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This research presents an enhanced methodology for diagnosing bearing faults
using Variational Mode Decomposition (VMD) based on L-Kurtosis analysis. The
proposed method focuses on selecting optimal parameters for VMD to extract the mode
containing the most information related to the fault. The selection of these parameters
is based on comparing the energy ratio of each mode and the absolute difference in
L-Kurtosis between the Intrinsic Mode Function (IMF) with the highest energy and
the original signal. The extracted mode is further refined using a specified kurtosis rate
threshold to ensure the most relevant significant modes are captured. The proposed
methodology was tested using real fault data from the CWRU, XJTUSY, and a real-
world wind turbine dataset related to electric motors and wind turbine systems. The
results demonstrated high accuracy in fault detection compared to other methods such
as the Gini Index, correlation, and traditional decomposition techniques like EMD
(Empirical Mode Decomposition). Furthermore, due to the simple computational
nature of the improved VMD method, it is faster and more efficient compared to
methods that rely on complex calculations or frequency band analysis, making it
suitable for applications requiring real-time, reliable fault diagnosis.

Nomenclature
VMD Variational Mode Decomposition
𝛼 Penalty factor used in VMD
𝐾 Number of modes in VMD
𝐹 Frequency
E Energy
IMF Intrinsic Mode Function
EMD Empirical Mode Decomposition
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EEMD Ensemble Empirical Mode Decomposition
GI Gini index
𝐿𝑘 L-Kurtosis
𝐾𝑢 Kurtosis
FSST Fourier Synchro Squeezed Transform
FBE Frequency Band Analysis
GA Genetic Algorithm
KEMI Kernel-based Mutual Information
SR Stochastic Resonance
CWRU Case Western Reserve University
XJTU-SY Xi’an Jiaotong University – Shaanxi Yanchang dataset

1. Introduction

Bearings are critical components in rotating machinery and wind turbine sys-
tems, playing a significant role in maintaining the continuous and stable operation
of these systems [1]. With the increasing reliance on wind energy as a primary
source of renewable energy, they have become one of the most important energy
sources worldwide, ranking second only to solar energy in their contribution to
global electricity supply [2]. According to the International Energy Agency, there
have been significant advancements in wind energy technology in recent years [3].
However, the maintenance and operational costs of wind turbines remain high [4],
necessitating a focus on monitoring systems, performance enhancement, fault di-
agnosis, and preventive maintenance to ensure continuous production. Faults in
wind turbines vary based on the specific components involved, with all types of
turbines sharing blades and nacelles that play a crucial role in converting wind
energy into electrical power. Therefore, the nacelle underscores the importance of
the operational health of critical components such as the generator, gearbox, main
bearings, and rotor shaft [5].

The methods and approaches for fault diagnosis vary based on different types of
data, objectives, and capabilities. Effective fault detection is essential for achieving
operational efficiency and reducing unplanned downtime. In this context, recent
years have witnessed significant advancements in machine learning techniques,
such as Support Vector Machine [6–8] and Artificial Neural Networks [7], along
with advanced signal analysis techniques like Variational Mode Decomposition [9],
greatly enhancing maintenance and diagnostic processes in wind turbine and rotat-
ing machinery systems.

Given the importance of ensuring bearing health, as various failures can cause
significant damage to wind turbine and rotating machinery components [10], the
primary goal of this study is to develop effective techniques for early and accurate
bearing fault diagnosis. Early fault detection will contribute to improved operational
efficiency and reduced costs associated with unplanned maintenance in wind turbine
and rotating machinery systems. Signal processing methods play a significant
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role in this process, utilizing advanced techniques to analyze data from bearing
performance. These methods employ mathematical tools tailored for analyzing
non-stationary and non-linear signals, such as EMD, EEMD, and VMD [10], in
addition to frequency and time-domain analysis techniques. VMD, known for its
effectiveness, has seen a diversity in parameter tuning algorithms and the selection
of appropriate modes in previous studies, aiming for more precise analysis of
bearing conditions [10–17].

Furthermore, traditional signal processing methods aim to eliminate noise
from signals to reveal fault characteristics, yet Stochastic Resonance [18] offers a
different approach by leveraging the noise within signals to enhance the detection
of weak fault features. SR has been extensively applied in machinery fault detec-
tion, particularly for critical rotary components such as rolling element bearings,
gears, and rotors. Recent studies highlight the growing importance of SR in this
field, providing valuable insights and laying the groundwork for future research
endeavors [18].

One of the prominent studies in this field [10] has introduced an original
method based on the criterion of the maximum value of envelope kurtosis to opti-
mize and determine the mode number in the VMD method. This method effectively
solves the problem of needing to predetermine the mode number. Additionally, a
novel methodology was presented to select the sensitive Intrinsic Mode Func-
tions containing abundant fault information based on the Frequency Band Energy
analysis.

This study [11] presents an adaptive framework utilizing Variational Mode
Decomposition to enhance fault diagnosis in rolling bearings by optimizing the
selection of decomposition parameters. To achieve this, the Sailfish Optimization
algorithm was integrated with the Gini Index as a criterion for selecting the optimal
modes, thereby aiding in noise reduction and the extraction of faultrelevant infor-
mation. The results demonstrate that the proposed method significantly improves
the accuracy of fault feature extraction, outperforming traditional methods such
as fixed-parameter VMD, Local Mean Decomposition, and Ensemble Empirical
Mode Decomposition.

