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Abstract. This paper presents a preliminary study delving into the application of machine learning-based methods for optimizing parameter
selection in filtering techniques. The authors focus on exploring the efficacy of two prominent filtering methods: smoothing and cascade filters,
known for their profound impact on enhancing the quality of brain signals. The study specifically examines signals acquired through functional
near-infrared spectroscopy (fNIRS), a noninvasive neuroimaging modality offering valuable insights into brain activity. Through meticulous
analysis, the research underscores the potential of machine learning approaches in discerning optimal parameters for filtering, thereby leading
to a significant enhancement in the quality and reliability of fNIRS-derived signals. The results demonstrate the effectiveness of machine
learning-based methods in optimizing parameter selection for filtering techniques, particularly in the context of fNIRS signals. By leveraging
these approaches, the study achieves notable improvements in the quality and reliability of brain signal data. This work sheds light on promising
avenues for refining neuroimaging methodologies and advancing the field of signal processing in neuroscience. The successful application of
machine learning-based techniques highlights their potential for optimizing neuroimaging data processing, ultimately contributing to a deeper
understanding of brain function.

Keywords: functional near-infrared spectroscopy; biomedical signal processing; machine learning; filtering, brain signals; smoothing filtering;
cascade filtering.

1. INTRODUCTION

Brain signals are both electrical and chemical activity occurring
within the brain, facilitating communication and coordination
across various functions. Integral to brain function and informa-
tion transmission within the nervous system, these signals are
indispensable for proper neural processing [1–5].

Brain signals exhibit distinct characteristics owing to the
diverse types of brain waves corresponding to different fre-
quency ranges [1, 5]. Furthermore, the quality of signal acqui-
sition equipment varies significantly; for instance, there exists
a notable discrepancy between clinical electroencephalography
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(EEG) apparatus and EEG signal acquisition devices. Beyond
equipment quality, two fundamentally different measuring tech-
niques are employed. EEG focuses on capturing electrophys-
iological brain activation, detecting the electromagnetic field
generated by firing neurons, whereas fNIRS utilizes hemody-
namic response, tracking changes in blood oxygenation as brain
regions become active. Given the differing sensitivities of EEG
and fNIRS to various disturbances, which can evolve over time, it
becomes apparent that devising alternatives to the conventional
single-filter approach for signal filtering is imperative [6–11].

Grasping their fundamental mechanisms is crucial for pro-
gressing our comprehension of brain function, cognitive pro-
cesses, and neurological disorders [1, 12, 13]. A range of tech-
niques and methodologies are employed to explore and decipher
brain signals, enriching our insight into how the brain processes
information and underpins our thoughts, behaviors, and experi-
ences [1, 4, 14, 15].
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In this paper authors decided to apply machine learning-based
filtering system in order to analyze functional near-infrared spec-
troscopy signals.

1.1. Applied brain signals

Brain signals are classified based on their recording method and
the invasiveness of their collection (see: Fig. 1) [1,2,15,16]. The
authors focused on fNIRS signals only [1]. The fNIRSn signals
yield multiple parameters, as noted in [10,17,18]. Among these
parameters, HbR and HbT indicate changes in the concentra-
tion of deoxygenated hemoglobin and total hemoglobin, respec-
tively. In fNIRS, these measurements assess alterations in tissue
hemoglobin concentration [17, 19].

Fig. 1. Invasiveness of various brain signals [1, 15]

The HbR parameter indicates changes in deoxygenated
hemoglobin concentration in tissue. When brain activity rises in
a specific area, oxygen demand increases, causing a decrease in
oxygenated hemoglobin (HbO) and an increase in deoxygenated
hemoglobin (HbR) [17,20–22]. Thus, HbR serves as an indica-
tor of cerebral blood flow changes linked to neural activity [21].
On the other hand, HbT reflects the total hemoglobin con-
centration, encompassing both oxygenated and deoxygenated
forms [22–24]. It offers a measure of total blood volume in the
tissue [23, 24]. Changes in HbT may stem from diverse factors,
including alterations in cerebral blood flow, blood volume, and
oxygenation [22–26].

