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Abstract
In this article, a new low-cost measurement system for measuring the electric component of electromagnetic
field is presented. For the initial calibration of the new measurement system, a reference meter was used, and
based on its readings, calibration was carried out using a machine learning model. Initial calibration was
carried out in a GTEM 1000 with a Teseq ITS 6006 generator connected. Five models were compared, among
which the K-Nearest Neighbors (KNN) model had the highest accuracy. The model was tested on 5 types of
aircraft, and its readings were compared with a reference sensor. Test measurements were carried out in five
types of aircraft: Cessna C172, Aero AT-3 R100, Tecnam P2006T, PZL M28 Bryza and the Mi-8 helicopter
with the developed new measurement system and a reference meter (NHT3DL) with an 01E probe. The new
measurement system is small in size and fits anywhere in the aircraft cockpit. To compare the models, the
following metrics were used: the coefficient of determination, mean absolute error, mean square error and
root mean square error. The Two-sample Kolmogorov-Smirnov tests were used for analysis, and the Bag of
Words and Bag of Patterns methods were applied.
Keywords: electromagnetic field (EMF), aircraft, measurement system, Machine Learning Model (MLM).

1. Introduction

The impact of electromagnetic field on human body and on electronic devices is the subject of
interest in many research centers around the world. Speculations on the effects of positive and
negative impacts are the subject of research that has been confirmed in many publications [1–4].

Petroulakis et al., [5] in their research work presented integrated sensors for monitoring and
assessing radio frequencies in the context of exposure to electromagnetic fields and human health.
They conducted a four-year research project dedicated to monitoring and analyzing the impact
of electromagnetic fields on human health. They demonstrated that research and monitoring of
electromagnetic field are important knowledge that will be used in further scientific work.
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Mallik et al. [6] created a neural network model called EMGAN - for the reconstruction of
electromagnetic field propagation in an urban environment. They collected measurement data
from several sensors placed in Lille, France. They showed the EMGAN algorithm learns and uses
information about the propagation of radio waves in the environment in a much more accurate
manner than experimental data obtained from traditional field measurements.

Subsequently, Silva et al. [7] measured the electromagnetic field in a shopping mall in
Natal, Brazil. They proposed a set of 6 measurement points that occur in places with large
concentrations of people and at least in the vicinity of one distributed antenna system (DAS).
It was shown that the strongest electric field was 3.4V/m, which is 8% of the limit set by
the International Commission on Non Ionizing Radiation Protection (ICNIRP). The authors
emphasized the fact that neither scientists nor theWorld Health Organization (WHO) issued any
global conclusion on the harmful impact of non-ionizing radiation on human health, therefore
prevention is always necessary.

In turn, Bae et al. [8] in their work examined the assessment of exposure to electromagnetic
fields generated by electric car chargers. The assessment was based on the ICNIRP. It has been
shown that magnetic field increases with charging current, which contributes to the charging speed.
The highest measurement values were 46 A/m. It was noted that the permissible limits set by
ICNIRP were not exceeded.

However, Atanasova [9] conducted research on exposure to electromagnetic field inside a car
while driving. They measured electromagnetic fields in cars during short (between cities) and
long (between countries) trips on several European roads in Austria, Bulgaria, Croatia, Hungary,
Italy, Slovenia and the Republic of Serbia. They showed that the highest measurement values were
achieved during a trip across Austria (E = 17.4 V/m).

Current literature reports include research on the development of various types of cheap
sensors to monitor phenomena related to health and the entire environment. Based on such
analyses, appropriate recommendations regarding the use of such devices appear [10–15]. In [10],
a simple low-cost capacitive pressure sensor was developed. It has been shown to have a wide
range of applications, excellent repeatability of results, and high sensitivity. In turn, in [11] an
innovative, inexpensive measurement system composed of a sensor node that uses economical
electrochemical sensors to measure the concentration of carbon monoxide (CO) and nitrogen
dioxide (NO2) as well as an infrared sensor to measure the level of particulate matter (PM)
has been proposed. It has been shown that the use of cheap sensors allows using a network of
serial sensors to measure air pollution in real time in a large number of locations. In contrast,
air quality monitoring stations are often limited to a small number of locations due to the high
cost of monitoring equipment. It was shown that the data from low-cost sensors, with the offset
correction and gain calibration, correlates well with the data acquired from the reference sensor.
The work [11] presents the measurement system of an inexpensive, innovative air pollution
monitoring device (APMD). The obtained results were verified with reference measurements
performed using a professional, expensive measuring instrument. To build the measurement system,
there were used an operational amplifier, a microcontroller, a brushless DC motor, a photodetector,
and sensors. Measurement data were collected locally and also sent to the IoT cloud platform. It
was shown that the measurement data read from the developed system differ from the reference
data. A machine learning model was proposed for sensor calibration. It was shown that the
optimized multi-sensor prototype module was 90.8% more energy efficient in the long run in
comparison with the reference design. An innovative, cheap measurement system consisting of
an EVAL-AD5933EBZ evaluation board housing an AD5933 IC for measuring the water surface
level is presented in [12]. It was shown that maximum errors of 6.1% and 5.6% were obtained
for capacitance and conductivity, respectively.