In the last three stages of the proposed methodology in this paper [12] the
optimal modes were discussed using the kurtosis criterion, where the signal was
reconstructed with the IMFs that have higher than average kurtosis. In the final
section of this work [13], the weighted kurtosis was utilized to extract the optimal
mode, which relies on the kurtosis index and correlation with the original signal.
A novel methodology was proposed in this paper [14] to enhance the Variable
Mode Decomposition technique using the maximum kurtosis criterion to address
the issue of pre-determining parameters. This method focuses on optimizing the
value of (K) first, and then optimizing the penalty factor value based on the optimal
(K), significantly improving the method’s performance. Additionally, the study
suggested a new approach for selecting sensitive Intrinsic Mode Functions based
on resonant frequency. Using the power spectrum, the resonant frequency for both
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the original signal and each IMF is identified, and these frequencies are compared
to select the most sensitive IMF for fault detection.

In the paper [17], a genetic algorithm and kernel-based mutual information
fitness function were used to optimize Variational Mode Decomposition for bearing
fault detection. The study employed Fourier synchro squeezed transform to extract
instantaneous frequency and convert time-domain signals into the angular domain
for identifying defects at varying speeds. Despite the accuracy of the method, the
complexity of the computations involved with GA and KEMI presents challenges
for applications requiring high-speed processing.

In our research, we aim to develop a new comprehensive and more effective
method for bearing fault detection by using kurtosis, L-Kurtosis, and the energy
ratio in the modes. This method will be applied to various fault cases and compared
with other works as mentioned in the literature review of previous studies.

2. Methods

2.1. Variational Mode Decomposition

The Variational Mode Decomposition is a modern technique for analyzing
non-stationary signals and decomposing them into different frequency components
called modes. This method was developed by K. Dragomiretskiy and D. Zosso in
2013 [15]. The VMD algorithm aims to enhance the performance of traditional
methods like EMD by offering a non-recursive variational model. VMD simulta-
neously extracts modes, which improves efficiency and accuracy in handling noise
and irregular samples.

In VMD, the signal 𝑓 (𝑡) is represented as a sum of intrinsic mode func-
tions 𝑢𝑘 (𝑡).

𝑓 (𝑡) =
𝐾∑︁
𝑘=1

𝑢𝑘 (𝑡). (1)

The VMD method decomposes the signal into several IMFs, each characterized
by specific central frequencies and narrow bandwidths. This is achieved using
principles from Hilbert transform and frequency mixing, making VMD particularly
effective for preprocessing nonlinear signals [8]. The core of the VMD algorithm
involves solving an optimization problem to minimize the bandwidth of all modes.
The goal is to find the modes 𝑢𝑘 (𝑡) and their associated central frequencies 𝜔𝑘
such that the sum of their bandwidths is minimized. The cost function used in this
optimization is [15]:

min
{𝑢𝑘 },{𝜔𝑘 }

{∑︁
𝑘

𝜕𝑡 [(𝛿(𝑡) + 𝑖

𝜋𝑡

)
𝑢𝑘 (𝑡)

]
𝑒−𝜔𝑘 𝑡

2

2

}
, (2)

where 𝜕𝑡 is the time derivative.
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To optimize the cost function, the Alternating Direction Method of Multipliers
(ADMM) is used. The Lagrangian of the problem is defined as [15]:

L ({𝑢𝑘}, {𝜔𝑘}, 𝜆) = 𝛼
∑︁
𝑘

𝜕𝑡 [(𝛿(𝑡) + j
𝜕

𝜕𝑡

)
𝑢𝑘 (𝑡)

]
𝑒−j𝜔𝑘 𝑡

2

+
 𝑓 (𝑡) − ∑︁

𝑘

𝑢𝑘 (𝑡)
2

, (3)

where 𝜆 is the Lagrange multiplier and the solution steps are:
• the modes 𝑢𝑘 (𝑡) and the center frequencies 𝜔𝑘 are updated simultaneously

until convergence;
• the Lagrange multiplier 𝜆 is adjusted to ensure constraints are met.
To implement and analyze the VMD technique, the MATLAB programming

environment was used. MATLAB provides powerful tools for signal analysis and
handling the complex calculations required to apply the VMD technique. The VMD
algorithm is executed in MATLAB using custom code that analyzes the signal and
extracts the desired modes according to the mathematical equations outlined above.

2.2. L-Kurtosis

L-Kurtosis is an advanced statistical indicator used to analyze data and esti-
mate the degree of kurtosis in data distributions [19]. It represents an evolution
from traditional kurtosis measures, providing accurate and stable estimations that
enhance analytical and diagnostic capabilities [19]. Widely used in fault diagnosis
such as bearing faults [19, 20], particularly in fields requiring detection of unusual
or abnormal changes in data behavior, L-Kurtosis facilitates the selection of opti-
mal Intrinsic Mode Functions containing information indicative of bearing faults,
as demonstrated in the study [20].

