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Abstract.. Gravitational classifiers belong to the supervised machine learning area, and the basic element that they process is a 
data particle. So far, many algorithms have been presented in the world literature. They focus on creating a data particle and 
determining its two important parameters - a centroid and a mass. Hypergeometrical Divide is one of the latest algorithms in this 
group,  which  focuses  on  reducing  the  amount  of  processing  data  and  keeping  relevant  information.  A  proportion  of data  to 
information depends on the data particle divide depth level. Its properties and application potential have been researched, and 
this article is the next step of the work. The aim of the research described in this article was to determine relation of the depth 
level value of data particle divide to the effectiveness of the Hypergeometrical Divide algorithm. The research was conducted 
on 7 real data sets with different characteristics, applying methods and measures of evaluating artificial intelligence algorithms 
described in  the  literature. 63 measurements  were  performed.  As  a  result,  the  effectiveness  of  the  Hypergeometrical  Divide 
method was defined at each of available data particle divide depth levels for each of used databases.
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1. INTRODUCTION 

The definition of artificial intelligence (AI) should be perceived 

as the ability of system thanks to which it can interpret collected 

data correctly, learn from them, adapt to current conditions, and 

use the processed information in the process of achieving 

assumed goals [1]. Analyzing this definition, it can be seen that 

the process of data processing by artificial intelligence 

algorithms implements an information hierarchy, which in 

literature on information theory is called the Data, Information, 

Knowledge and Wisdom (DIKW) pyramid. The DIKW 

pyramid describes the relations, including general 

transformation rules, between four levels of information 

processing [2]. Functioning of modern intelligent systems, 

which apply machine learning algorithms, is an example of 

practical application of this theory. 

The history of the Hypergeometrical Divide (HypGD) 

algorithm, whose name was mentioned in the title of this article, 

started in 2022 [3]. The method published in the doctoral thesis 

of one of the authors of this publication was devoted to artificial 

intelligence algorithms [1] using a theory of data gravitation [4], 

which is based on Newton's law of universal gravitation [5]. 

From a high-level point of view, the HypGD mechanics 

combines the lazy learning strategy [6] used in the k Nearest 

Neighbors (kNN) classifier [7] with the idea of density-based 

clustering algorithms such as DBSCAN [8] or OPTICS [9]. As 

a result, the Hypergeometrical Divide, based on the density 

distribution of multidimensional feature space, creates 

a generalized description of its decision regions. The result of 

creation is a small, easy to manage, reference database without 

detailed information about the source data, used in the pattern 

recognition stage based on a minimum distance between objects 

in the feature space [3]. A significant feature of HypGD in the 

context of practical applications is the lack of requirement to 

select parameter values depending on the characteristics of 

feature space. Moreover, it does not require a learning process 

leading to build a model, which distinguishes it from the 

Support Vector Machine (SVM) [10] and the Decision Trees 

(DTs) [11] algorithms. The presented features implicate that the 

Hypergeometrical Divide is dedicated to the following 

applications: 

• requiring rapid pattern recognition at the expense of its 

accuracy;   

• in which a training data set is quickly changed and 

dynamically adapted to a current purpose of pattern 

recognition process;  

• with a high risk of revealing an inference mechanism or 

even the reference database.  

In the context of information theory the overall idea of HypGD 

method is to reduce the amount of training data, simultaneously 

keeping relevant information in the pattern recognition process. *e-mail: janusz.dudczyk@wat.edu.pl 
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The subplot of the abovementioned dissertation [3] was the 

impact of data particle divide depth level on the effectiveness 

of the algorithm. This was a starting point for conducting in-

depth research and analyses presented in this publication. 

Hypergeometrical Divide is a method belonging to the group of 

supervised machine learning algorithms [3, 12] that focuses on 

creating data particles whose, according to the theory, inherent 

parameters are the center point and mass [4]. An essential issue 

related to the processing of data particles is the process of 

determining the mentioned parameters. These are activities 

whose results may have a direct impact on the effectiveness of 

gravitation classifier. In the world literature much attention has 

been paid to determining the center point of data particle [13]. 

A simple and effective strategy is to construct it based on the 

average values of particular attributes of processed database [4]. 