578



Metrol. Meas. Syst.,Vol. 31 (2024), No. 3, pp. 577–594
DOI: 10.24425/mms.2024.150289

Machine learning methods are quite often used in the calibration of various types of devices
[16–18]. This kind of calibration is carried out in a supervised learning manner, so the low-cost
sensor data are related to that of the reference sensor. Machine learning models are able to take
non-linearity into account, so they can outperform linear models in a significant way. In [18] Park,
D et al. showed that the proposed neural network model using machine learning solves the existing
limitations of the accuracy of cheap sensors and can provide high-reliability results not only for
monitoring, but also for research in various fields of environmental protection. It has been shown
that due to the use of neural networks, high measurement accuracy can be achieved using cheap
PM 2.5 sensors for measuring suspended dust.

Monitoring electromagnetic field in an aircraft may have many benefits. It is particularly related
to the safety of both people and avionics systems. Based on extensive research conducted by the
research team, which began in 2018 [19–22] and on the basis of the conclusions drawn, it resulted
in the need to design and built a new low-cost system to measure electromagnetic field. Analyzing
the physical nature of electromagnetic phenomena, various variants of a proprietary measurement
system were developed. The obtained measurement characteristics of the measurement system
were correlated with the reference measurement equipment.

The aim of the present study was to develop a new low-cost measurement system for measuring
the effective value of the electric component of electromagnetic field in the aircraft cockpit.
Measurements and data acquisition of field parameters involve the use of expensive measuring
devices. Typically, measurement capabilities are reduced due to high cost. The development of
a new measurement system together with a data acquisition system will enable measurements to be
carried out at selected points in the vicinity of field sources. The developed measurement system
is particularly suitable for conducting measurements aimed at determining both the exposure
of aircraft operators and avionics equipment, which directly translates into flight safety. The
development of such a relatively simple and cheap device will allow measurements to be performed
by pilots and aircraft crew members in order to quantitatively determine what field environment
they are exposed to. The data obtained by measurement in the field of electromagnetic fields will
ensure the availability of results to both the scientific community and society, as well as regulatory
organizations. Performing such measurements using devices that may become widely available
due to their low cost will also increase public awareness.

Therefore, we can describe the contribution of this study as follows:
– designing and implementing a measurement system consisting of an antenna, a power

detector, a microcontroller and a smartphone,
– developing a new model based on a machine learning algorithm, which will serve as

a calibration model for the developed measurement system,
– developing an original data acquisition system,
– preparing and conducting airfield experiments with five different aircraft,
– performing measurements with a reference meter to verify the obtained results.
Due to the complexity of the issue, the work was divided into three main parts. In the Methods

and Materials Section, a schematic diagram of the measurement system is defined, its operation
and its cooperating elements are described. For initial calibration, the developed model was based
on regression with the use of machine learning methods.

The result and discussion section presents the indications of the developed measurement
system which were compared with the corresponding values from the reference meter with the
use of bihistograms, the Two-Sample Kolmogorov–Smirnov test, the Bag of Words, and the Bag
of Patterns [25, 26]. This is preceded by an introduction that determines the significance of the
problem and the cited state of the literature emphasizes its modernity and relevance. The research
results were concluded in the summary.
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2. Method and Materials

Based on the literature, it was found that the issue of monitoring electromagnetic field in the
aircraft cabin is particularly important due to the extensive use of radio navigation equipment and
other on-board systems that are sources of the field. The authors have been since 2018 conducting
research on the influence of electromagnetic field during, among others, training flights at the
Aviation Centre of the University College of Applied Sciences in Chełm, Poland [20,21]. This
study is a continuation of the research described in [19–22]. Creation of a new, relatively cheap,
compact measurement system for measuring the electrical component of the electromagnetic field
was suggested. Figure 1 shows the developed measurement system. All test flights were performed
in similar weather conditions. The flights were carried out on paved runway at the Depultycze
Królewskie airfield near Chełm in eastern of Poland from 7.00 am to 7.00 pm UTC (Coordinated
Universal Time) time. Air temperature was approximately 7–15°C. The wind direction at the
ground level was between 210 and 240 degrees, the wind speed was between 6–7.5 m per second
and the pressure was 1011–1016 hPa.