To calculate L-Kurtosis, follow these steps:
First, we need to compute the internal orders (L-moments) of the distribution.

Internal orders are estimations of distribution parameters using order statistics from
the data.

Given a sample of size 𝑞 from a continuous random variable, denoted by 𝑢1,
𝑢2, . . . , 𝑢𝑞, the order statistics are the values sorted in ascending order. These are
often denoted as 𝑢1:𝑞, 𝑢2:𝑞, . . . , 𝑢𝑞:𝑞.

L-moments are linear combinations of order statistics. They provide a robust
and intuitive measure of the shape of a distribution. The 𝑟-th L-moment 𝑙𝑚𝑟 is
defined using the expectation of these order statistics [18]. The 𝑟-th L-moment 𝑙𝑚𝑟
is given by:

𝑙𝑚𝑟 =
1
𝑟

𝑟−1∑︁
𝑘=0

(−1)𝑘
(
𝑟 − 1
𝑘

)
E[𝑢𝑟−𝑘:𝑟 ], (4)
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where:
E[𝑢𝑟−𝑘:𝑟 ] is the expectation of the (𝑟−𝑘)-th order statistic from a sample of size 𝑟,(
𝑟 − 1
𝑘

)
is the binomial coefficient.

• First L-moment: Defined as the average value of the distribution.

𝑙𝑚1 = E[𝑢] =
1∫

0

𝑢d𝐹 (𝑢). (5)

• Second L-moment:

𝑙𝑚2 =
1
2

E [𝑢2:2 − 𝑢1:2] =
1∫

0

𝑢(2𝐹 (𝑢) − 1)d𝐹 (𝑢). (6)

• Third L-moment:

𝑙𝑚3 =
1
3

E [𝑢3:3 − 2𝑢2:3 + 𝑢1:3] =
1∫

0

𝑢

(
6𝐹2(𝑢) − 6𝐹 (𝑢) + 1

)
d𝐹 (𝑢). (7)

• Fourth L-moment:

𝑙𝑚4 =
1
3

E [𝑢4:4 − 3𝑢3:4 + 3𝑢2:4 − 𝑢1:4]

=

1∫
0

𝑢

(
20𝐹3(𝑢) − 30𝐹2(𝑢) + 12𝐹 (𝑢) + 1

)
d𝐹 (𝑢), (8)

𝐿𝑘 =
𝑙𝑚4
𝑙𝑚2

. (9)

Where we use a discrete sample 𝑥1, 𝑥2, . . . , 𝑥𝑁 of size 𝑁 , we sort the data in
ascending order to obtain the order statistics 𝑥1:𝑁 ⩽ 𝑥2:𝑁 ⩽ . . . ⩽ 𝑥𝑁 :𝑁 .

𝐿𝑘 =
𝐿4
𝐿2
, (10)

where:

𝐿1 = 𝛽0 ,

𝐿2 = 2𝛽1 − 𝛽0 ,

𝐿3 = 6𝛽2 − 6𝛽1 + 𝛽0 ,

𝐿4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0 .

(11)
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The weighted moments 𝛽𝑖 for the discrete data are calculated as follows:

𝛽0 =
1
𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 ,

𝛽1 =
1
𝑁

𝑁∑︁
𝑖=2

𝑥𝑖

(
𝑖 − 1
𝑁 − 1

)
,

𝛽2 =
1
𝑁

𝑁∑︁
𝑖=3

𝑥𝑖

(
(𝑖 − 1) (𝑖 − 2)
(𝑁 − 1) (𝑁 − 2)

)
,

𝛽3 =
1
𝑁

𝑁∑︁
𝑖=4

𝑥𝑖

(
(𝑖 − 1) (𝑖 − 2) (𝑖 − 3)

(𝑁 − 1) (𝑁 − 2) (𝑁 − 3)

)
.

(12)

L-Kurtosis is preferred over traditional kurtosis because it offers greater ro-
bustness to noise, reduces the impact of outliers, and provides better differentiation
between different types of distributions.

2.3. Energy ratio and traditional kurtosis

Let’s assume we have a signal 𝑥 [𝑛] and we decompose it using VMD, resulting
in IMFs. The energy ratio for each intrinsic mode is calculated as follows:

Energy Ratio𝑖 =
𝐸𝑖

𝐸total
,

𝐸total =

𝑁−1∑︁
𝑛=0

��𝑥 [𝑛]��2,
𝐸𝑖 =

𝑁−1∑︁
𝑛=0

��IMF𝑖 [𝑛]
��2,

(13)

where: Energy Ratio𝑖 is the energy ratio of the intrinsic mode function IMF𝑖, 𝐸total
is the total energy of the original signal, 𝐸𝑖 is the total energy of the intrinsic mode
function IMF𝑖, 𝑁 is the total number of samples in the intrinsic mode function.