In a few research publications several approaches of defining 

the value of data particle mass have been proposed over the last 

years as well [4, 13, 14].  

Mentioned algorithm extends the previously published 

methods, which have been still applied to realize classification 

process only in two dimensional data sets. Motivation to 

develop the Hypergeometrical Divide algorithm was 

determined by a significant disadvantage of previously 

published data particle geometrical divide methods - the 

possibility to apply them only in the classification process of 

data sets whose elements are placed in the feature space of 

dimension ℝ2. The Hypergeometrical Divide approach put an 

end to that limitation and enables to create a data particle by its 

geometrical divide in data sets whose objects belong to the ℝ2+ 

dimension feature space. An important issue in using the 

HypGD method is selection of data particle divide depth level, 

which became a main subject of this article research problem 

[3]. 

The Hypergeometrical Divide algorithm has already passed its 

practical exam [15]. The article [15] evaluated the potential of 

its application in the task of specific emitter identification (SEI) 

[16, 17] belonging to field of electronic intelligence (ELINT) 

[18, 19]. At that time a research was carried out to recognize the 

belonging of particular pulses to one of six radar copies of the 

same type. This is a key task performed by modern mobile 

ELINT systems, in which increasingly often the sensor 

recognizing the radar signals along with the limited amount of 

reference data are carried on an unmanned aerial vehicle (UAV) 

[20]. While conducting an operational activities, UAVs are an 

object of interest for a foe intelligence, therefore the resources 

carried on its board should contain the most generalized 

information, which could deliver a minimal value in a case of 

such platform interception. Moreover, the ELINT activities 

applying UAVs are often carried out in Emissions Control 

(EMCON) conditions, in which radio transmission resources 

are rigorously managed and significantly limited, in order to 

avoid detection, localization and data leakage [21]. Therefore, 

taking into consideration the dynamically changing targets and 

the reference data during the reconnaissance activities, this type 

of systems require usage of small and easily manageable 

reference databases and the pattern recognition methods, in 

which the relearning process is unnecessary. Due to the fact that 

the described systems record many pulses in a short time, 

another important issue is usage of algorithms, which limit the 

number of comparisons made in the decision-making process at 

the expense of an acceptable decrease in its quality. The results 

showed in [15] revealed that the Hypergeometrical Divide 

method is characterized by good performance in the process of 

specific emission sources identification. However, despite its 

demonstrated advantages, the approach is not free from 

weaknesses. Previous publications have shown that the main 

problem of the Hypergeometrical Divide algorithm is the need 

to manually define the depth level value of data particle divide 

[3]. It was stated that the development of approaches or rules 

dedicated to determining the value of mentioned parameter, 

maximizing the effectiveness of this classifier, may constitute a 

significant contribution to the development of data particle 

creation algorithms by its geometrical divide [3, 15]. 

Currently, when analyzing the abovementioned problem, it was 

recognized that before automating the process of defining the 

value of the data particle divide depth level, an in-depth analysis 

of its impact on the effectiveness of the Hypergeometrical 

Divide algorithm should be performed. This became the 

purpose of this article and was directly included in the title of 

this publication. The results of this research may be an 

important step towards the development of algorithms that 

enable automatic selection of the value of data particle divide 

depth level. The research described in this article was carried 

out on 7 data sets related to various areas of reality. Within 

research works 63 experiments were carried out. They showed 

changes in the effectiveness of the Hypergeometrical Divide 

algorithm on particular data sets, depending on the used data 

particle divide depth level. One of the main conclusions refers 

to the fact that not in every case there is a need to perform divide 

at the maximum available depth level for an individual data set 

because there is an iteration of divide, after which no 

subsequent iteration brings a significant improvement in the 

effectiveness of the tested algorithm. 