2.1. Development of the Measurement System

The purpose of the created measurement system is to collect measurement data of the electric
component of electromagnetic field. The device uses a set of 3 antennas from which the signal is
transmitted to the power detector, then at the microcontroller level the signal is converted from
analog to digital and the readings from the 3 antennas are averaged, the final results are displayed
in a smartphone to which the device is connected via a type C USB cable. The schematic diagram
of the measurement system is shown in Figures 1 through 3.

Fig. 1. Schematic diagram of the developed low-cost measurement system to measure the electric component of electro-
magnetic field.
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.
Fig. 2. Functional components of the measurement system (a) antenna, (b) power detector and (c) microcontroller board.

Fig. 3. The functional block diagram of the proposed measurement system to measure electric field.

The used power detector has the measurement range from 1–8000 MHz for −58 . . . − 1 dBm,
which translates into 280 µV to 200 mV for 50 Ω. By using an attenuator, the measurement range
can be extended to approximately 40 dBm, which translates into 10 W. Due to the need to limit
the measurement band to the selected frequencies, low-pass RC filters were used in the sensor
antenna circuit [25]. The developed measurement system uses an AD8318 Logarithmic Detector
in combination with an Arduino microcontroller board. The microcontroller is responsible for
sending data to the smartphone. The article examines regression models using Python with the
scikit-learn, lightgbm and xgboost libraries.

The resolution of the ADC (Analog to Digital Converter) is 10 bits, so the values are within
the range of 0–210-1, in other words from 0th to 1023rd quanta. For the calibration purposes, it was
decided to use an industrial grade EMF meter with a probe (reference), which provides real ground
data to the machine learning model.

2.2. Calibration of the Measuring System

The initial calibration of the measurement system was carried out using the reference meter
(Microrad NHT3DL). The referencemeter uses an 01Emeasurement probe. The probe is commonly
used to sense both CW (continuous wave) and modulated signals in the frequency range from
100 kHz to 6.5 GHz. A detailed description of the referencemeter specifications is presented in [20].

The calibration was performed in a GTEM 1000 (Gigahertz Transverse Electromagnetic)
chamber with ITS 6006 generator made by Teseq (Fig. 4). The chamber is a shielded measurement
environment without external sources. The shielding effectiveness for the measurement range
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from 80 MHz to 6 GHz, in which the tests were performed, is more than 60 dB. ITS 6006 is
a RF (Radio Frequency) signal generator in the range from 80 MHz to 6 GHz. The Teseq ITS
6006 consists of an integrated RF signal generator, RF switch and EUT (Equipment Under Test)
monitoring interfaces. The signal is directly connected to a CBA 1G-070 power amplifier also
made by Teseq. The computer with the WIN 6000 software installed controls the entire system
of signal generation and monitoring of RF fields in the shielded chamber. Electric fields were
simulated in the laboratory conditions shown in Fig. 4. The calibration of the system was carried
out in electric fields of 1 V/m, 3 V/m and 10 V/m. During calibration, the tested devices were
uniformly exposed to the generated electric field with set values.

Fig. 4. Schematic diagram of initial calibration.

In order to eliminate the interaction between the reference meter and the measurement system,
the calibration process was performed under the same conditions in the shielded GTEM 1000
chamber, but the measurement system was placed separately.

2.2.1. Calibration Using Machine Learning Models

In order to calibrate the system, measurements were made in the chamber with the wave
generator. The reference meter and the developed system were placed in the chamber separately.
The time series of the readings of both devices were averaged to obtain a generalized characteristic
of each device. The obtained readings were compared with each other using machine learning
algorithms. The calibration procedure is presented in Fig. 5.

Fig. 5. Calibration process.
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2.3. Model Selection

In order to select the model, we focus on the machine learning solutions. Due to the character
of the data, solutions based on supervised learning were selected. In machine learning supervised
learning is a technique used to train a model based on pairs of input data and desired output data.
This approach lets the model learn relationships between input and output data [26].

