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Abstract. The application of the Internet of Things (IoT) is increasing exponentially, the dynamic data flow and distributive operation over
low-resource devices pose a huge threat to sensitive human data. This paper introduces an artificial immune system (AIS) based approach to
intrusion detection in IoT network ecosystems. The proposed approach implements dual-layered AIS; which is robust to zero-day attacks and
designed to adapt new types of attack classes in the form of antibodies. In this paper, a hybrid method has been presented which uses hybrid of
clonal selection using variational auto-encoders as innate immune layer and apaptive dentritic model for identifying intrusions over IoT specific
datasets. Moreover we present extensive empirical analysis over six IoT network benchmark datasets for semi-supervised multi-class classification
task and obtain superior performance compared to five state-of-the-art baselines. Finally, VC-ADIS achieves 99.83% accuracy over MQTT-set
dataset.
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1. INTRODUCTION
The Internet of Things (IoT) has experienced substantial growth
in recent years. With the increasing number of devices inte-
grated into daily life, there has been a rapid surge in the col-
lection, transmission, and sharing of data from these devices.
Ensuring the security of the IoT environment is a formidable
challenge [1]. The IoT network functions on the principle of
data exchange among compact devices, rendering it susceptible
to advanced and zero-day attacks. While many existing secu-
rity systems can handle common attacks, the unique nature of
the IoT network involves multifaceted data streams and intricate
devices optimized for energy efficiency.

1.1. Intrusion detection in IoT network ecosystem

An intrusion is characterized as any form of questionable activity
that disrupts the normal data flow, aimed at compromising the
network and illicitly acquiring data from the data stream [2].
Identifying intrusions in IoT environments involves various
methods, including graph-based anomaly detection methods
within the network, conventional machine-learning techniques
for classifying intrusion packets, and approaches based on ma-
trix manipulation, among others. IoT network environments ex-
hibit a multitude of vulnerabilities due to their complex layered
structure and the energy-efficient nature of the devices they in-
corporate.
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• Perception layer: This layer encompasses physical hardware
like sensors and transmitters.

• Network layer: Responsible for managing message and data
transmission throughout the network ecosystem.

• Application layer: The application layer plays a crucial role
in offering essential services to users and facilitating user-
IoT interactions within the environment.

Each layer contributes distinct functionalities to the IoT sys-
tem and is susceptible to exploitation for network attacks [3].
Nonetheless, the surge in data-centric techniques, including ma-
chine learning and deep learning, introduces novel strategies for
identifying intrusions within real-time network operations. AIS
draws inspiration from natural immune systems [4] to establish
resilient platforms capable of defending against advanced at-
tacks. This paper utilizes an artificial immune system based on
variational auto-encoders [5]. The objective is to leverage data
representation learning and construct an efficient and robust se-
curity framework for IoT networks. The paper is organized as
follows. Starts with introducing background works and a rel-
evant literature survey of the immune system approaches in
cyber-security, then our approach of variational clonal selection
has been proposed with the self-adaptive mechanism which em-
ploys a self-learning paradigm for the adaption of new attacks.
Finally, it compares with the standard data sets and other ML
algorithms.

2. PRELIMINARIES, BACKGROUND AND RELATED WORK

Artificial Immune System (AIS) [6]. Components and proper-
ties of AIS make it adaptable and efficiently secure data against
potential attacks. Here are descriptions of some key AIS algo-
rithms and their underlying mechanisms:
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2.0.1. Negative selection for anomaly detection

The negative selection (NS) algorithm [7] draws inspiration
from the acquired immunity mechanism of self-nonself dis-
crimination.

The NS algorithm’s primary goal is to establish a clear dis-
tinction between self and nonself entities. It achieves this by
generating detector objects, akin to T-cells, that interact with
and bind to nonself objects, thus enhancing system security.

2.0.2. Clonal selection algorithm

Built upon the principles of acquired immunity theory, the clonal
selection algorithm [8] focuses on creating receptors that pro-
gressively learn to respond to antigens over time. This process in-
volves a delicate balance between receptor mutation and cloning.
The algorithm effectively refines the receptor population, dis-
carding those that compromise the environment autoimmunity.

2.0.3. Artificial immune networks

Artificial immune networks (AIN) [6] are inspired by an anti-
body theory in immunology and borrowing concepts from the
clonal selection algorithm, this approach introduces antibodies
present in pairs. These antibody pairs sustain immune mem-
ory regarding cellular interactions, even without external anti-
gens. This enables the system to recognize potential threats and
maintain a proactive stance. Unlike the basic clonal selection
algorithm, AIN focus on the interactions between antibodies
themselves, not just between antibodies and antigens.