2. APPLIED METHODS AND MATERIALS 

2.1. Hypergeometrical Divide theoretical details 

The Hypergeometrical Divide algorithm, belonging to a pattern 

recognition approaches set, was proposed in [3]. It is used in the 

gravitational model-based classification process [4]. Its idea is 

to manipulate the affiliation of atomic data particles to 

particular data particles. The atomic data particle should be 

identified as an elementary object of the feature space, which is 

processed by the gravitational algorithm and created on the 

basis of a single record of the analyzed database. Such data 

particle cannot be divided, what is literally pointed out in its 

name [4]. It is implemented by iterative dividing of existing 

data particles. The number of divide cycles is equal to the value 

of data particle divide depth level selected by the user. The 

impact of this parameter value on the efficiency of the classifier 

is the main issue of this article. It is important to emphasize that 

the result of divide are two new data particles. Implementation 

of this process changes the masses of data particles and the 

location of their central points. The next link in the chain of 
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changes are the data gravity forces which determine the 

relations between the existing data particles and the classified 

sample. The above-mentioned factors morph the decision 

boundaries and modify the number of elements processed in the 

decision-making process. This directly affects the properties of 

classifier. 

Divide of data particle in an n-dimensional feature space (n >= 

3) begins with determining the vectors defining the geometric 

center c and the data particle center of mass μ. Assuming that 

the values of the i-th in the n-element attributes set of data 

particle being process constitute the set Fi, then the vector 

defining the data particle geometric center c expresses the Eq. 

(1) [3]. 

𝐜 =

[
 
 
 
 𝑚𝑖𝑛(𝐅1) +

𝑚𝑎𝑥(𝐅1) − 𝑚𝑖𝑛(𝐅1)

2
,

… ,

𝑚𝑖𝑛(𝐅𝑛) +
𝑚𝑎𝑥(𝐅𝑛) − 𝑚𝑖𝑛(𝐅𝑛)

2 ]
 
 
 
 

 (1) 

Knowing that there is a relationship showed in Eq. (2). 

𝐅𝑖 = {𝑓𝑗𝑖 , … , 𝑓𝑚𝑖} (2) 

Then the vector describing the data particle center of mass μ is 

given by Eq. (3) [3]. 

𝛍 = [(∑𝑓𝑗1

|𝐅1|

𝑗=1

) ∙
1

|𝐅1|
, … , (∑𝑓𝑗𝑛

|𝐅𝑛|

𝑗=1

) ∙
1

|𝐅𝑛|
] (3) 

Then, the condition is verified whether the vectors expressing 

the geometric center c and the center of mass μ are not identical. 

If c ≡ μ, the process is terminated. In this moment, in the feature 

space, there are data particles created in the previous iteration 

of divide. If c ≠ μ, the next step of the algorithm is performed - 

determining the normal vector n of the searched hyperplane 

(Eq. (4)), which will divide the data particle [3]. 

𝐧 =

[
 
 
 
 
 
 
 
𝑚𝑖𝑛(𝐅1) +

𝑚𝑎𝑥(𝐅1) − 𝑚𝑖𝑛(𝐅1)

2
− (∑𝑓𝑗1

|𝐅1|

𝑗=1

) ∙
1

|𝐅1|
1

,

… ,

𝑚𝑖𝑛(𝐅𝑛) +
𝑚𝑎𝑥(𝐅𝑛) − 𝑚𝑖𝑛(𝐅𝑛)

2
− (∑𝑓𝑗𝑛

|𝐅𝑛|

𝑗=1

) ∙
1

|𝐅𝑛| ]
 
 
 
 
 
 
 

 (4) 

Knowing that there is a relationship showed in Eq. (5). 

𝐧 = {𝑎𝑖 , … , 𝑎𝑛} (5) 

In the next step of data particle divide, taking into account the 

assumption of the Hypergeometrical Divide method that the 

data particle center of mass μ belongs to the hyperplane 

dividing this data particle, the value of arbitrary constant a0 is 

determined, which is expressed in Eq. (6) [3]. 

𝑎0 =∑

(

 
 
𝑎𝑖 ∙ ((∑𝑓𝑗𝑖

|𝐅𝑖|

𝑗=1

) ∙
1

|𝐅𝑖|
)

)

 
 

𝑛

𝑖=1

 (6) 

Having all the components of the equation of the hyperplane 

dividing the data particle, the last step of divide is to check the 

position of each atomic component of the data particle p. 

Knowing that the relation presented in Eq. (7) is true [3]. 