By concurrently measuring both HbR and HbO, changes in
HbT can be computed using the following formula (1) [23, 24]:

𝐻𝑏𝑇 = 𝐻𝑏𝑂 +𝐻𝑏𝑅. (1)

The fNIRS gauges alterations in oxygenated and deoxy-
genated hemoglobin levels within the brain, offering an indirect
indicator of brain activity. Utilizing near-infrared light, it eval-
uates fluctuations in blood oxygenation in the cerebral cortex.
Importantly, fNIRS is a noninvasive technique [1,3,4,15,27,28].

Each form of brain signal offers distinct insights into various
aspects of brain function, and they can frequently be applied
together to provide more information [1, 4, 10].

2. MATERIALS AND METHODS

In order to acquire the brain signals, which are prone to various
disturbances and artifacts [1, 29, 30], more legible appropriate
filtering is necessary [30–32].

2.1. Measurement methods, configuration and study
participants

The signals were obtained using the Cortivision fNIRS PHO-
TON+ cap [33] containing 12 channels, which consists of 12
light-sources and 10 detectors as illustrated with Fig. 2.

Fig. 2. Channel location (left) and the Cortivision cap (right)

The channels were located as follows: Ch1: 𝐹4− 𝐹𝐹𝐶4ℎ,
Ch2: 𝐹𝐶4−𝐹𝐹𝐶4ℎ, Ch3:𝐶4−𝐹𝐶𝐶4ℎ, Ch4:𝐶𝑃4−𝐶𝐶𝑃4ℎ,
Ch5: 𝑃4−𝐶𝐶𝑃4ℎ, Ch6: 𝐹𝐶𝑧 −𝐶𝑧 , Ch7:𝐶𝑃𝑧 −𝑃𝑧 , Ch8: 𝐹3−
𝐹𝐹𝐶3ℎ, Ch9:𝐹𝐶3−𝐹𝐹𝐶3ℎ, Ch10:𝐶3−𝐹𝐹𝐶3ℎ, Ch11:𝐶3−
𝐹𝐶𝐶3ℎ, Ch12: 𝐶𝑃3−𝐶𝐶𝑃3ℎ, Ch13: 𝑃3−𝐶𝐶𝑃3ℎ.

This study analyzed data from a cohort of 30 healthy in-
dividuals. The research adhered to the principles outlined in
the Declaration of Helsinki and obtained approval from the
Bioethics Committee of the Nicolaus Copernicus University in
Torun—Collegium Medicum in Bydgoszcz, Poland (protocol
code no. KB 416/2008, dated September 17, 2008, valid un-
til December 31, 2027). The database containing the signals is
called “‘Neuroimaging EEG and fNIRS Dataset (NERD)” and
is openly available online [34].

The participant viewed a variety of images (see: Fig. 3), in-
cluding positive, negative, and neutral as depicted with Fig. 4,
while their brain activity was recorded.

Fig. 3. Application for eye stimulation
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Fig. 4. Sample of displayed images: negative (left) and positive (right)

For the stimuli purposes the Open Affective Standardized
Image Set (OASIS), an online stimulus set featuring 900 color
images was applied [35]. The data can be found in [36] online
repository.

2.2. Applied filtering

The theory of smoothing filters, particularly in the context of
EEG data, has been recently reviewed in [15, 28, 29, 37].

When the disturbances are expected to have a specific dis-
tribution, then smoothing filtering may be the best approach
[15, 28, 38, 39]. For this study purposes the authors applied
moving average, Savitzky-Golay and Kalman filters, as illus-
trated with Fig. 5 [40, 41].

Fig. 5. ML–based filtering scheme

The selection of a smoothing filter relies on the specific ap-
plication, noise characteristics, and the desired balance between
noise reduction and signal detail preservation [42–46]. Each
filter presents its unique strengths and weaknesses, and analyz-
ing the signal frequency content or conducting experimentation
can aid in identifying the most appropriate filter for a given
scenario [29, 45, 47].