2.0.4. Danger theory algorithm

In biological terms, the danger theory suggests that the im-
mune response is triggered not solely by the presence of foreign
entities (nonself) but by the danger or damage they cause to
the host organism. This theory was proposed to explain certain
immune responses that do not neatly fit into the self/nonself

paradigm. This allows the system to become more or less sensi-
tive to threats over time [9]. These AIS algorithms encapsulate
sophisticated immunological concepts within computationally
efficient frameworks, aiming to enhance data security within
the context of IoT networks. Through abstracting and adapting
natural immune mechanisms [10].

3. PROPOSED SELF-ADAPTIVE ARTIFICIAL IMMUNE
SYSTEM

This paper introduces a novel approach that revolves around pri-
oritizing data-centric strategies for constructing a self-adaptive
AIS. Figure 1 offers an overview of the data pathway involved
in securing the IoT landscape and surveilling potential attacks.

The proposed artificial immune system operates through two
distinct layers of immunity: the innate layer and the adaptive
immune layer. The underlying process of fortifying the IoT net-
work ecosystem with this artificial immune system unfolds as
follows:

3.0.1. Data capture and preprocessing

The regular data flow is captured utilizing a tap connection
between network nodes, and this data can be stored as a pcap
file using wireshark [9]. This initial pcap file is then directed
through a content feature extractor. The aim here is to derive a
mapping of feature values that encapsulate the essence of the
characteristics of Data. The left section of the figure delineates
an IoT network cloud comprising multiple devices (D1–D5) and
an identified attacker node, indicating the presence of potential
security threats within the network topology. The data flow is
captured in real-time, where it is subject to scrutiny by a packet
capture (PCAP) tap. This component’s role in the architecture
is critical as it enables the acquisition of network traffic data,
which is essential for the subsequent analysis and identification
of potential security breaches.

Fig. 1. A schematic diagram of our proposed architecture, VC-ADIS
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3.0.2. Innate layer processing

The processed data, now carrying the feature-value mapping, is
subsequently channeled through the innate layer module of the
AIS. This layer mimics the innate immunity found in natural sys-
tems [?], seeking to promptly recognize and respond to general
patterns of intrusion or abnormal behavior. An integral part of
the framework that categorizes network packets into ‘Normal’
and ‘Antigen’ packets. After classification, the network feature
extractor component extracts relevant features from the traffic
data. The preprocessing network data component suggests a re-
finement process to prepare the input for the intrusion detection
system (IDS).

3.0.3. Adaptive layer processing

Following the innate layer, the processed data progresses into
the adaptive immune layer module. Comparable to the adaptive
immunity in natural systems [10], this layer evolves to discern
and counter more specific threats, adjusting its responses as new
challenges arise. The self adaptive IPS (intrusion prevention sys-
tem), processes the ‘Antigen data’ through what is labeled as the
‘Primary layer of adaptive security.’ This nomenclature suggests
that the system is capable of evolving its defensive mechanisms
based on historical antigen data, indicative of a learning system
that fine-tunes its responses to continually emerging threats.
The monitoring component is likely to provide essential feed-
back on the system performance, including the efficacy of threat
detection and the robustness of the adaptive responses [6].

3.1. Variational clonal selection as innate immune system

We introduce a novel approach for generating clones of anti-
gen features using a combination of variational autoencoders
(VAEs) and regression of latent embeddings [11]. This process
involves encoding the essential characteristics of antigens into a
latent space using a VAE, followed by regression to produce ac-
curate clones that capture the underlying patterns and variations.
Figure 2 illustrates an innovative computational framework for
generation of antigen clones using a hybrid method that com-

bines the principles of variational autoencoding and regression
analysis. This framework is posited as an integral component
of an artificial innate immune system, designed to enhance the
recognition and response capabilities in digital security, health
informatics, or other fields necessitating sophisticated pattern
recognition and replication of complex features. Here we de-
scribe the components of the variational clonal selection mech-
anism as follows:

3.1.1. Encoding and latent space representation

The process commences with the preparation of a dataset com-
prised of antigen features that encapsulate essential attributes
pertinent to the domain of application. An encoder neural net-
work is then employed to ingest these features and map them into
a compressed, lower-dimensional latent space. This transforma-
tion is a probabilistic distribution, characterized by mean (𝜇) and
variance (𝜎) parameters. This distribution represents the inher-
ent uncertainty and variability in the data, that allows for the
subsequent generation of a diverse array of antigen clones. La-
tent space distribution: In a VAE, the encoder network produces
a distribution (mean and variance) that describes the uncertainty
of the encoding.