It was decided to choose the following models to fit the data for the calibration process:
– Linear Regression – baseline model;
– K-nearest neighbors (KNN) regressor;
– Decision Tree Regressor;
– Decision Tree Regressor with AdaBoost (Ada Boost Regressor) [27];
– Decision Tree with Gradient Boosting (Gradient Boosting Regressor) [28].
Uniform weights are used in the KNN regression, meaning that every point makes the same

contribution to the categorization. To categorize a query point, the KNN algorithm is used with
Euclidean metric – (1):

d(x, y) =

√√
n∑
i=1
(xi − yi)2, (1)

where: xi , yi are coordinates of the i-th point.
Regression decision trees work is based on the algorithm that divides the space of input

variables into areas where the predicted values of the target variable are similar. The mean squared
error was chosen as the node split criterion. This criterion uses the mean of each terminal node to
minimize the L2 loss and is equivalent to variance reduction as a feature selection criterion.

The AdaBoost (Adaptive Boosting) algorithm is a machine learning technique that is used
to build a strong classifier from a set of weak classifiers. At the first stage, the algorithm first
initializes the weights w1

n =
1
N for a data set consisting of N samples. The sequential operations

listed below are carried out until the number of iterations t reaches the variable T , or the loss
function is Lm ≤ 0.5 [27]:
• Get the data set of size N from training data with replacement with probability wt

n for
n = 1, 2, . . . , N and then fit weak learning t to the resampled data and calculate the fitted
values on the original dataset. The fitted values are denoted as f t (xn).
• Observation error Lt

n is calculated using the equation as follows:

Lt
n =

|yn − f t (xn)|
maxn{|yn − f t (xn)|}

(2)

where: yn is the true value.
• The model error Lm is calculated by (3):

Lm =

N∑
n=1

Lt
nw

t
n (3)

• If the initial criterion is not met, then the weights are updated using (4):

wt+1
n =

wt
n

(
Lm

1 − Lm

)1−Lt
n

N∑
n=1

wt
n

(
Lm

1 − Lm

)1−Lt
n

(4)
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In the case of the gradient boosting algorithm, the model is initialized with a constant value of
F0 (x), which is described by (5) [28]:

F0(x) = arg min
γ

n∑
i=1

L(yi, γ) (5)

where: L = (yi − γ)2, γ is the searched value, yi is a value from the data set.
The next steps are carried out in a loop from m = 1 to M:
• Residuals are calculated as follows: ri = −

[
dL(yi,F(xi ))

dF(xi )

]
F(x)=Fm−1(x)

,
• Fit the regression tree with the feature x versus r and create terminal node reasons Rj for

j = 1, . . . , J
• Compute: γj = arg minγ

∑
xi ∈R j

L(yi, Fm−1(xi) + γ) for j = 1, . . . , J,
• Update the model: Fm(x) = Fm−1(x) + v

∑Jm
j=1 γj1 (x ∈ Rj),

where: 1(·) is the indicator function (returns 1 if the argument is true, and 0 otherwise) [27].
Variable v is the learning rate and its numerical value lies between 0 and 1 to control the

degree of contribution of the additional tree.
To compare the performance of the models described above, we use such metrics as:
• the coefficient of determination (R2), which measures how well a statistical model predicts
an outcome. The lowest possible value of R2is 0 and the highest possible value is 1;
• the mean absolute error (MAE), which indicates the average absolute error between the
values predicted by the model and the actual observed values;
• the mean square error (MSE), which measures the average of the squares of the errors, i.e.,
the average squared difference between the predicted values and the actual value;
• the root mean square error (RMSE), which determines the average distance between the
predicted values from the model and the actual values. The lower the RMSE, the better
a given model is able to “fit” a dataset.

The models were optimized to obtain the highest accuracy with the minimum depth of the
decision tree and the minimum number of estimators. During the optimization, parameter values
were increased until a plateau was reached for the metrics’ values [29].

The model based on the linear regression performed the worst, it achieved the coefficient of
determination R2 of 0.943 with the MAE of 0.50, MSE of 0.56, and RMSE of 0.75. Models based
on decision trees achieved similar values. Among these models, the Gradient Boosting Regressor
model performed best, achieving R2 of 0.969 with MAE 0.39, MSE 0.30 and RMSE 0.55. The
Ada Boost Regressor performed the worst among tree models, achieving R2 of 0.966. Among
all models, the KNN model showed the best performance, achieving R2 of 0.978, MAE of 0.32,
MSE of 0.22, and RMSE of 0.46. In the optimization process, the model parameters were selected
so that the number of nearest neighbors is 2, the brute force method was used as the algorithm
responsible for finding the nearest neighbor. This method computes distances between all pairs
of points in the dataset to find the best neighbors. Table 1 presents the metrics for the analyzed
models. Figure 6 shows the example of the calibration and measured values. Figure 7 shows the
comparison of readings of the developed measurement system and the reference meter.

