to lower recording frequencies could
be created. In this study, the following frequencies were chosen for the analysis: 50
Hz (matching the load signal recorded in the MATEK F-405 autopilot log) and 5
Hz (as seen in the logs of earlier generation autopilots).

3. Data acquisition – flight scenarios

To acquire measurement data, two flight sessions were organized based on
different scenarios to obtain vastly differing load spectra. The first session’s pro-
gram included a test flight of the aircraft equipped with measurement systems to
examine the dynamic characteristics of the loaded aircraft, adjust and trim the
controls, and fine-tune the autopilot settings (particularly the PID parameters in
the various control channels). During these tests, the functionality of the onboard
measurement systems was also verified. Following this, the actual measurement
flight was conducted, aiming to achieve the widest possible range of load factor
variations within the maximum allowable loads. The scenario included maneu-
vers such as straight-flight "humps", tight spirals to the left and right, and turns.
These maneuvers were performed manually using a controlled technique known as
"brutal control". This flight will be referred to as the "maneuvering flight" in the
subsequent parts of the article.

The scenario of the second flight session involved following a pre-programmed
photogrammetric route while maintaining a constant speed and altitude, with bank
angles in turns limited to 30◦. Except for the landing phase, the entire flight was
conducted in the automatic mode. The maneuvering flight lasted 7 minutes and 25
seconds, while the photogrammetric flight took 12 minutes and 29 seconds (with the
photogrammetric task itself lasting 8 minutes and 40 seconds). For both sessions,
takeoffs were assisted using a bungee cord. Both flights were conducted at the same
airfield with light winds (approximately 4 m/s) from a similar direction. However,
while non-thermal conditions were deliberately chosen for the maneuvering flight to
avoid additional turbulence-induced loads, active thermal conditions were selected
for the photogrammetric flight. This required increased autopilot activity to stabilize
the aircraft, thereby enriching the spectrum of loads recorded. Autopilot logs from
both flights, along with alternative load signal recordings, were used for further
analysis in this study.

Below are charts with the main flight parameters and maps with recorded GPS
traces, providing an overview of the measurement flights (see Figs. 4 and 5).
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Fig. 4. Chart of key flight parameters and map with recorded GPS traces – maneuvering flight
(log2024-01-05)

 

Fig. 5. Chart of key flight parameters and map with recorded GPS traces – photogrammetry flight
(log2024-04-26)
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4. Load signal processing procedure

In this study, to determine the load spectrum, a standard procedure for signal
processing of aircraft structural loads was used, based on the Rainflow Counting
algorithm and load half-cycle arrays [19, 20]. However, certain processes were
modified to suit the research objectives described here. The procedure was con-
ducted in several steps according to the following scheme. The first step involved
converting the sequence of values from the acceleration sensors and the sequence
of values from the wing deflection sensor into sequences of load factor values,
denoted as 𝑛𝑧 . By definition, 𝑛𝑧 = 𝑎𝑧/𝑔, where 𝑔 represents the acceleration due
to gravity.

The second step involved converting the sequence of real numbers, formed
by the 𝑛𝑧 values recorded at the specified sampling frequency, into a sequence
of integers ranging from 1 to 32, representing the so-called Load Levels (LL).
The conversion from 𝑛𝑧 to LL was performed according to the standard formula
established by the pioneers of tabular presentation of load spectra [21]:

𝑛𝑧 max =⇒ LL = 3 and 𝑛𝑧 min =⇒ LL = 31 . (1)

The permissible operational load range of the aircraft is within the interval
3 ⩽ LL ⩽ 31. The load levels LL = 1, 2 and 32 are reserved for recording
incidental, minor exceedances beyond the allowable operational range (which are
undesirable but may occur against the intent of the aircraft operators).

The third step involves filtering the sequence of LL values into a sequence of
local extremes of LL (abbreviated as LE_LL). In this sequence, for any chosen
3 consecutive elements, if the transition from one value to the next involves an
increase in LL, then the transition between the 2nd and 3rd values must involve
a decrease in LL (and vice versa). Concurrently with the LE_LL sequence, a
corresponding sequence of LE_nz values is created for the next step by selecting
them from the original 𝑛𝑧 sequence established in the first step.