3.1.2. Decoding and clone generation

The decoder component of the VAE is tasked with the recon-
struction of antigen features from the latent representations. To
generate clones, the latent space is sampled, drawing vectors that
represent the ‘genetic code’ of potential antigen variants. The
decoder network then interprets these vectors, translating the
encoded information back into a tangible feature set that closely
resembles the original antigen, thereby producing viable clones.

3.1.3. Regression-enhanced clonal precision

To refine the cloning process, a regression model is introduced.
This model is trained to predict latent space encodings of anti-
gens based on a chosen reference antigen encoding. When pre-
sented with a new antigen encoding, the regression model out-

Fig. 2. Variational clonal selection in VC-AIS architecture

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 1, p. e152211, 2025 3



V. Soni, D.P. Bhatt, and N.S. Yadav

puts a predicted latent encoding, which acts as the blueprint
for the clone features. These clones are not mere replicas but
are nuanced variations of the reference antigen, capturing the
underlying patterns and intricacies of the original features. The
process for clonal preparation is employed as follows:
• Target selection: We choose a reference antigen from the

dataset for clone.
• Feature regression: We train a regression model (a neural

network) that takes the reference antigen’s latent space en-
coding as input and aims to predict the latent space encoding
of other antigens.

• Cloning procedure: Given a new antigen latent space en-
coding, we use the trained regression model to predict its
corresponding latent space encoding based on the reference
antigen encoding. This predicted encoding serves as the ‘ge-
netic code’ for the clone.

• Decode clones: Finally, decode the predicted latent space
encoding through the decoder network to generate clones
of the original antigen with characteristics similar to the
reference antigen.

Algorithm 1 presents the pseudo-code for the variational clonal
section.

Algorithm 1. Training method for variational clonal selection

Input Process feature representations 𝑋 = 𝑥1, 𝑥2, ...., 𝑥𝑛

Training class labels 𝐶 = 𝑐1, 𝑐2, ...., 𝑐𝑛

Output Learned representations i.e. Antigen clones at time t
for i = 1 to num_epochs do

Step 1: Compute likelihood distribution of x assoc. with latent z
𝑝(𝑥) =

∫
𝑧
𝑝(𝑥, 𝑧, 𝑐), where 𝑝(𝑥, 𝑧, 𝑐) = 𝑝(𝑥 |𝑧)𝑝(𝑧 |𝑐)𝑝(𝑐)

Step 2: Compute regressor variables i using auxiliary function
𝑞 : 𝑞(𝑧𝑖 , 𝑐𝑖 |𝑥𝑖)

Step 3: Compute pseudo variation for two time steps
log 𝑝(𝑥) = DKL (𝑞(𝑧𝑖 , 𝑐𝑖 |𝑥𝑖) | |𝑝(𝑧𝑖 , 𝑐𝑖 |𝑥𝑖))

Step 4: Approximate latent representations for time step 𝑡 + 1
𝑞(𝑧 |𝑥) ∼ 𝑁 (𝑧; 𝑓 (𝑥;𝜙), 𝑔(𝑥;𝜙)) where 𝜙 are network parameters

Step 5: Compute Loss
𝐿(𝑥) = −E𝑧∼𝑞 (𝑧 |𝑥 ) [𝑙𝑜𝑔𝑝(𝑥)] +DKL (𝑞(𝑧𝑖 |𝑥𝑖) | |𝑝(𝑧𝑖))