The simplest form of a smoothing filter is the moving average
(MA) filter. This finite impulse response (FIR) filter, with length
denoted as 𝐿, averages a certain number of samples of the signal
to smooth it. Increasing the filter length reduces the true average
of the signal and attenuates higher frequencies [42, 47]. In an
MA filter of length 𝐿 all coefficients are equal to 1

𝐿
. Among

the most popular smoothing filters are the Savitzky–Golay (SG)
filters. These digital flat low-pass FIR filters are commonly ap-
plied to equidistant data points. SG filters rely on an nth degree
polynomial fit within a symmetrical neighborhood around each
data point 𝑘 typically spanning from 𝑘 −𝑚 to 𝑘 +𝑚, while using
2𝑚 +1 data points [29, 42, 48].

The Kalman filter [41] is frequently employed when distur-
bances adhere to a normal distribution [49]. It incorporates vari-
ous construction parameters to consider signal and measurement
variances. The 1D version of the Kalman filter is commonly uti-
lized for signal smoothing tasks [49].

As far as filter parameters selection is concerned, the key
design parameters of the Kalman filter were selected with re-
spect to the signal parameters and specifically – its (estimated)
variance being roughly around 0.1.

For the Savitzky-Golay filter the main design parameter is the
filtration window width. Having a look at the signals one can
see that the signal change which is of interest happens around
1800−1900𝑠. Taking into account the sampling frequency, we
decided to choose window with 31 samples to not to overlook
such change and on the other hand, to ignore at the same time
changes resulting from filtration noise.

The chosen window width was allowing to calculate signal
trend without being affected by the noise; and for the last of the
filters – the moving average filter, the filtered value is being cal-
culated based on the specific number of samples. For coherency
reasons (to make this filter design related to the design of the
Savitzky-Golay filter) the number of samples based on which a
filtered value was calculated was chosen to be 31.

2.3. Test methodology

The ML training task was performed using a designated 𝐶𝑆𝑉

file where the proper filter selection depending on the signal
change value and trend value was specified. The training dataset
is shown in Fig. 6.

Fig. 6. Dataset used for model training purposes

The filtered signal was provided in the CSV file (columns
represent signal acquired from different sensors (see Fig. 7)).

Depending on the ML decision given as the result of the
ML prediction, the ML filter output switched to the appropriate
filter, respectively: Filter 1 – Savitzky-Golay filter, Filter 2 –
Kalman filter and Filter 3 – moving average filter. The code
snippet showing ML-based filter selection is shown in Fig. 8.

For the test purposes a test application was developed in
Python. Apart from three different filters implemented in this
application (Savitzky-Golay [40], moving average [50] and
Kalman filter [41]) the application also includes:
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Fig. 7. Example signal values

Fig. 8. Code snippet showing ML-based filter selection

• ML training module – this module allows training ML model
based on the provided decision-making dataset (see Fig. 6);

• ML prediction module – this module based on the Change
and Trend values specified value of which filter out of the 3
available and working in parallel filters should be used;

• Visualisation module – this module was responsible for
graphical presentation of the filtering results.

As for the ML model trained for the ML-based filter selection
we decided to use the K-Nearest Neighbors algorithm which
provided accuracy at the level of 0.9841%.

3. RESULTS

The results included in this section represent a pilot study and
proof of concept implementation of ML-based filter selection.
We have designed and implemented a system which will extract
some desired features of the filtered signal and then these fea-
tures will be used to train the ANN (Artificial Neural Network)
model.

The key decision in successfully implementing this concept
is determining the training data structure. This choice is cru-
cial because it directly impacts the performance and accuracy
of the Artificial Neural Networks (ANNs). In the simplest sce-
nario, the input data for the ANN could be just the signal change

value. Since noise typically has a limited amplitude compared
to the signal, any significant change in the signal value would
likely indicate a genuine step-change rather than noise. How-
ever, relying solely on signal change may not allow the ANN to
distinguish between actual changes and slight variations caused
by disturbances or noise.