𝐩 = {𝑝𝑖 , … , 𝑝𝑛} (7) 

The process of assigning an atomic data particle p to one of the 

two newly created data particles PA or PB is expressed by Eq. 

(8) [3]. 

𝐩 ∈

{
 
 

 
 𝑷𝐴, 𝑖𝑓 (∑𝑎𝑖𝑝𝑖

𝑛

𝑖=1

) − 𝑎0 ≥ 0

𝑷𝐵, 𝑖𝑓 (∑𝑎𝑖𝑝𝑖

𝑛

𝑖=1

) − 𝑎0 < 0

 (8) 

A measurable added value of the Hypergeometrical Divide 

algorithm training phase is a reduction in the amount of data 

processed at the classification phase. Denoting the number of 

classes in the data set as c and the hypergeometrical divide 

depth level as d, the number of elements created by the HypGD 

for the classification process (n_clf) is expressed by the 

equation (9). 

 𝑛_𝑐𝑙𝑓𝑐,𝑑 = 𝑐 ∙ 2
𝑑 (9) 

Assuming that: 

• each of the n-elements in the data set refers to exactly one 

atomic data particle (ADP), 

• each ADP belongs to only one data particle, 

• d << n and c << n (in practice), 

then, analyzing the computational complexity of the 

Hypergeometrical Divide algorithm, during which only the 

dominant component is preserved, it can be concluded that the 

computational complexity of the HypGD training phase is 

asymptotically linear O(n). 

2.2. Configuration details of examined algorithm 

In sum, this approach focuses on creating new data particles by 

dividing existing data particle using their geometric properties 

in multidimensional feature space [3, 22]. As already 

mentioned in the previous chapter, an important issue in using 

this algorithm is the process of determining the depth level of 

data particle divide d [3, 15]. In the research carried out, the 

maximum value of the d parameter was determined for each 

data set. As far as the philosophy of examined method is 

concerned, it is known that for each data set these values may 

be different [3, 14, 15]. The established maximum depth levels 

of data particle divide were presented in Table 1. 

Table 1. The maximum depth level of data particle divide d for particular 

data sets (source: own elaboration) 

Data set Maximum Divide Depth Level (d) 

banknote_authentication 5 

iris 3 

magic_gamma_telescope 8 

occupancy 7 

parkinsons 3 

sonar 4 

wifi_localization 5 
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As mentioned in Chapter 1. Introduction - the 

Hypergeometrical Divide algorithm is used to create a data 

particle [3, 15, 22]. It is known from the theory of data 

gravitation that during data particles processing it is also 

necessary to determine its two parameters - center point and 

mass value [3, 4, 13]. In the conducted research, the center 

point was determined based on the strategy of average value 

of particular attributes in the context of all elements of specific 

data particle. However, three approaches were used to 

determine the data particle mass value. Two of them were 

presented and described in detail in [13] - Stochastic Learning 

Algorithm (SLA) and Batch-update Learning Algorithm 

(BLA). They improve some properties of the popular 

Centroid-Based Classifier (CBC), whose popularity is due to 

its simple theoretical foundation and linear computational 

complexity in the training phase [13]. In the training phase, 

the SLA algorithm iteratively corrects the value of mass 

coefficient for individual data particles to obtain the best 

possible match to the entire training set [13]. In this research 

the Stochastic Learning Algorithm was configured as follows: 

• max. iterations number maxIters = 50; 

• mass value update factor ξ = 0.0001; 

• expected error level ε = 0.00. 

In turn, the second algorithm proposed in [13] - Batch-update 

Learning Algorithm - corrects the weight coefficients of 

particular data particles after completing the classification 

process of all samples included in the training data set. The 

update factor of the data particle mass value in the Batch-update 

Learning Algorithm was set to ξ = 0.0001. The last approach 

used to define the data particle mass values was the n-Mass 

Model. According to its philosophy, the value of the mass of a 

data particle is equal to the size of its base class [3, 4, 13, 14]. 

In this research, a fourth variant was used as well, which ignores 

the mass of data particles. Therefore, at each level of data 

particle divide, four results were obtained for each data set, on 

the basis of which the average value was calculated, describing 

the final quality of classification process. 