Step 6: Back-propagate weights
end for

3.2. Adaptive dendritic module (ADM) for network anomaly
adaptation and classification

We propose a self-adaptive dendritic module for learning repre-
sentations of antigens and the population cultivated by the vari-
ational clonal selection module. Figure 3 portrays an advanced
self-adaptive dendritic cell (DC) [12] mechanism designed for
the dynamic analysis and classification of network traffic, a core
component of a cyber security framework. In the depicted mod-
ule, the process initiates with the collection of standard network
traffic data, represented here as ‘Normal pcap’. This data en-
capsulates regular traffic patterns and serves as a baseline for
comparison against potential threats. Simultaneously, the mod-
ule receives an input stream of ‘Antigen’ data, which is a set of
features identified by the variational clonal selection module as
potential indicators of anomalies or security threats within the
network. These antigen features, designated as X1, X2, and X3,
are then integrated with the ‘Normal pcap’ to update the DC
population, effectively merging the baseline of network behav-
ior with the newly identified antigen characteristics. This neural
network is tasked with classifying the combined features using
cross-entropy loss [?]. The outcome of this process is evaluated
against a predefined threshold, which determines whether the
traffic patterns are deemed normal or suspicious. If the classifi-
cation score, termed ‘Population migration score’, exceeds the
threshold, the traffic data is considered anomalous and is for-
warded to the central management facility (CMF). This implies
that the system has identified a significant deviation from the
normal traffic pattern, warranting further investigation or imme-
diate action. Conversely, if the score falls below the threshold,
the data is used to augment the ‘Antigen repository’. This repos-
itory serves as a knowledge base, contributing to the ongoing
learning and adaptation of the system by updating the DC pop-
ulation with new antigen profiles. This iterative process allows
the system to continuously refine its understanding of network
behavior, adapting to new and evolving threats in real time.
The elegance of this self-adaptive mechanism lies in its capac-
ity to learn from the network environment actively and adap-
tively. This dendritic cell algorithm represents a significant step
towards creating autonomous, intelligent systems are capable
of safeguarding digital infrastructure against an ever-changing
landscape of cyber vulnerabilities. Algorithm 2 presents the
pseudocode for the ADM mechanism.

Fig. 3. Architecture for the training process of ADM
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Algorithm 2. Self-adaptive dendritic cell algorithm
Input True legitimate pcap feature 𝑃 = 𝑝1, 𝑝2, ...., 𝑝𝑛

Updated DC representations 𝑋 = 𝑥1, 𝑥2, ...., 𝑥𝑛

True class labels 𝐶 = 𝑐1, 𝑐2, ...., 𝑐𝑛

Threshold 𝑒 Output pcap label classification score

for i = 1 to num_epochs do
Step 1: Concatenate input pcap with DC population

𝑥 = 𝑝1, 𝑝2, ...., 𝑝𝑛 ∪ 𝑥1, 𝑥2, ...., 𝑥𝑛

Step 2: Compute classification score using FC layer assign 𝑥

Step 3: Compute pseudo variation for two time steps
log 𝑝(𝑥) = DKL (𝑞(𝑧𝑖 , 𝑐𝑖 |𝑥𝑖) | |𝑝(𝑧𝑖 , 𝑐𝑖 |𝑥𝑖))

Step 4: Approximate latent representations for time step 𝑡 + 1
𝑞(𝑧 |𝑥) ∼ 𝑁 (𝑧; 𝑓 (𝑥;𝜙), 𝑔(𝑥;𝜙)) where 𝜙 are network parameters

Step 5: Compute loss
𝐿 (𝑥) = −E𝑧∼𝑞 (𝑧 |𝑥 ) [𝑙𝑜𝑔𝑝(𝑥)] +DKL (𝑞(𝑧𝑖 |𝑥𝑖) | |𝑝(𝑧𝑖))

Step 6: Backpropagate weights
end for

4. EXPERIMENTS

This section presents benchmark datasets, baseline methods,
comparative analyses and ablation studies of our model. Fig-
ure 4 introduces a sophisticated self-adaptive dendritic cell (DC)
algorithm that underpins an artificial immune system (AIS) for
network security. Variable clonal selection modules improve

the detection and response to network ‘antigens’ – like foreign
pathogens – that present security risks. The operational flow
within the self-adaptive DC mechanism commences with the
acquisition of pcap (packet capture) data serves as a baseline
for identifying deviations indicative of security threats. Concur-
rently, the variational clonal selection module processes data to
identify unique or aberrant features-referred to as ‘antigens’ –
that signify potential intrusions or anomalies in the network.
These antigens, encoded as features X1, X2, and X3, are amal-
gamated with the normal pcap data to update the DC population,
mirroring the biological process whereby dendritic cells capture
and process antigens. Once integrated, the data traverses a fully
connected neural network, emulating the dendritic structures
in the immune system, where it undergoes classification. This
classification employs a cross-entropy loss function to evalu-
ate the probability of the data belonging to a class of normal
or anomalous traffic. The outcome, manifested as a ‘Population
migration score’, is compared against a predetermined threshold
to ascertain the nature of the traffic. If the score is below the
threshold, it indicates normality, and the data is relegated to the
antigen repository. This repository acts as a cumulative knowl-
edge base that informs the ongoing re-calibration of the DC
population, fostering the AIS capability to evolve its recognition
and response patterns dynamically. By iterating this process,
the system becomes increasingly sophisticated in recognizing
and responding to complex and evolving cybersecurity threats,
thereby enhancing the resilience and integrity of the network it
protects.
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Fig. 4. Block diagram of the proposed VC-AIS algorithm
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4.0.1. Experimental setup