To improve accuracy, additional features related to the signal
(or environment, object characteristics, etc.) may be incorpo-
rated. For example, including the signal trend can provide better
context for understanding specific signal changes. The more
features considered, the more justified the use of ML/ANN be-
comes, as developing equivalent decision-making logic using
traditional methods (such as if/elif/else statements) can be ex-
tremely challenging. Moreover, the flexibility and adaptability
offered by ML/ANN training capabilities far surpass the poten-
tial of traditional reasoning systems, making them more suitable
for complex filtering tasks.

In general, in order to use ML for filter selection it is necessary
to extract certain signal features which could then be used on one
hand, for neural model training purposes and on the other hand
– these features being extracted on-line will allow choosing the
best filter depending on the given signal parameters. Obviously,
depending on which features will be selected and how they will
be used to train the model one can expect more or less accurate
signal filtering yet we decided to focus only on two of such
features:
1) signal change – this property represents how the current

signal sample differs from the previous one,
2) trend – this property allows representing the direction of the

signal change.
These are only 2 parameters but the whole approach we

present can be extended with any number of additional param-
eters and hence improve filter selection process.

Out of many existing trend analyzing algorithms including:
• Linear method,
• Mann-Kendall,
• Exponential growth method,
• Quadratic method,
• S-curve method,
• MAPE (mean absolute percentage error) method,
• MAD (mean absolute deviation) method,
• MSD (mean squared deviation) method.

We decided to use Mann-Kendall method [51] method. This was
because this method can be used when the signal is measured
with varying time periods or units and that this method can
still be used in case certain values are missing in the set. This
is very useful feature because in some cases it is difficult to
measure the signal due to some physical property of the patient
or the measured signal value is not very accurate due to e.g.
disturbances. Another reason for choosing the Mann-Kendall
method was that typically for trend analysis one of the key
parameters is the number of samples used to determine a signal
trend. Mann-Kendall method does not require this parameter
instead it uses significance level parameter which is used to
determine optimal number of samples to detect linear trend. In
our case the significance level was at 0.05.
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3.1. Test results

Using the test software we ran a number of filtering simulation
tests in order to compare how the hybrid (ML-based) filter se-
lection compares to the filtering results provided by each of the
3 co-operating filters independently.

Firstly, the Savitzky-Golay filter was tested. We chose win-
dows width of value 31 and order of Filter 1. Filtering results
are shown in Fig. 9.

Fig. 9. Signal filtered using Savitzky-Golay filtering

Next, the moving average filter was tested. Its main design
parameter is window width which we set at the value of 30. The
resulting filtering results are presented in Fig. 10.

Fig. 10. Signal filtered using moving average filter

For the Savitzky-Golay filter and for the moving average filter
the window width was chosen based on the estimated duration
(the number of samples) of the signal value change caused by
disturbance(s).

Thirdly, we decided to test the Kalman filter. In Fig. 11 we
present filtering results with the design parameter process noise
variance of value 0.0001.

Last of the tested filters was the ML-based filter, This filter is
in a sense virtual because here the filtered value is originating
from one of the 3 main co-operating filters whilst the ML role
was only to point at the value to be used in the specific situation.
Filtering results are shown in Fig. 12.

Although at the first glance Figs. 9–12 look very similar,
there are some differences between them. Each of the filters
was tuned up so that they would perform the filtration task in
the optimal way. However, the ML-based filter returns signal

Fig. 11. Signal filtered using Kalman filter

Fig. 12. Signal filtered using ML-based filter

which, depending on the circumstances, is a collation of signals
generated by each of the filters. As a whole, it is not identical to
any of the signals originating from filters working independently
but zooming the picture would reveal that the ML-based signal
works best.