2.3. Evaluation method and quality metrics 

The method and quality measures selected to evaluate the 

classification process have already been used in publications 

whose topics fall within the field of artificial intelligence. In 

these studies, one of the most popular methods used for data 

sampling was used to estimate the actual effectiveness of the 

classifier and possible tuning of its parameters [23]. The 

method described was k-fold cross-validation. Its use enabled 

to eliminate the phenomenon of predictive model overfitting 

in the evaluation process. Moreover, thanks to its application, 

it was also possible to examine the generalization ability of 

the tested algorithm. The use of k-fold cross-validation 

required determining the value of k parameter [24]. In these 

studies, it was assumed that k = 10, what ensured a slight 

difference in the values of measures [25]. 

The obtained classification results were saved in the form of a 

four-element confusion matrix. It consisted of the following 

values: true positive (TP), true negative (TN), false positive 

(FP) and false negative (FN) [26]. Based on the matrix 

organized this way, the values of two quality measures of 

predictive model were determined - precision and recall [27, 

28]. Taking into account the fact that the abovementioned 

measures are determined for a single class, macro variants of 

these measures were used to examine the overall effectiveness 

of the classifier in each data set. According to the definition, 

PRECISIONmacro and RECALLmacro are average values 

calculated on the basis of PRECISION and RECALL for each 

of n-classes [29, 30]. Equation (10) and Eq. (11) describe 

PRECISIONmacro and RECALLmacro, respectively. 

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁𝑚𝑎𝑐𝑟𝑜 = (∑
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑛

𝑖=1

) ⋅
1

𝑛
 (10) 

𝑅𝐸𝐶𝐴𝐿𝐿𝑚𝑎𝑐𝑟𝑜 = (∑
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑛

𝑖=1

) ⋅
1

𝑛
 (11) 

Using domain knowledge, the characterized measures were 

reduced to a single Fmacro value, which is expressed by the Eq. 

(12) [29, 30]. 

𝐹𝑚𝑎𝑐𝑟𝑜 =
2 ⋅ 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁𝑚𝑎𝑐𝑟𝑜 ⋅ 𝑅𝐸𝐶𝐴𝐿𝐿𝑚𝑎𝑐𝑟𝑜
𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁𝑚𝑎𝑐𝑟𝑜 + 𝑅𝐸𝐶𝐴𝐿𝐿𝑚𝑎𝑐𝑟𝑜

 (12) 

 

2.4. Details of data sets used in the research 

As mentioned in the introduction of this article, 7 data sets 

were used in the research. Each of them concerns a different 

problem occurring in a real environment. Issues related to 

particular databases include: 

• confirming the authenticity of banknotes based on image 

entropy and features extracted from digital images with 

application wavelet transform [31, 32]; 

• distinguishing the type of Iris plant based on the analysis 

of photos [33]; 

• discovering of high energy gamma particles on the images 

of hadronic showers recorded by Cherenkov gamma 

telescope [34, 35]; 

• detection of room occupancy, based on the analysis of: 

temperature, humidity, light and CO2, which were 

recorded once a minute [36, 37]; 

• distinguishing healthy patients from those with 

Parkinson's disease based on the analysis of their voice 

recordings [38, 39]; 

• distinguishing sonar signals reflected from a metal 

cylinder from signals reflected from a quasi-cylindrical 

rock [40]; 

• smartphone location, based on the analysis of the strength 

of WiFi signals [41]. 

In the Table 2. the numbers of samples belonging to particular 

classes in each of applied data sets were presented.  

Table 2. Number of samples in classes for particular data sets (source: 

[31-42]) 

Data set Number of samples in classes 

banknote_authentication 762 : 610 

iris 50 : 50 : 50 

magic_gamma_telescope 12332 : 6688 

occupancy 15810 : 4750 

parkinsons 48 : 147 

sonar 111 : 97 
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wifi_localization 500 : 500 : 500 : 500 

 

All described datasets are available in the public repository of 

the University of California, Irvine (UCI) [42]. 

3. RESULTS 

In accordance to the aim of article, the results reveal the 

impact of data particle divide depth level on the effectiveness 

of the Hypergeometrical Divide method. This chapter presents 

the average results obtained by the tested algorithm on 7 data 

sets at all data particle depth levels available to them. The 

results obtained using the well-known lazy learning k Nearest 

Neighbors algorithm, which based on a distance between the 

objects in a feature space, were used as the reference values. 