In our experimentals, resampling approaches were used to
reduce class imbalance in MQTT-IoT-IDS, KDD-CUP-99,
MQTTset, and UFPI-NCA datasets. Various techniques, such as
SMOTE, were used to generate synthetic samples of underrep-
resented classes and random undersampling of majority classes.
We utilized ensemble approaches like balanced random forests
and adaptive boosting to improve minority class learning by al-
tering misclassified instance weights. To reduce overfitting and
improve model generalization, we used multiple methods. Reg-
ularization methods, such as L1 and L2 penalties, were used to
limit model complexity. K-fold cross-validation protected per-
formance across data subsets. We implemented early halting
methods and dropout layers for neural network models depend-
ing on validation set performance. Overfitting was reduced by
applying pruning strategies in decision tree-based models.

4.0.2. Benchmark datasets

We evaluate the proposed approach extensively on six publicly
available datasets for intrusion detection. Here we provide a
brief description of the datasets used for experiments:
• MQTT-IoT-IDS2020;
• KDD-CUP- 99 dataset;
• MQTTset dataset;
• UFPI-NCAD-IoT-Attacks;
• The BoT-IoT dataset;
• UNSW-NB15 dataset.

4.0.3. Baseline methods

We compare VC-ADIS with standard baselines designed
for semi-supervised multi-class classification tasks in ma-
chine learning-based approaches. (i) Deep neural networks
(DeepNNs) [9]: DNNs employ interconnected layers of neu-
rons with weighted connections and activation functions. Back-
propagation modifies these weights during training to reduce a
loss function [9]. (ii) Random forest [13]: A reliable and adapt-
able machine learning ensemble technique is random forests.
During training, they build several decision trees [14]. The end
outcome is often an average or majority vote of the predictions
from individual trees (regression or classification, respectively),
with each individual tree then jointly contributing to creating
predictions. (iii) Naive Bayes [15]: Naive Bayes is a straightfor-
ward probabilistic algorithm that is used for classification and
text analysis.It computes the likelihood of a data point belong-
ing to a specific class based on the conditional probabilities of
each feature within that class. (iv) Decision tree [14]: It is a
tree-like model used in machine learning for classification and
regression. Decision trees are frequently used due to their sim-
plicity and capacity to handle both categorical and numerical
data, but if not rigorously pruned or limited, they can be prone
to over-fitting. (v) TabNet [16]: TabNet is a deep learning model
designed specifically for tabular data, which uses sequential at-
tention to choose which features to reason from at each decision
step. This leads to improved interpretability and efficiency in
handling high-dimensional data. (vi) CNN-BiLSTM [17]: This
model combines convolutional neural networks (CNNs) with

bidirectional long short-term memory (BiLSTM) networks. The
CNN layers are used for feature extraction from the input data,
while the BiLSTM layers capture temporal dependencies, mak-
ing this architecture suitable for tasks requiring both spatial
and sequential data analysis. (vii) LSTM [17]: Long short-term
memory (LSTM) networks are a type of recurrent neural net-
work (RNN) capable of learning long-term dependencies. They
are well-suited for sequence prediction problems because they
can maintain information over long periods, making them useful
for tasks where context and order are important.

4.1. Performance comparison

We evaluate the model performance based on mean accuracy,
macro F1-score, and micro F1-score. We report the average
performance of the model over ten runs, along with the standard
deviation as shown in Tables 1 and 2.

Table 1
Performance comparison on the Bot-IoT and UNSW-NB15

Dataset The BoT-IoT UNSW-NB15
Models Mean Acc Macro F1 Mean Acc Macro F1

VC-ADIS 0.8906 0.8648 0.7512 0.6844
TabNet 0.8900 0.8492 0.7489 0.6755
CNN-BiLSTM 0.8636 0.8333 0.7211 0.5801
LSTM 0.8215 0.7824 0.6804 0.4315
Deep NNs 0.8824 0.8603 0.7254 0.5726
Random forest 0.8797 0.8537 0.7248 0.5869
Naive Bayes 0.6532 0.6109 0.6528 0.5411
Decision tree 0.8466 0.8134 0.7168 0.5731