In order to compare how the different filters perform in a more
pronounced way, for each of the filters the overall variance of the
filtered signal was calculated. Four different ML models were
trained for the comparison LogisticRegressioin, SVC, KNN and
Gaussian. These all models come from the Python’s module
and are all simple one-layer models (absolutely sufficient for
this task) with the number of input neurons corresponding to the
specified number of input columns from the dataset. Contrary to
some other Python’s modules (e.g. Keras model, these models do
not provide functions allowing to check their exact structure (e.g.
Keras model provides layers property containing information
abut the number of model layers) as the structure is easy to
determine just by considering the parameters of the training
dataset.

As it was shown in Fig. 13, depending on which ANN model
was trained for filters selection in the ML/hybrid mode, in each
case the variance of the signal filtered by the ML-powered filter
was the lowest. Compared to the next best filter (moving av-
erage), the ML-based filter performed around 8% better, while
compared to the worst of the three base filters (Kalman filter),
the ML-based filter preformed around 26% better. Overall, the
average increase in performance was around 17% which proves
that using AI for best filter selection allows a significant increase
of filtering accuracy.
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(myML) mariusz@ThinkPad:~/myML$ ./PES_18.py ./s12_500.csv

LRE Reading model from disk...

The variance of SG signal : 1.6474143609402187e-06

The variance of MA signal : 1.5412155340799853e-06

The variance of KF signal : 1.9046377826296131e-06

The variance of ML signal : 1.4145270184375988e-06

(myML) mariusz@ThinkPad:~/myML$ ./PES_18.py ./s12_500.csv

GAU Reading model from disk...

The variance of SG signal : 1.6474143609402187e-06

The variance of MA signal : 1.5412155340799853e-06

The variance of KF signal : 1.9046377826296131e-06

The variance of ML signal : 1.4212253159885521e-06

(myML) mariusz@ThinkPad:~/myML$ ./PES_18.py ./s12_500.csv

SVC Reading model from disk...

The variance of SG signal : 1.6474143609402187e-06

The variance of MA signal : 1.5412155340799853e-06

The variance of KF signal : 1.9046377826296131e-06

The variance of ML signal : 1.4145270184375988e-06

(myML) mariusz@ThinkPad:~/myML$ ./PES_18.py ./s12_500.csv

KNN Reading model from disk...

The variance of SG signal : 1.6474143609402187e-06

The variance of MA signal : 1.5412155340799853e-06

The variance of KF signal : 1.9046377826296131e-06

The variance of ML signal : 1.4266427025928533e-06

Fig. 13. Comparison of filtered signals variance

4. CONCLUSIONS AND DISCUSSION

Analyzing HbR and HbT signals in fNIRS can offer valuable
insights into brain activation patterns, functional connectivity,
and hemodynamic responses linked to cognitive processes. This
makes fNIRS a valuable tool in cognitive neuroscience and
neuroimaging research [23, 25, 26, 52].

In this paper, the authors decided to apply a machine learning-
based filtering system to analyze functional near-infrared spec-
troscopy signals.

Although Figures above (in the Results section) may appear
similar at first glance, there are notable differences between
them. Each filter was optimally tuned to perform the filtration
task effectively. The ML-based filter, however, produces a signal
that integrates aspects of the signals generated by each individ-
ual filter. This integration means the ML-based signal is not
identical to any single filter output. However, a closer examina-
tion reveals that the ML-based filter outperforms the others by
providing a more accurate and reliable signal. This superiority
is evident when zooming in on the signal, where the ML-based
approach demonstrates its ability to handle variations and noise
more effectively.

To sum it all up – analysis of the fNIRS and other brain signals
is a very challenging task due to the complexity and variabil-
ity of the signals involved. The brain’s activity is influenced by
numerous factors, including physiological and environmental
conditions, making it difficult to extract meaningful informa-
tion. Noise and artifacts further complicate the analysis, requir-

ing sophisticated filtering and signal processing techniques to
obtain accurate results. The use of advanced methods, such as
machine learning-based filters, helps address these challenges
by providing more robust and adaptive solutions for signal anal-
ysis.
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