The traditional kurtosis is calculated as follows:

𝐾𝑢 =
1
𝑁

𝑁∑︁
𝑛=1

(𝑥(𝑛) − 𝑥)4

[(
1
𝑁

) 𝑁∑︁
𝑛=1

(𝑥(𝑛) − 𝑥)2

]2 , (14)

where: 𝑁 – sample size, 𝑥(𝑛) – samples, 𝑥 – mean.
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2.4. The proposed methods

Fig. 1 illustrates the approach used to determine the optimal value of 𝛼. We
explain the algorithm in these steps:

1. Input the original signal
𝑥(𝑡). (15)

2. Compute the L-Kurtosis of the original signal

𝐿𝑘
(
𝑥(𝑡)

)
. (16)

3. Define the number of components 𝐾 , define the range of 𝛼 values from 𝑎

to 𝑏
𝐾, 𝛼 ∈ [𝑎, 𝑏] . (17)

4. Set the initial 𝛼 to 𝑎
𝛼 = 𝑎. (18)

5. Perform VMD using the current value of 𝛼 to obtain IMFs

VMD
(
𝑥(𝑡), 𝛼, 𝐾

)
= [IMFs + res] . (19)

6. Identify the IMF with the highest energy.

IMFmax _energy . (20)

Fig. 1. The proposed algorithm of alpha optimization
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7. Compute the L-Kurtosis of the IMF with the highest energy, store the value
of 𝛼 and the computed L-Kurtosis

𝐿𝑘 (IMFmax_energy), store(𝛼, 𝐿𝑘 (IMFmax_energy)). (21)

8. Check if 𝛼 < 𝑏: Increase 𝛼 by 100 and repeat steps 5 to 8

𝛼 = 𝛼 + 100. (22)

If 𝛼 ≥ 𝑏, proceed to step 9.
The choice of increasing (alpha) in steps of 100 balanced computational effi-

ciency with the need to explore a broad range of values. This step size effectively
identified an appropriate (alpha) without imposing a heavy computational burden,
enhancing fault feature extraction and mode analysis. While smaller steps could
offer greater precision, they would significantly increase computation time. Thus,
a step size of 100 was selected to provide a good trade-off between accuracy and
efficiency.

9. Select the value of 𝛼 where the L-Kurtosis of the IMF with the highest
energy is closest to the L-Kurtosis of the original signal.

𝛼optimal = arg min
𝛼

��𝐿𝑘 (
IMFmax_energy

)
− 𝐿𝑘original

�� . (23)

Fig. 2 demonstrates the second section, which represents the proposed ap-
proach to find the optimal number of components 𝐾 for the VMD that minimizes
the energy differences between consecutive IMFs. Then, we select the optimal
mode using the kurtosis and L-Kurtosis.
Step 1: Set 𝐾 values from 𝑐 to 𝑑, after we start with 𝐾 = 𝑐:

𝐾 ∈ {𝑐, 𝑐+1, . . . , 𝑑}. (24)

Step 2: Decompose the signal 𝑥 [𝑛] using 𝛼 optimal and current 𝐾:

[IMFs + res] = VMD
(
𝑥 [𝑛] 𝛼optimal, 𝐾

)
. (25)

Step 3: Calculate and sort energies 𝐸𝑖 and compute energy differences between
consecutive IMFs (ranked in descending order of energy ratio) and record
maximum energy difference Δ𝐸max

Δ𝐸𝑖 =
��𝐸𝑖 − 𝐸𝑖+1

��. (26)

Step 4: Store𝐾 andΔ𝐸max, increment𝐾 by 1 and repeat step 2–4 until𝐾 reaches 𝑑,
then we choose 𝐾 with the smallest Δ𝐸max.

Step 5: Perform VMD using 𝛼optimal and 𝐾optimal and obtain IMFs
(IMF1 . . . IMF𝑘).
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Fig. 2. Process flow for determining optimal K and selecting the optimal IMF

Step 6: Calculate the average kurtosis and identify the subset of IMFs whose
kurtosis is higher than the average kurtosis.

AvgKurt =
1
𝐾

𝐾∑︁
𝑖=1

𝐾𝑢(IMF𝑖). (27)

Step 7: Calculate the L-Kurtosis of the identified subset, then we select the mode
whose L-Kurtosis is closest to the L-Kurtosis of the original signal.

The bearing defect frequencies are calculated using the following formu-
las [10]:

𝐹𝑖 =
𝑛

2
𝑁

60

(
1 + 𝑑

𝐷
cos 𝛽

)
, (28)

𝐹𝑜 =
𝑛

2
𝑁

60

(
1 − 𝑑

𝐷
cos 𝛽

)
, (29)

𝐹𝑏 =
𝑛

2𝑑
𝑁

60

(
1 −

(
𝑑

𝐷
cos 𝛽

)2
)
, (30)
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𝐹𝑐 =
𝑁

120

(
1 − 𝑑

𝐷
cos 𝛽

)
. (31)

where: 𝑁 – rational speed of the rotor, 𝑑 – diameter of ball, 𝐷 – pitch diameter, 𝑛
– number of rolling elements, 𝛽 – angle of contact.

3. Results and discussion

3.1. Analysis of inner race bearing fault from CWRU database

The simulation model is a signal of a bearing inner race fault from the labora-
tory of Case Western Reserve University [21], the information of the bearing and
fault characteristics is provided in Table 1.