Table 2
Performance comparison on the MQTT-IoT-IDS and UNSW dataset

Dataset MQTT-IoT-IDS UNSW-NB15
Models Precision Recall Precision Recall

VC-ADIS 0.8915 0.8802 0.6733 0.6904
TabNet 0.8701 0.8505 0.5347 0.5935
CNN-BiLSTM 0.8799 0.8433 0.6508 0.5504
LSTM 0.8305 0.7836 0.6001 0.5284
Deep NNs 0.8824 0.8603 0.7254 0.5726
Random forest 0.8402 0.8655 0.5602 0.5829
Naive Bayes 0.5933 0.6237 0.5828 0.5108
Decision trees 0.7824 0.8305 0.5534 0.6025

4.1.1. Comparative analysis

Ttable 3 presents a comparative analysis of the variational
clonal-artificial dendritic immune system (VC-ADIS) against
several established machine learning models in IoT intrusion
detection domain. The datasets employed for this study are
MQTT-IoT-IDS, KDD-CUP-99, MQTTset, and UFPI-NCAD,
each representing a standard benchmark in the intrusion detec-
tion landscape.
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Table 3
Performance comparison on the benchmark IoT intrusion detection datasets

Dataset MQTT-IoT-IDS KDD-CUP-99 MQTTset UFPI-NCAD
Models Mean Acc Macro F1 Mean Acc Macro F1 Mean Acc Macro F1 Mean Acc Macro F1

VC-ADIS 0.9211 0.9206 0.8764 0.8498 0.9983 0.9971 0.9592 0.9564
TabNet 0.9125 0.8966 0.8502 0.8375 0.9901 0.9925 0.9501 0.9463
CNN-BiLSTM 0.8801 0.7826 0.7911 0.8545 0.9628 0.9105 0.9274 0.9055
LSTM 0.8647 0.7405 0.7636 0.8205 0.9527 0.9148 0.8653 0.8155
Deep NNs 0.9184 0.917 0.8702 0.8311 0.9935 0.9943 0.9244 0.9188
Random forest 0.8801 0.8732 0.8535 0.8472 0.9724 0.9967 0.9036 0.8961
Naive Bayes 0.9027 0.8946 0.8672 0.8568 0.9883 0.9910 0.9182 0.9134
Decision tree 0.8632 0.8591 0.8592 0.8154 0.9689 0.9862 0.8942 0.8826

Table 4
Performance comparison on the benchmark IoT intrusion detection datasets over Precision and Recall values

Dataset The Bot-IoT KDD-CUP-99 MQTTset UFPI-NCAD
Models Precision Recall Precision Recall Precision Recall Precision Recall

VC-ADIS 0.84 0.87 0.82 0.85 0.95 0.99 0.93 0.96
TabNet 0.83 0.78 0.80 0.74 0.94 0.96 0.91 0.83
CNN-BiLSTM 0.75 0.61 0.78 0.53 0.91 0.83 0.72 0.65
LSTM 0.80 0.43 0.65 0.48 0.82 0.71 0.64 0.57
Deep NNs 0.82 0.85 0.79 0.85 0.97 0.95 0.89 0.92
Random forest 0.81 0.82 0.84 0.86 0.92 0.93 0.88 0.90
Naive Bayes 0.58 0.63 0.83 0.85 0.95 0.96 0.92 0.87
Decision tree 0.80 0.78 0.77 0.80 0.88 0.92 0.86 0.89

VC-ADIS demonstrates superior performance across both
metrics on the MQTT-IoT-IDS dataset, with a mean accuracy of
92.11% and a macro F1-score of 92.06%, closely followed by
deep neural networks (NNs) which showcase a slight decrement
in performance. On the KDD-CUP-99 dataset, the performance
of VC-AIS is competitive, achieving a mean accuracy of 87.64%
and a macro F1-score of 84.98%, once again outperforming
the alternative models. Notably, the margin of performance im-
provement with VC-ADIS is more pronounced on the MQTTset
and UFPI-NCAD datasets, with mean accuracies of 99.83% and
95.92% and macro F1-scores of 99.71% and 95.64%, respec-
tively as shown in Tables 3 and 4. These results underscore the
robustness of VC-AIS in identifying and classifying network
intrusions with high precision. The variational clonal approach
allows VC-ADIS to adaptively learn and recognize diverse pat-
terns of network traffic, which are crucial in the context of IoT
security where the network behavior is highly dynamic and the
threat landscape is continually evolving. The inclusion of den-
dritic mechanisms enables the VC-ADIS to efficiently process
and integrate complex data representations, enhancing its detec-
tion capabilities.

When contrasted with traditional machine learning models
such as random forests, naive Bayes, and decision trees, VC-
AIS not only achieves higher accuracy and F1-scores but also
demonstrates an advanced ability to generalize across different
types of network environments and attack vectors. Deep NNs,

while performing comparably well, lack the biological inspi-
ration that provides VC-AIS with its self-adaptive properties,
essential for the rapidly changing domain of cyber-security.