The fourth step (optional) is filtering the sequence of local extremes LE_LL
by eliminating pairs of sequential elements that generate increases smaller than
the width of one LL interval (i.e., eliminating load signal transitions where ΔLL
<1). The rationale is that increases smaller than ΔLL = 1 can randomly affect the
load spectrum, as they depend on the momentary drift of the signal. If the signals
were slightly shifted, some sequential pairs of local extremes would fall within the
same LL interval, resulting in no transition between adjacent LL intervals, thus
automatically excluding such increases from the record.

To perform this operation, the LE_nz sequence created in the previous step
is used to check the actual increase values in the LE_LL sequence. The threshold
value Δ𝑛𝑧 for this operation can be adjusted. The LE_LL filtering option was
created to numerically assess the impact of very small load signal increases on
the load spectrum and the calculated fatigue life. This filtering is referred to in
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the text as the SLI-FILT operation (small load increments filter). This operation is
illustrated in Fig. 6.

 

Fig. 6. Concept of the SLI-FILT operation, which involves eliminating local extremes with
increments of ΔLL<1

The fifth step involves applying the Rainflow Counting algorithm to analyze the
LE_LL sequence and generate the HC-array, a 32×32 matrix of half-cycle loads.
This array is a specific form of the transfer array [22], where the transitions of the
LE_LL signal are recorded according to the "from the LL to the LL" principle.
Here, "from the LL" corresponds to the row number and "to the LL" corresponds
to the column number, as illustrated in Fig. 7.

In both arrays, the main diagonal connecting the cells indexed at 1,1 and 32,32
is referred to as the “zero diagonal” (see Fig. 7). The HC-array differentiates itself
from a standard transfer array by incorporating the Rainflow counting algorithm,
which records cumulative signal increments of LE_LL (resulting from a sequence
of multiple consecutive changes in the LE_LL signal). A common feature of both
arrays (besides having the same graphical layout) is that the sum of all signal
transfers recorded in the cells of the transfer array and the HC-array is identical and
equals the number of local extremes in the LE_LL sequence minus 1. Additionally,
the active area of both arrays (i.e., the rectangular envelope encompassing all rows
and columns containing at least one non-zero value) is the same. This property
is used as one of the checks for the correctness of the calculations performed. To
simplify fatigue calculations, the HC-array can be transformed into a full cycle load
array (FC-array), where the number of load cycles is recorded only on one side of
the “zero diagonal”. This is possible because one full load cycle consists of two
half-cycles (one associated with load increase and the other with load decrease).
If one of these half-cycles is marked in the HC-array cell indexed at i,j, the other
half-cycle is marked in the cell indexed at j,i.
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Fig. 7. Standard procedure of the load spectra derivation algorithm

The sixth step is to create Incremental Load Spectra (ILS), which are very
useful for comparing load spectra from different flights or various signal sources.

5. Description of the conducted analyses

Due to the fact that the signal from the extensometer measuring wing deflection
can only be correlated with the acceleration signal during free flight phases [22]
(without the aircraft being in contact with the ground or a bungee cord), the
comparative analysis of load signals from both sources is limited to the fragments
of the flight from the moment the aircraft takes off until just before the landing gear
touches the ground. In this study, the beginning of the analyzed time series of load
signals was additionally delayed by approximately 15 seconds from the moment
of takeoff, due to the rheological specifics of the tested system (the wings made of
elastic polymer foam, mounted on a flexible CFRP tube, form a mechanical system
where deformations are slightly delayed relative to the variable force (excitation)
depending on the frequency of these force changes. The current value of the wing
deformation is significantly influenced by both quasi-viscous damping of the wing’s
bending movements and dry friction between the spar tube and the sheath within the
foam structure of the wing). This caused that a stabilization period was necessary
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after the change in the force system acting on the wing post-takeoff to achieve a
stable correlation between the signals from the accelerometer and the extensometer.
Fig. 8 illustrates how these signals are correlated. Although this correlation is not as
strong as in similar studies conducted on a professional composite glider structure
[22], it was deemed sufficient for the analyses conducted in this study.

 

Fig. 8. Indication of extensometer signal vs indication of accelerometer signal – both scaled in 𝑛𝑧
values

The load signals from various sources, scaled in 𝑛𝑧 units, are designated as
follows:

• IMU_az: signal from the autopilot accelerometer MATEK F405-WMN.
• REJ_az: raw signal from the accelerometer connected to the Logomatic v2

recorder.
• REJ_ts: raw signal from the extensometer connected to the Logomatic v2

recorder.
• REJ_tsw: smoothed signal from the extensometer.
The smoothing of the extensometer signal involved applying a moving average

that included the currently considered series term plus the three terms following
it, as well as a moving average that included the currently considered series term
plus the three terms preceding it. This method avoided phase shift in the smoothed
signal and assigned double weight to the current series term compared to the three
terms before and after it. The result of this operation was a noticeable smoothing
of the time series without significantly compromising the amplitude of the signal’s
peak values.