Table 1. Characteristics of the defect and vibrational signal
Component Drive end bearing 6205-2RS JEM SKF

Operating speed 1797 rmp
Sampling frequency 12000 Hz
Defect diameter 0.7112 mm
Inner race fault frequency 162.2 Hz

Experiments were conducted using a 2 hp Reliance Electric motor, and accel-
eration data was measured [21].

Fig. 3 shows the signal in the time domain. We define the range alpha
[1000, 2000] and set 𝐾 = 3. The first partition yielded the results shown in Fig. 4,
and the results of the energy ratio for each mode were as follows:

• Energy Ratio1 = 0.593.
• Energy Ratio2 = 0.185.
• Energy Ratio3 = 0.206.
After calculating the difference between the L-Kurtosis of the mode with the

highest energy and the original signal for different values of alpha, the results
indicated that the optimal 𝛼 value was 1100. The results are shown in Fig. 5.

Fig. 3. Time domain analysis
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Fig. 4. Variational mode decomposition

Fig. 5. Evolution of |Δ𝐿𝑘 | with different alpha values

After ranking the IMFs according to their energy ratio, we define the differences
between the energies of successive IMFs as described in formula (25).

We define the number of modes 𝐾 from [3, 10]. For each value of 𝐾 we
calculate the Δ𝐸𝑖 as below (Table 2).

Table 2 indicates the proposed approach results in an optimal (𝐾) value of 8.
The VMD results with the optimal alpha and 𝐾 are shown in Fig. 6. Afterward, we
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Table 2. Overview of Δ𝐸𝑖 values for different (𝐾) after sorting IMFs by energy ratio

𝐾

𝐸𝑖
Δ𝐸1 Δ𝐸2 Δ𝐸3 Δ𝐸4 Δ𝐸5 Δ𝐸6 Δ𝐸7 Δ𝐸8 Δ𝐸9

3 0.375 0.0029 * * * * * * *
4 0.334 0.0281 0.0166 * * * * * *
5 0.0636 0.0427 0.0748 0.0168 * * * * *
6 0.0680 0.0762 0.0532 0.0079 0.0737 * * * *
7 0.1696 0.0001 0.0509 0.0139 0.0065 0.0562 * * *
8 0.0326 0.0345 0.052 0.0151 0.0111 0.02 0.0311 * *
9 0.0184 0.0297 0.0075 0.0165 0.0160 0.0354 0.0139 0.0137 *
10 0.0459 0.0009 0.0080 0.0342 0.0126 0.0204 0.0045 0.0038 0.0153

calculate the kurtosis and L-Kurtosis for each IMF and identify the optimal IMF
according to the proposed algorithm.

Fig. 6. The optimized VMD results of the inner race fault

The average kurtosis of IMFs is AvgKurt = 2.987 and the L-Kurtosis of the
original signal is 𝐿𝑘 = −0.2386. Based on the results shown in Table 3, the optimal
mode is IMF6.

From Table 3, we observe that the kurtosis indicates that the optimal mode is
IMF7, while the correlation suggests that the optimal mode is IMF2. Fig. 7 shows
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Table 3. Evaluation of Statical measure for optimal IMF selection

Measure
IMFs

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Kurtosis 2.975 2.939 3.248 2.977 2.858 3.140 3.399 2.361
L-Kurtosis 0.373 0.501 –2.07 0.422 0.690 0.397 0.876 –1.47
Correlation 0.368 0.554 0.519 0.311 0.326 0.348 0.269 0.399

the results of the Envelope Spectrum for each mode, demonstrating the superiority
of the proposed methodology in accurately detecting the fault.

Fig. 7. Envelope spectra of IMF2, IMF6 and IMF7

3.2. Analysis of bearing ball fault from CWRU database

We use the proposed approach of VMD to analyze the condition of the bearing
6205-2RS JEM SKF located at the drive end. The technical characteristics of the
data are shown in Table 4.

Table 4. The detailed specification of the bearing
File name 118.m
Operating speed 1797 rmp
Sampling frequency 12 000 Hz
Defect diameter 0.178 mm
Fault frequency 140.5 Hz
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The vibration signal of the fault prior to VMD analysis yielded the results
shown in Fig. 8 and Fig. 9, where the extracted fault information was accompanied
by noise. Therefore, the proposed VMD method is used to address this issue.

Fig. 8. Time domain analysis

Fig. 9. Frequency domain analysis

We start by setting 𝐾 = 3 and defining the alpha range [1000, 2000].
The proposed algorithm was applied to calculate the L-Kurtosis of the original

signal and determine the optimal range of 𝛼 values. Fig. 10 showing the variation
of |Δ𝐿𝑘 | with respect to 𝛼 indicates that the optimal value of 𝛼 is 1900. This result
implies that 𝛼 = 1900 is the value that achieves the closest L-Kurtosis between the

Fig. 10. Evolution of |Δ𝐿𝑘 | with respect to the alpha values
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IMF with the highest energy ratio and the L-Kurtosis of the original signal. The
reduction in |Δ𝐿𝑘 | suggests that the IMF extracted using 𝛼 = 1900 more accurately
reflects the statistical properties of the original signal. After determining the optimal
𝛼, the signal was decomposed in several trials using different values of 𝐾 within
the specified range [3, 10]. The energy differences between consecutive IMFs were
calculated, and the maximum difference for each trial of 𝐾 was recorded. Table 5
below presents the results of the energy differences between consecutive IMFs for
all tested 𝐾 values, showing that the optimal 𝐾 is IMF5:

Table 5. Energy differences between extracted (IMFs) for various 𝐾 values

𝐾

Δ𝐸𝑖
Δ𝐸1 Δ𝐸2 Δ𝐸3 Δ𝐸4 Δ𝐸5 Δ𝐸6 Δ𝐸7 Δ𝐸8 Δ𝐸9

3 0.815 0.0114 * * * * * * *

4 0.478 0.155 0.025 * * * * * *

5 0.0505 0.136 0.130 0.0274 * * * * *

6 0.0109 0.201 0.063 0.0136 0.0278 * * * *

7 0.0149 0.187 0.0366 0.0248 0.0047 0.0235 * * *

8 0.0159 0.2118 0.0079 0.0205 0.0008 0.0278 0.0011 * *

9 0.0096 0.1926 0.0181 0.0005 0.0246 0.0094 0.0126 0.0131 *

10 0.007 0.1373 0.0317 0.014 0.0142 0.0064 0.0152 0.0062 0.0126

After determining the optimal values of 𝛼 = 1900 and 𝐾 = 5, the signal was
decomposed using VMD with these parameters. The following figure (Fig. 11)
illustrates the results of this decomposition.

Fig. 11. The optimized VMD results of the ball fault

Several properties of the modes were evaluated, including kurtosis, L-Kurtosis,
correlation, and the Gini index given by the following expression [11]:

GI (𝑥) = 1 − 2
∑︁ |𝑥 [𝑘 ] |

𝑥1
×

(
𝑁 − 𝑘 + 0.5

𝑁

)
, (32)
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considering a vector 𝑥 =
[
𝑥(1), . . . , 𝑥(𝑁)

]
, where its elements are reordered and

denoted as 𝑥 [𝑘 ] for 𝑘 = 1, 2, . . . , 𝑁 , where
��𝑥 [1] �� ⩽ ��𝑥 [2] �� ⩽ . . . ⩽ ��𝑥 [𝑁 ]

��.
Both the correlation and Gini index suggest that the first mode is optimal,

whereas the proposed methodology indicates that the third mode is optimal, as
shown in Table 6 and Fig. 12.

Table 6. Analysis of mode properties: kurtosis, L-Kurtosis, correlation, and Gini index

Measure
IMFs

IMF1 IMF2 IMF3 IMF4 IMF5

Kurtosis 2.8172 3.2408 3.3399 3.0097 2.3660
|Δ𝐿𝑘 (IMFs) | 3.4141 23.5075 0.3437 0.6756 4.1574
Correlation 0.6701 0.6621 0.4780 0.2553 0.1639
Gini index 1.0433 1.0401 1.0305 1.0164 0.9929

Fig. 12. Analysis of kurtosis and |Δ𝐿𝑘 | for each IMFs

Fig. 13 illustrates the envelope power spectra for each IMFs, showing results
that demonstrate the superiority of the proposed methodology over correlation and
Gini index indicators in detecting faults efficiently.

The results obtained using the proposed Variational Mode Decomposition
methodology were compared to those obtained from Empirical Mode Decomposi-
tion into five modes. Frequency signals were extracted from the first three modes in
each decomposition. Fig. 14 illustrates this comparison, highlighting the superior
performance of the proposed VMD methodology in terms of information preser-
vation and noise reduction. Additionally, Fig. 15 presents the power spectra of the
envelope for the first three modes, demonstrating the enhanced effectiveness of our
proposed methodology in extracting fault frequencies.



484 Abderrahmane LAKIKZA, Hocine CHEGHIB, Nabil KAHOUL

Fig. 13. Frequency domain analysis

Fig. 14. Spectrum of IMF1-IMF3 after EMD and VMD

The results of this methodology are accurate, and faster compared to the studies
mentioned in the literature that require the calculation of the frequency band over
different window sizes.
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Fig. 15. Envelope spectrum of IMF1–IMF3 after EMD and VMD

3.3. XJTU-SY experimental dataset

The experiment was conducted on LDK UER204 bearings (Table 7) to diag-
nose an inner race wear fault. Two accelerometers of type PCB 352C33 were used,
with one placed on the horizontal axis and the other on the vertical axis at a 90-
degree angle. The testbed (Fig. 16) consists of an AC induction motor with a speed
controller and a hydraulic loading system to apply the required radial force [22, 23].

Table 7. Summary table of characteristics
Property Value

Rotational speed 2100 RPM (35 Hz)
Radial force 12 kN
Sampling frequency 25.6 kHz
Data points per sample 32,768 data points
Recording duration per sample 1.28 seconds
Sampling period every 1 minute
Fault type Inner Race Wear
Bearing type LDK UER204

To calculate the Inner Race Fault Frequency (IRF), the formula (28) is used,
where: 𝑛 = 8 (number of balls), 𝑑 = 7.92 mm (ball diameter), 𝐷 = 34.55 mm



486 Abderrahmane LAKIKZA, Hocine CHEGHIB, Nabil KAHOUL

Fig. 16. Experimental setup of the XJTU-SY bearing testbed [23]

(pitch diameter), 𝛼 = 0 (contact angle), 𝑓 𝑟 = 35 Hz (shaft rotational frequency).