The outcomes of eager learning approaches - the SVM and the 

Decision Trees, were taken into consideration as well. A total 

of 63 measurements were performed. Figures 1-7 show the 

results obtained for the described data sets, in the following 

order: banknote_authentication, iris, 

magic_gamma_telescope, occupancy, parkinsons, sonar, 

wifi_localization. 

 

Fig.1. Average value of the Fmacro measure obtained by 
Hypergeometrical Divide at each of the available data particle divide 
depth levels on the banknote_authentication dataset (source: own 
elaboration) 

Figure 1 shows that in the case of the banknote_authentication 

dataset, the Hypergeometrical Divide algorithm without 

performing data particle divide obtained a measure value of 

Fmacro = 0.849. The first three levels of data particle divide – d 

= 1, d = 2 and d = 3 – brought an increase of Fmacro measure 

value by: 0.024, 0.003, 0.003. The largest leap of Fmacro value 

occurred after dividing data particles at the fourth depth level 

(d = 4) and amounts to 0.082. Performing the last available for 

this data set divide of existing data particles at depth level d = 

5, brought an increase in the Fmacro value by 0.021. Finally, the 

Hypergeometrical Divide approach on the 

banknote_authentication dataset, performing 64 comparisons 

in the classification phase, obtained a value of Fmacro  = 0.982, 

whereas the kNN algorithm Fmacro  = 0.993, using 1234 

comparisons. The classification quality with the SVM 

approach was Fmacro  = 0.999 and with the Decision Trees 

algorithm Fmacro  = 0.983.  

 
Fig.2. Average value of the Fmacro measure obtained by 
Hypergeometrical Divide at each of the available data particle divide 
depth levels on the iris dataset (source: own elaboration) 

Figure 2 visualizes the results obtained on one of the two 

smallest of the analyzed data sets - iris. It can be observed that 

the change in the effectiveness of the tested algorithm 

depending on the level of data particle divide depth used is 

small. Without divide (depth level d = 0), the 

Hypergeometrical Divide method obtained Fmacro = 0.955. 

After dividing data particle at depth level d = 1, the Fmacro 

value decreased to 0.940. The quality of the classification 

performed on the data set after dividing the data particles at 

the next depth level d = 2 was described by a higher value than 

in the case of depth level d = 1, which amounted to Fmacro = 

0.946. After dividing the data particle at the last available 

depth level for this data set, the algorithm again reached an 

increase of the Fmacro value, obtaining a result of Fmacro = 0.953 

with 24 operations in the prediction phase. For comparison, 

the quality of kNN method was lower and amounted to Fmacro 

= 0.945, applying 135 operations. However, the eager learning 

algorithms: the SVM and the Decision Trees obtained Fmacro 

= 0.942 and Fmacro = 0.934, respectively.   

Fig.3. Average value of the Fmacro measure obtained by 
Hypergeometrical Divide at each of the available data particle divide 
depth levels on the magic_gamma_telescope dataset (source: own 
elaboration) 

In Fig. 3 it can be observed that for the 

magic_gamma_telescope data set, the Hypergeometrical 

Divide algorithm without application of dividing a data 

particle obtained the value Fmacro = 0.667. The first divide of 

data particle (d = 1) determined the decrease of the Fmacro 

value by 0.031. After implementing next divide of data 

particle d = 2, an increase in the value of measure used by 

0.005 was followed. The quality of the classification process 

after each of the two subsequent divides of data particles - at 

levels d = 3 and d = 4 - decreased consecutively by 0.009 and 

0.005. After each subsequent available depth level of existing 
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data particles divide (d = 5, d = 6, d = 7, d = 8), the value of 

the Fmacro measure increased consecutively by 0.005, 0.004, 

0.005 and 0.029. The definitive quality of classification 

process carried out using the Hypergeometrical Divide 

algorithm on the magic_gamma_telescope data set was 

described by measure Fmacro = 0.670, performing 512 

comparisons. However, the result obtained using the kNN 

method, which was Fmacro = 0.810 for 17118 comparison 

operations in training phase, was taken as the reference value. 