The main topics of the analysis are as follows:
• Investigating the impact of recording frequency of time series load signals

from various sources on the load spectrum and calculated fatigue life.
• Examining the effect of the SLI-FILT operation (i.e., eliminating local ex-

tremes in the load signal series from pairs of series terms that result in small
increments ΔLL). This study presents calculation results for a threshold of 0
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(no elimination) and a threshold corresponding to 0.99 of one interval value
ΔLL. Assuming the aircraft under study has 𝑛𝑧 max = 5 and 𝑛𝑧 min = −3, and
using formula (1), we obtain the width of one LL interval as 0.2857. There-
fore, a threshold of 0.99 means that pairs of local extreme terms resulting in
increments lower than 0.282857 were eliminated. For clarity in incremental
load spectrum graphs, these threshold values are denoted as _0 or _1 on ILS
graphs.

• Comparing the differences between a mild load spectrum (acquired during
photogrammetric flights in automatic mode) and a developed load spectrum
(acquired during maneuvering flights with manual control), and assessing
their effects on the calculated fatigue life.

6. Presentation of analysis results

The following flight time segments were analyzed: for the maneuvering flight:
430 seconds, and for the photogrammetric flight: 716 seconds. Fig. 9 presents the
time courses of the load signal from the maneuvering flight for different recording
frequencies. Since the load signal graphs from various sources are similar, only

 

Fig. 9. Maneuvering flight – comparison of REJ_az load signal time courses for recording
frequencies of 500 Hz, 50 Hz, and 5 Hz
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the raw REJ_az signal and, for comparison, the IMU_az signal are shown in the
presented graphs. It is evident that reducing the recording frequency does not
significantly affect the shape of the time courses. It is also noticeable that in
the filtered and noise-free IMU_az signal, the peak nz values are slightly lower
compared to the REJ_az signal.

Although the time series plots of the load signals in Fig. 9 are similar, the
sequences of local extrema for the considered frequencies, after undergoing the
Rainflow Counting procedure, reveal distinct differences in the incremental load
spectra. These differences can be observed in Figs. 10 and 11, which compare the
incremental load spectra for the same signals.

Note: To enhance the clarity of the drawings and assist the reader in distin-
guishing subtle differences between the lines representing solutions for various
input data options, 1-branch ILS charts are utilized in the article.

 

Fig. 10. Comparison of the ILSs derived from various sources of the load signal recorded during the
photogrammetry flight (right: filtered signals; left: unfiltered signals)

The effects of the SLI-FILT operation can be observed in Fig. 12. Typically,
these effects involve a reduction in the number of load half-cycles for the values of
ΔLL = 1, which aligns with expectations. They may also manifest as a reduction in
the range of LL variability by one interval, as seen in the example of the IMU_az
signal. Overall, in the case of photogrammetric flights, this effect is blurred due to
the higher noise content in the analyzed signals.
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Fig. 11. Comparison of the ILSs derived from different sources of the load signal recorded during
maneuvering flight (right: filtered signals, left: unfiltered signals)

 

Fig. 12. Demonstration of the effect of the SLI-FILT operation
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The analysis of the presented graphs leads to the following conclusions:
1. Regardless of the signal source, the computed load spectrum from the

photogrammetric flight is significantly milder than the load spectrum from the
maneuvering flight. On the vertical axes of the ILS graphs for both analyzed flights,
the ranges of variability in the cumulative number of load half-cycles are similar
for the spectra based on the same signal sources. However, on the horizontal
axes, the maximum load increments (ΔLL) are more than twice as low for the
photogrammetric flight. Interestingly, the cumulative number of load half-cycles
for ΔLL values close to 4 is similar across all ILSs obtained from filtered signals.

2. Since the range of changes and variations in the load factor during the
photogrammetric flight are relatively small, the significant impact of measurement
noise becomes apparent, causing scatter in the lines representing ILS for different
signal recording frequencies. This scatter is reduced in the case of filtered signals,
with the smallest scatter observed for the ILS obtained from the IMU_az signal,
which, as previously mentioned, is the best-filtered and noise-free signal in this set.