𝑓𝑖𝑟 =
8
2

(
1 + 7.92

34.55
× 1

)
× 35 ≈ 172.1 Hz . (33)

Fig. 17 displays the original horizontal and vertical fault signals before pro-
cessing in the time and frequency domains, as well as the envelope and envelope
spectrum.

Fig. 17. Time domain, frequency domain, envelope, and envelope spectrum for horizontal and
vertical faulty signals
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Then, we determine the optimal alpha value according to our proposed method-
ology:

• We obtain alpha = 1200 for the horizontal signal, as shown in Fig. 18.
• We obtain alpha = 1500 for the vertical signal, as shown in Fig. 19.

Fig. 18. Change in |Δ𝐿𝑘 | as a function of alpha for horizontal signal

Fig. 19. Change in |Δ𝐿𝑘 | as a function of alpha for vertical signal

Determining the optimal 𝐾 for both signals is shown in Fig. 20 (𝐾 = 5 for the
horizontal signal and 𝐾 = 8 for the vertical signal).

Next, we extract the optimal modes:
• Fig. 21 shows the kurtosis values and the threshold for each intrinsic mode.
• Fig. 22 and Fig. 23 illustrate the envelope spectrum results for the extracted

modes from both the horizontal and vertical signals.
Fig. 24 and Fig. 25 show a comparison between the results of VMD and EMD:
• We observe that the modes resulting from the improved VMD methodology

provide a better distribution and more accurate fault frequency identification.
• Meanwhile, EMD concentrates most of the energy in the first four modes

with lower accuracy compared to the improved VMD.
Based on Fig. 25, we observe that the fault frequency Fi = 175 Hz is clearly

highlighted in IMF3, alongside the rotational frequency 𝐹0 and its second harmonic
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Fig. 20. Evolution of the maximum difference between the energy ratios as a function of 𝐾

Fig. 21. Kurtosis and |Δ𝐿𝑘 | for each IMFs (vertical and horizontal signals)

Fig. 22. Envelope spectrum of vertical IMF7
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Fig. 23. Envelope spectrum of horizontal IMF3

Fig. 24. Comparative envelope spectrum analysis of VMD and EMD IMFs for the horizontal signal

2𝐹0. In IMF5, which exhibits the highest kurtosis, the frequency 𝐹 = 164.8 Hz
emerges with an error of approximately 7.3 Hz. In contrast, using the EMD method,
the frequency 𝐹 = 164.8 Hz is detectable, but with less accuracy compared
to the improved VMD, and no fault frequency with better accuracy is observed
in EMD.

For the horizontal signal, the proposed VMD demonstrates a more diverse
distribution and effectively identifies the fault frequency Fi = 173.4 Hz in IMF7.
Additionally, Fi = 164.8 Hz is observed in IMF6, which has the highest kurtosis.
However, in the EMD case, the 164.8 Hz frequency is not clearly visible, and the
170.3 Hz frequency shows a greater error compared to 173.4 Hz.
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Fig. 25. Comparative envelope spectrum analysis of VMD and EMD IMFs for the vertical signal

3.4. Analysis of wind turbine bearing fault using the proposed approach

Wind turbines operate in a complex environment due to the constant variation
in wind speed and its effects on different parts of the turbine. In this study, the focus
will be on analyzing bearing characteristics and diagnosing potential faults using
the following data [24]:

• High-Speed Shaft Speed Variation: The instantaneous speed of the shaft
ranges from 30.9 Hz to 32.01 Hz, reflecting a speed variation of 3.6%.

• Bearing Fault Rates:
– Cage Fault Rate: 0.42;
– Ball Fault Rate: 2.87;
– Inner Race Fault Rate: 9.46;
– Outer Race Fault Rate: 6.72.

Analysis Data:

Fifty signals were measured to track the development of an inner race bearing
fault, with the signal from day 45 (April 20) being taken as a reference (Fig. 26).
These data from the reference (updated on 2018) [24, 25] will be used to diagnose
the bearing fault.
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Fig. 26. Envelope power spectrum of the original signal

3.4.1. Selecting the optimal alpha using the proposed algorithm

• Input the original signal: let 𝑥(𝑡) be the original signal.
• Compute the L-Kurtosis of the original signal: 𝐿𝑘original = 0.8934.
• Define parameters: number of components 𝐾 = 5, range of 𝛼 values:
𝛼 ∈ [1000, 2000], set the initial 𝛼 to 1000.

• Iterative VMD process: perform VMD: apply VMD to 𝑥(𝑡) with the current
value of 𝛼 to obtain IMFs.

Based on the results (Table 8), the optimal value of 𝛼 is 𝛼 = 1000. This is
because it yields the L-Kurtosis 𝐿𝑘 (IMFmax _energy) = 0.6064, which is the closest
to the original L-Kurtosis 𝐿𝑘original = 0.8934.