Moreover from Table 1 it is evident that VC-ADIS outper-
forms the other models across both datasets. Specifically, on the
Bot-IoT dataset, VC-AIS achieves a mean accuracy of 89.06%
and a macro F1-score of 86.48%. This is a notable improvement
over traditional machine learning models such as deep neu-
ral networks (NNs), random forests, naive Bayes, and decision
trees. The performance margin is particularly significant when
compared to the decision tree model, which shows the lowest
mean accuracy and macro F1-score of 84.66% and 81.34% re-
spectively as shown in Fig. 5. Similarly, on the UNSW-NB15
dataset, VC-AIS again tops the chart with a mean accuracy of
75.12% and a macro F1-score of 68.44%, whereas the other
models exhibit substantially lower performance metrics.

The superior performance of VC-ADIS can be attributed to its
advanced design, which incorporates concepts from the biolog-
ical immune system, particularly the functionalities of dendritic
cells. These cells are critical to the immune response, and adept
at identifying and presenting antigens. In the VC-AIS model,
this biological analogy is used to create a system that can effec-
tively learn and recognize the complex patterns associated with
network intrusions. The variational aspect of the model allows
for the handling of uncertainties inherent in network traffic, pro-
viding a robust means to adapt to the dynamic nature of cyber
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(a) (b)

(c) (d)

Fig. 5. Performance comparison of evaluation metrics and moving average of accuracy over
(a) KDD-CUP-99; (b) MQTT-IoT-IDS-2020; (c) MQTTset; (d) UFPI-NCAD-IoT attacks

threats, which is crucial in the rapidly evolving landscape of IoT
security.

The comparative results underscore the effectiveness of VC-
ADIS in accurately detecting a wide range of intrusions. Its
biologically inspired components confer a strategic advantage
over more traditional models, enabling it to dynamically adapt
and maintain high performance even in the face of sophisticated
and novel attack strategies. This study highlights the potential of
leveraging biological mechanisms within artificial intelligence
frameworks to enhance cybersecurity measures in complex net-
work environments. VC-ADIS emerges as a potent solution,
demonstrating that the integration of variational and clonal prin-
ciples with dendritic cell-inspired algorithms can significantly
advance intrusion detection system capabilities.

The study emphasizes the efficacy of VC-AIS in accurately
detecting diverse intrusions. Its biologically inspired elements
provide a strategic edge, enabling dynamic adaptation and sus-
tained high performance against sophisticated attacks. By lever-
aging biological mechanisms in AI frameworks, this research
underscores the potential for enhancing cyber security in com-
plex networks. VC-ADIS stands out as a powerful solution,
showcasing how integrating variational and clonal principles
with dendritic cell-inspired algorithms can significantly boost
intrusion detection system capabilities.

4.1.2. Comparative analysis over recent baselines

The VC-ADIS model demonstrated superior performance across
all datasets, consistently achieving mean accuracy and macro
F1-scores exceeding 0.90. Notably, for the MQTT-IoT-IDS
dataset, VC-ADIS attained a mean accuracy of 0.9211 and

a macro F1-score of 0.9206, underscoring its robustness and
generalization capabilities. In contrast, traditional algorithms
such as decision trees and naive Bayes exhibited compara-
tively lower performance metrics. The observed performance
variability among different models highlighted the challenges
posed by imbalanced datasets in the domain of network intru-
sion detection. Models like TabNet and CNN-BiLSTM demon-
strated moderate performance, with mean accuracy and macro
F1-scores typically ranging from 0.80 to 0.90. However, their
precision and recall metrics showed significant variability across
datasets, suggesting potential overfitting issues. For instance, the
CNN-BiLSTM model achieved a precision of 0.91 and recall of
0.83 on the MQTTset dataset, but its performance declined on
the KDD-CUP-99 dataset, with precision and recall values of
0.78 and 0.53, respectively as shown in Table 4. These discrep-
ancies emphasize the critical need for robust data processing
techniques and judicious feature selection to mitigate overfit-
ting and enhance model generalization across diverse network
intrusion datasets.