On this dataset, the SVM reached the value of Fmacro = 0.837, 

and the Decision Trees obtained Fmacro = 0.806. 

 
Fig.4. Average value of the Fmacro measure obtained by 
Hypergeometrical Divide at each of the available data particle divide 
depth levels on the occupancy dataset (source: own elaboration) 

Figure 4 visualizes the results obtained on the largest of the 

analyzed data sets - the occupancy data set. It could be seen 

that divide of data particle at subsequent depth levels never 

reduces the quality of the classification process. Without 

divide the data particle, the mentioned quality was described 

by Fmacro = 0.722. After divide the data particle at depth level 

d = 1, the Fmacro value increased to 0.748. However, the 

greatest increase in the value of the measure used can be 

observed for the parameter d = 2. Then the Fmacro measure 

assumed the value of 0.880. The divide of data particle at three 

subsequent depth levels d = 3, d = 4 and d = 5 improved the 

results to Fmacro = 0.938, Fmacro = 0.946 and Fmacro = 0.975, 

respectively. For the d = 6 parameter, the quality of the 

classification process increased slightly, reaching the level of 

0.980, using 128 comparisons. The Fmacro value did not change 

after the data particle divide at the last available depth level d 

= 7. For comparison, the quality of kNN algorithm, 

performing 18504 operations, amounted to Fmacro = 0.987. The 

classification quality using the SVM approach was Fmacro  = 

0.982, and applying the DTs algorithm Fmacro  = 0.985.  

 
Fig.5. Average value of the Fmacro measure obtained by 
Hypergeometrical Divide at each of the available data particle divide 
depth levels on the parkinsons dataset (source: own elaboration) 

Figure 5 shows the results obtained on the parkinsons data set. 

It can be observed that without dividing the data particle (d = 

0), the Hypergeometrical Divide method obtained the value of 

Fmacro = 0.765. After the divide was carried out at the depth 

level d = 1, the Fmacro value decreased and amounted to Fmacro 

= 0.748. The quality of the classification performed on the 

data set after dividing the data particles at the d = 2 depth level 

was described by a higher value than at the d = 1 level and 

was equal to Fmacro = 0.798. Performing the last available for 

this dataset divide of the existing data particles, at a depth 

level d = 3, resulted in an increase in the Fmacro value, which 

amounted to Fmacro = 0.817, applying 16 comparisons in the 

prediction phase. The kNN algorithm obtained Fmacro = 0.924, 

performing 175 compare operations. On the other hand, the 

SVM classifier achieved Fmacro = 0.765, and the Decision 

Trees algorithm Fmacro = 0.858.  

 
Fig.6. Average value of the Fmacro measure obtained by 
Hypergeometrical Divide at each of the available data particle divide 
depth levels on the sonar dataset (source: own elaboration) 

Analyzing Fig. 6 it can be observed that on the sonar data set, 

each iteration of data particle divide increased the 

effectiveness of the Hypergeometrical Divide algorithm. 

Without dividing the data particles, the quality of the 

classification process was described by Fmacro = 0.693. The 

first iteration of data particle divide resulted in an increase in 

the value of the Fmacro measure by 0.003. After the divide was 

carried out at the next depth level d = 2, an increase in the 

quality of the classification process by 0.049 was obtained. 

Performing pattern recognition after another data particle 

divide d = 3 resulted in another increase in the value of the 

quality measure used by 0.018. After performing the last 

divide possible for this data set at the level of d = 4, the value 

of the Fmacro measure increased by 0.022 and finally reached 

the level of 0.785, based on 32 compare operations. For 

comparison, the reference quality obtained using the kNN 

algorithm was higher and amounted to Fmacro = 0.826, 

performing 187 comparisons in the classification phase. 