Table 8. Computed L-Kurtosis values
𝛼 𝐿𝑘 (IMFmax _energy)

1000 0.6064
1100 0.5647
1200 0.5283
1300 –6.1442
1400 –7.3411
1500 –8.6192
1600 –8.8045
1700 –7.9415
1800 –6.7761
1900 –5.2002
2000 –4.3810

3.4.2. Determining optimal K and selecting the optimal IMF

We set 𝐾 values from 5 to 10; the stored 𝐾 and Δ𝐸max are descripted in the
Table 9.
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Table 9. Computed (Δ𝐸max) values
𝐾 5 6 7 8 9 10

Δ𝐸max 0.1888 0.1078 0.1462 0.1528 0.1607 0.1598

Upon determining the appropriate number of modes, we perform the VMD
with the specified parameters.[

IMFs + res] = VMD(𝑥 [𝑛] 1000 , 6). (34)

Then we calculate the features (kurtosis, average kurtosis, L-Kurtosis, corre-
lation, Gini index) for each mode, as illustrated in Table 10. Following this we will
evaluate the results of selecting the optimal mode for each method.

Table 10. Measured characteristics of each IMFs

Measure
IMFs

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Kurtosis 3.429 3.761 5.307 4.918 3.022 2.945
Average kurtosis 3.8975
L-Kurtosis 0.891 -1.582 -5.984 -1.012 -0.870 -3.025
Correlation 0.340 0.427 0.6378 0.563 0.348 0.372
Gini index 1.372 1.410 1.653 1.544 1.251 1.289

We observe that both IMF3 and IMF4 exceed the mean, while the L-Kurtosis
value for the original signal is 0.8934. Therefore, we select IMF4 for fault detection.

Fig. 27 represents the envelope spectrum for the third and fourth modes. It
is noted that the significant peak value in mode four corresponds to the fault
frequency (𝐹𝑖).

Fig. 27. Envelope spectrum of IMF3–IMF4
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4. Conclusions

This paper presents an advanced approach for diagnosing bearing faults in
wind turbines and rotating machinery using VMD. The proposed methodology
focuses on optimizing the penalty factor in the VMD process and selecting the
most relevant modes based on L-Kurtosis, kurtosis, and energy criteria. The goal
is to enhance the detection accuracy of fault frequencies and reduce noise, making
the approach suitable for real-time monitoring and fault diagnosis applications.

• CWRU Dataset:
For the inner race fault, the proposed VMD method identified the optimal

mode as Mode 6, which exhibited a more pronounced fault frequency with higher
amplitude in the envelope spectrum compared to other methods. Traditional cor-
relation and kurtosis methods selected Mode 2 and Mode 7, respectively, but
neither demonstrated the same level of fault frequency as clarity as the proposed
approach.

In the ball fault experiment, the proposed methodology also outperformed
Gini index and correlation methods, providing a clearer representation of the fault
frequency in the envelope spectrum. The VMD method revealed more distinct
peaks, enhancing the visibility of fault-related features.

Comparisons with the traditional Empirical Mode Decomposition method
showed that the VMD method was more effective in fault detection and noise
reduction. The VMD approach captured energy distribution more effectively, as
indicated by the power spectra of the first three modes in the envelope spectrum,
highlighting its superiority over EMD in preserving relevant information.

• XJTU-SY Dataset:
In the XJTU-SY dataset, the fault frequency of 𝐹𝑖 = 175 Hz was clearly high-

lighted in IMF3, along with the rotational frequency 𝐹0 and its second harmonic
2𝐹0. Additionally, in IMF5, which exhibited the highest kurtosis, the frequency
𝐹 = 164.8 Hz was observed with an error of approximately 7.3 Hz. In comparison,
the EMD method detected the frequency 𝐹 = 164.8 Hz with less accuracy and did
not reveal other fault frequencies with better precision.

For the horizontal signal, the proposed VMD method demonstrated a more
diverse distribution of fault frequencies, identifying 𝐹𝑖 = 173.4 Hz in IMF7 and
𝐹𝑖 = 164.8 Hz in IMF6, which had the highest kurtosis. In contrast, the EMD
method struggled to accurately detect these frequencies, with significant errors in
identifying fault frequencies, such as 170.3 Hz.

• Real-World Wind Turbine Fault Diagnosis:
For real-world inner race bearing fault diagnosis in wind turbines, all traditional

indicators pointed to Mode 3 as the optimal mode for fault detection. However, the
proposed VMD approach determined that Mode 4 was more suitable, as it exhibited
the highest peak corresponding to the fault frequency in the envelope spectrum.
This mode provided a clearer representation of the fault frequency, confirming its
effectiveness in practical fault detection scenarios.
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• Future Work:
The results of this study demonstrate the effectiveness of the proposed VMD

methodology in bearing fault diagnosis, with significant improvements over tradi-
tional methods such as EMD, correlation, Gini index, and kurtosis. Future work
will focus on developing new features based on this methodology to improve the
accuracy of signal classification associated with different fault types. These features
will aim to provide a more precise and deeper representation of signal patterns,
thereby enhancing the diagnostic performance of classification systems in real-time
applications.
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