3. The load spectra from the maneuvering flight differ depending on the signal
source. For filtered signals (IMU_az and REJ_tsw), these differences are relatively
small across the entire range of ΔLL, regardless of the signal recording frequency.
However, for noisy signals (REJ_az and REJ_ts), the recording frequency signifi-
cantly impacts the number of half-cycles, especially forΔLL < 8 andΔLL > 15. This
suggests that the measurement noise in REJ_az and REJ_ts signals is broadband
and can include high-amplitude oscillations that occur briefly at high frequencies
during sharp maneuvers. Consequently, the Rainflow Counting algorithm detects
a higher number of half-cycles with large ΔLL values.

4. The SLI-FILT operation, which eliminates pairs of local extrema in the
load signal that result in increments below a set threshold, has a noticeable effect
primarily on smoothed signals (IMU_az and REJ_tsw). The graphs show that
the ILS lines with diamond markers (i.e., results obtained using the SLI-FILT
operation) are more clustered regardless of the recording frequency. The above
conclusions pertain only to the graphical layout of the lines representing individual
ILS on the graphs. From a practical perspective, the most interesting aspect is how
the differences in load spectra will affect fatigue durability. This topic is addressed
in the following chapter.

7. Calculations of fatigue life

To measure the impact of differences between various ILSs, as shown in Figs.
10 and 11, fatigue calculations were conducted. These calculations were based on
the classical Palmgren-Miner (P-M) hypothesis, whose application to the fatigue
life calculations of light aircraft structures is detailed in Report AFS-120-73-2 [23].

It was assumed that the test element, representing the so-called Principal
Structural Element (PSE) made of aluminum alloy, would be subjected to the
aforementioned load spectra. The fatigue properties of this alloy were provided
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in the Report as a set of S-N curves, which show the number of cycles to failure
depending on the amplitude of variable stress cycles and the mean value of variable
stress cycles. Therefore, the calculated fatigue life results refer not to the structure
of the aircraft described in the study, but to this test element, which is used to assess
the effect of different load spectra. Compared to the calculation method presented in
Report AFS-120-73-2, this study employed an updated calculation algorithm using
32×32 tables that record the material’s fatigue properties, constructed similarly to
the HC-array. Consequently, the classical P-M hypothesis formula was modified to
the following form:

𝐷 = 𝜒

32∑︁
𝑖=1

32∑︁
𝑗=1

𝐷𝑖, 𝑗 = 𝜒

32∑︁
𝑖=1

32∑︁
𝑗=1

𝑛𝑖, 𝑗

𝑁𝑖, 𝑗

. (2)

Symbol 𝜒 is the coefficient equal to 1 or 0.5 depending on the kind of transfer
arrays used for calculations (i.e., a FC-array or a HC-array).

In this model, 𝑁𝑖, 𝑗 represents a cell in the HC-array (or FC-array) containing
the number of cycles (or half-cycles) to failure, while 𝑛𝑖, 𝑗 denotes the value identical
to the content of the HC-array cell. When transforming S-N curves into an array of
number of half-cycles to failure (N-array), it was assumed that the stresses in the
PSE are proportional to the value of 𝑛𝑧 . It was assumed that for 𝑛𝑧 = 1, the stresses
are 26 MPa, and based on this, auxiliary 32×32 tables containing information on the
amplitude and mean stress value in the PSE were determined. Using these data and
the linear form of the S-N curves presented in the Report on a logarithmic scale, the
number of half-cycles to failure for each cell in the N-array was interpolated. This
array is shown in Fig. 13. The yellow area represents interpolated values, while
the orange area represents extrapolated values (i.e., those beyond the empirically
verified range). For the accuracy of fatigue life calculations, it was crucial that all
non-zero cells in the HC-array matched the cells in the N-array within the yellow
area. Fatigue calculations were performed using Excel. The results are presented
in Fig. 14.

The graphs indicate that the most significant differences in fatigue durability
for various load signal recording frequencies occur with unfiltered signals REJ_az
and REJ_ts. In the case of the photogrammetric flight (where the ratio of noise to
the range of variability of the measured load signals was greater), the differences
in results are much greater compared to the maneuvering flight. The application
of the SLI_FILT operation affects the fatigue durability calculations. This impact
is significantly greater for filtered signals IMU_az and REJ_tsw than for unfiltered
signals REJ_az and REJ_ts. This suggests that measurement noise in the unfiltered
signals exceeds the value of ΔLL = 1.