Whereas the SVM and the Decision Trees algorithms obtained 

Fmacro = 0.828 and Fmacro = 0.747, respectively.   
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Fig.7. Average value of the Fmacro measure obtained by 
Hypergeometrical Divide at each of the available data particle divide 
depth levels on the wifi_localization dataset (source: own elaboration) 

Based on Fig. 7 it can be seen that on the real wifi_localization 

data set, without the data particle divide (d = 0), the 

classification process quality described by the Fmacro measure 

was at the level of 0.918. After the data particle divide at the d 

= 1 level, the greatest improvement in results can be seen. Then 

the value of Fmacro = 0.958 was reached. Another iteration at 

depth level d = 2 resulted in a slight increase in the value of the 

measure used, leading to Fmacro = 0.960. The data particle divide 

with the parameter d = 3 resulted in a greater improvement in 

the quality of the classification process than in the previous 

iteration of divide, up to the level of Fmacro = 0.970, which in 

subsequent loops of divide process (d = 4 and d = 5) finally 

stopped at the level of Fmacro = 0.972 with 64 comparisons in 

the prediction phase. However, the kNN classifier obtained the 

result Fmacro = 0.980, applying 1800 compare operations, the 

SVM achieved Fmacro = 0.981, and the last of the evaluated 

algorithms - Decision Trees obtained the value of measure 

Fmacro = 0.970. 

4. SUMMARY 

Based on the conducted research a relation between data 

particle divide depth level and effectiveness of 

Hypergeometrical Divide algorithm was defined. Therefore, the 

aim of paper was achieved - the impact of data particle divide 

depth level on the effectiveness of the examined method was 

revealed. 

The first time an added value of the Hypergeometrical Divide 

algorithm training phase on the number of objects reduction, 

applied in the classification process, were clearly explained. 

The mentioned case has not been considered in world literature 

so far. This relationship was expressed by equation (9) in the 

Chapter 2. 

Analyzing Fig. 1-7, it can be concluded that the maximum value 

of the data particle divide depth level for each data set may be 

different. 

By analyzing Fig. 4 and Fig. 7 it can be concluded that in the 

case of selected data sets, in the process of dividing data 

particles, there is an iteration after which each subsequent 

divide does not determine a significant change in the 

effectiveness of the Hypergeometrical Divide algorithm. 

Another conclusion related to the above one which is the fact 

that using the highest available level of data particle divide 

depth is not necessary to achieve its almost maximum 

efficiency for the Hypergeometrical Divide classifier. This is 

important in the context of maximizing the effectiveness of the 

classifier while minimizing the data processing time. Moreover, 

the analysis of Fig. 4 and Fig. 7 allows us to conclude that 

mentioned level of data particle divide depth, from which there 

is no significant change in the effectiveness of the 

Hypergeometrical Divide method, is different for each data set. 

Therefore, there is no universal value for the depth level of data 

particle divide that is optimal in the considered criteria. 

Analyzing Fig. 2, Fig. 3 and Fig. 5 it can be concluded that not 

each iteration of data particle divide results in an increase of the 

classifier effectiveness. Moreover, there are datasets in which 

dividing the data particle even at the maximum available divide 

depth level does not improve the effectiveness of the 

Hypergeometrical Divide approach. 

Based on the analysis of the results, it can be concluded that the 

Hypergeometrical Divide algorithm obtained an average value 

of the Fmacro measure lower than the k Nearest Neighbors 

algorithm. However, the HypGD performed an average of 120 

compare operations in the classification process, while the kNN 

algorithm performed 5593 comparisons, which gives a 

difference of two orders of magnitude with an advantage for the 

Hypergeometrical Divide algorithm. 

Another conclusion arising from the analysis of the results is 

the Hypergeometrical Divide algorithm obtained an average 

value of the Fmacro measure lower than the Support Vector 

Machine and Decision Trees, which are the eager learning 

algorithms, applying an earlier prepared model in the 

classification process. 

In conclusion, the article fills the gap in knowledge regarding 

the properties of algorithm, which found application in Specific 

Emitter Identification based on the analysis of many pulses. The 

paper is the next step in research and development work on 

automating the parameterization of the Hypergeometrical 

Divide algorithm. 

The direction of further research in this area, which may 

positively affect the usability of the Hypergeometrical Divide 

algorithm, may be development of a method of automatic 

defining the data particle divide depth level. 

Another significant direction for further research may be a 

comparison of the Hypergeometrical Divide algorithm 

properties with artificial neural networks, especially deep 

learning methods. 
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