4.1.3. Ablation study

Table 5 shows that the ablation study quantifies the contribution
of feature processing, innate immunity, and adaptive immu-
nity components by comparing the performance of the com-
plete system against versions with each of these elements re-
moved (Fig. 6). The datasets used for this evaluation include
MQTT-IoT-TDS2020, KDD-CUP-99, MQTTset, UFPI-NCAD-
IoT-Attacks, the Bot-IoT, and UNSW-NB15, which are bench-
mark datasets in the domain of network security, particularly
focusing on intrusion detection in IoT environments.
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Table 5
Ablation study to measure the impact of three blocks of – feature processing, innate immunity, and adaptive immunity

Datasets Performance w/o feature processing w/o innate immunity w/o adaptive immunity

MQTT-IoT-IDS2020 92.11 89.62 90.54 91.84
KDD-CUP-99 dataset 87.64 83.45 82.12 87.02
MQTTset dataset 99.83 91.22 95.78 99.35
UFPI-NCAD-IoT-Attacks 95.92 90.84 91.64 92.44
The Bot-IoT 89.06 82.57 84.91 82.44
UNSW-NB15 75.12 70.64 71.45 72.54

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Ablation study accuracy over (a) KDD-CUP-99; (b) MQTT-IoT-IDS-2020; (c) MQTTset;
(d) UFPI-NCAD-IoT attacks; (e) UNSW-NB15; (f) The Bot-IoT

The ‘Performance’ column indicates the effectiveness of the
full VC-ADIS module, with all features and mechanisms oper-
ational. The subsequent columns show the system performance
without feature processing, without innate and adaptive immu-
nity, respectively. A noticeable decline in performance across

all datasets when these modules are disabled demonstrates their
individual and collective importance to the system overall ef-
fectiveness.

For instance, the MQTT-IoT-TDS2020 dataset shows a
marked decrease in performance from 92.11% with the full
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system to 89.62% when feature processing is omitted, suggest-
ing that pre-processing of input data plays a significant role in
preparing the data for effective pattern recognition and anomaly
detection. The further reduction to 90.54% without innate im-
munity indicates that the system ability to rapidly identify and
respond to known threats based on predefined rules is crucial.
The performance drop to 91.84% without adaptive immunity
underscores the importance of the system ability to learn and
adapt over time to evolving threats.

Similarly, on the KDD-CUP-99 dataset, there is a significant
performance decline from the full system’s 87.64% to 83.45%
without feature processing, illustrating that raw data may contain
noise or irrelevant information that, unless processed, can hinder
the system detection capabilities. The innate immunity’s impact
is also notable, with performance falling to 82.12%, which could
indicate the importance of having predefined rules or patterns for
quick identification of common threats. The adaptive immunity
contribution is confirmed by a decrease to 87.02%, suggesting
that learning from past experiences and adapting to new types of
attacks is essential for maintaining high performance in anomaly
detection.

The variations in performance across different datasets also
provide insights into the nature of each dataset and the types of
attacks or anomalies present within them. For datasets where
the decline is less pronounced when a module is removed, it
may suggest that the specific threats present in that dataset are
less reliant on the capabilities provided by the removed module.

In conclusion, the ablation study within this table illustrates
the vital roles that feature processing, innate immunity, and
adaptive immunity play in the VC-AIS module operation. Each
component contributes to the system robustness and accuracy,
ensuring comprehensive threat detection and enhancing the VC-
ADIS module reliability as a security mechanism in IoT net-
works.

5. CONCLUSIONS AND FUTURE DIRECTIONS

VC-ADIS’s variational clonal selection method may adapt to
different network traffic patterns. Dendritic processes help the
VC-ADIS interpret and integrate complicated data representa-
tions, improving detection and make it adaptive for the new types
of attacks. In comparison with random forests, naive Bayes, and
decision trees, VC-ADIS has greater accuracy, F1-scores, and
generalization across network settings and attack vectors. Deep
NNs operate similarly but lack in VC-ADIS’s self-adaptive fea-
tures, important for security in a dynamic IoT environment.

Experimental results show VC-ADIS demonstrates superior
performance compared to the other models in different bench-
mark datasets dataset such as KDD-CUP- 99 dataset, MQTT-
IoT-IDS2020, MQTTset dataset, UFPI-NCAD-IoT-Attacks and
UNFW-NB-15 mainly for MQTT-IOT-IDS 2020 and the Bot-
IoT dataset, VC-ADIS gets a mean accuracy of 89.06% and a
macro F1-score of 86.48%.

We are also trying to develop a more efficient nondatabased
innate immunity mechanism so that intrusion into the normal
data flow can be flagged in O(1) time and monitored in real

time by a moderator. Our research aims to improve the archi-
tecture of IoT devices to provide a low-cost security module
based on cached memory mechanisms [18], reducing the time
between AIS layers and ensuring data security without human
intervention.
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