Upon comparing the results of fatigue life calculations for load spectra derived
from unfiltered maneuvering flight signals, it is evident that the fatigue life estimated
using the REJ_ts signal surpasses that calculated using the REJ_az signal. This
indicates that the load spectrum obtained from the REJ_ts signal is milder than the
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Fig. 13. Application of transfer arrays for fatigue life calculation

 

Fig. 14. Results of fatigue life calculations for load spectra based on the load signal source,
recording frequency, and the threshold applied for filtering small ΔLL increments
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spectrum obtained from the REJ_az signal. This fact supports the thesis that the
inertia of the wing structural framework and its rheological characteristics act as a
natural low-pass filter, smoothing the time course of the REJ_ts signal.

The fatigue life calculation results for the load spectra derived from the filtered
IMU_az and REJ_tsw load signals from the maneuvering flight are very similar.
Therefore, these signals can be used interchangeably, provided they do not include
the takeoff and landing phases.

It is important to note that the results presented here pertain to PSE, whose
fatigue properties are suitable for the aluminum alloy specified in the AST report.
Such PSEs are often found in the construction of unmanned aerial vehicles. If the
PSE were made from a composite material (e.g., CFRP), the results would dif-
fer, as FRP composites have different fatigue properties. These properties strongly
depend on the fiber reinforcement layer arrangements, which must be rationally
aligned with the loads acting on the structure. With the correct fiber arrangement,
composite structures exhibit low fatigue sensitivity to load increments correspond-
ing to ΔLL < 4 [22]. Consequently, these small load increments can be omitted in
the load spectrum created for fatigue testing. This is the most significant feature
distinguishing them from metals. For the Sky Surfer 2000, a composite wing spar
in the form of a unidirectional CFRP tube can be selected as the PSE. This spar
is subjected to bending and shear forces. The study did not address this type of
PSE due to the lack of data on the fatigue characteristics of the aforementioned
composite under such loads.

8. Summary and final conclusions

The general conclusion from the calculations is that, regardless of the con-
sidered load signal, the fatigue life of the PSE for the photogrammetric flight
load spectrum is 20 to 30 times greater than the fatigue life calculated for the
maneuvering flight load spectrum.

In fatigue calculations, a crucial aspect is the conservatism of the results. A
result is considered conservative when the calculated fatigue life is underestimated.
Conversely, overestimating fatigue life poses a safety risk if operational regulations
for an aircraft are based on such results. On the other hand, relying on underes-
timated fatigue life enhances safety but negatively impacts economic indicators,
as the aircraft structure would require more frequent technical inspections and/or
earlier replacement of critical components that limit the structure’s fatigue life,
depending on the adopted operational model.

The variability in fatigue life results calculated in this study, based on load
signals recorded by sensors measuring acceleration or wing deflection, should
be interpreted such that a higher result represents a less conservative outcome
compared to a lower result.

Using unfiltered load signals for fatigue life calculations yields the most con-
servative results but is irrational for the following reasons:
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1. these results are highly dependent on the signal sampling frequency;
2. at high recording frequencies, signal noise increases the contribution of

small load increments in producing the value D in the P-M formula, causing
the fatigue life calculation results to become excessively underestimated.

Reducing signal noise is a crucial issue. A high level of measurement noise in
load signals recorded during a flight with minimal load factor variation undermines
the validity of fatigue life assessments and the imposition of operational limits for
a given aircraft. Results based on unfiltered signals should be considered only as an
indication of the possible range of fluctuations in results generated by such signals.

Since it is not rational for the outcome of fatigue life calculations to depend on
the load signal sampling frequency, special attention should be given to selecting
appropriate signal filters (e.g., Kalman filter) and optimizing their parameters.
The aim is to avoid excessive filtering, which smooths out load signals, thereby
flattening the variability in fatigue life calculations for different load signal sampling
frequencies but also making these load spectra less conservative. Therefore, more
detailed studies are necessary to distinguish between real load changes and mere
measurement noise in the recorded load signal.

The data set should be expanded (by conducting multiple measurement flights)
to enable statistical analysis of load spectra from these flights. The measurement
flight scenarios should be standardized and include both repeatable phases of
automatic flight and repeatable manual maneuvers designed to generate distinct
load spectra, weaker than those observed in the maneuvering flight described in this
study, but significantly stronger than those in the photogrammetric flight. Flight
sessions should be conducted under varying atmospheric turbulence conditions.
Such studies are planned for future work.
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