To determine the error of the model, the metric Lpd was used in the form of average percentage
difference, which is determined by (6):

Lpd =

∑���� ŷi − yi

ŷi + yi
·

1
2

���� · 100%

N
(6)

where: ŷi is the i-th predicted value, yi is the i-th true value, N is the number of samples.
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Table 1. Fitting results for the fixed weight factor.

Model R2 MAE (V/m) MSE (V/m) RMSE (V/m)
Linear Regression 0.943 0.50 0.56 0.75
KNN Regressor 0.978 0.32 0.22 0.46

Decision Tree Regressor 0.967 0.37 0.32 0.57
Gradient Boosting Regressor 0.969 0.39 0.30 0.55

AdaBoost Regressor 0.966 0.44 0.33 0.58

Fig. 6. Developed measurement system vs. reference meter.

Fig. 7. Comparison of readings of the developed measurement system and the reference meter.

For the KNN regressor model, the average percentage difference is equal to 0,98%.
Also a background noise test was conducted in the chamber prior to the calibration. The

average value of the noise was 0.1296 for the calibration values, and 0.1206 for the reference
values. The standard deviation was 0.0126 and 0.0092 for the calibration and reference values,
respectively. The minimum values were 0.1022 and 0.1000, the maximum values were 0.1663 and
0.1480 respectively.
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After the calibration, the adjustment process was performed in the GTEM 1000 chamber
under the electric field of E = 10 V/m. In order to compare the obtained results, the developed
measurement system and the reference meter were placed in a shielded chamber for a 6-minute
background noise test. Figure 8 shows example result of the background noise test.

Fig. 8. Example of a background noise test.

In order to identify comparative regularities, a statistical analysis of the obtained results was
carried out. Table 2 presents the results of the comparative analysis.

Table 2. Comparison of noise test for the developed system and referenced
meter values (E, V/m).

Developed system Reference meter

Mean 0.1296 0.1206

Standard deviation 0.0126 0.0092

Minimum 0.1022 0.1000

Maximum 0.1663 0.1480

Based on the obtained measurements, it can be seen that the differences in the obtained average
values are E = 0.009 V/m and for maximum values E = 0.0183 V/m, respectively.

3. Results and discussion

The tests were carried out using the developed system in a Cessna C172, an Aero AT-3 R100,
a Tecnam P2006T, a PZL (State Aviation Works) M28 Bryza planes and a Mi-8 helicopter.

The system was placed in the cockpit of the test aircraft. For verification purposes, during
the test flights, measurements by the reference meter were also performed. The sensor of the
developed system was installed in the place occupied by the aircraft crew (see Fig. 9). It should be
noted that due to the pilot’s ergonomics, the selected points of installation for all aircraft were at
a similar distance from the avionics instruments. At the same time, the location of the sensor did
not impair safety during the test flights.
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Fig. 9. Installation of the measurement system during a test flight: (a) Aero AT-3, (b) Cessna C172 and (c) Tecnam P2006T.

The results of measurements of the electric field carried out by the developed measurement
system were compared with those obtained by the reference meter. Sample results are presented
in this study and a detailed analysis of the measurement data obtained using the reference meter
is considered in per [21].

The results were analyzed using the bihistograms and the two-sample Kolmogorov-Smirnov
(KS) test. Kolmogorov–Smirnov statistics Dm,n is determined from the equation:

Dm,n = sup
x
|F1,n (x) − F2,m(x)|, (7)

where F is empirical distribution functions.
In each bihistogram, one can see a similarity between the bihistogram for the tested new

system (top) and for the reference meter (bottom). The KS test showed that we do not have enough
evidence to reject the null hypothesis (H0) in any studied case. Thus, for each aircraft the two
dataset values are from the same continuous distribution. The summary of the results of the KS
test is presented in Table 3. Selected bihistograms are shown in Fig. 10.

Table 3. Results of the two-sample Kolmogorov–Smirnov test.

Aircraft Statistic p-value H0 rejected
Cessna 172 0.0242 0.06972 No
Aero AT-3 0.0161 0.9738 No

Tecnam P2006T 0.0223 0.2439 No

The next part of the analysis involves applying the Bag of Words (BOW) and Bag of Patterns
(BOP) methods to compare signal characteristics. The BOW and BOP methods were chosen for
their ability to average signal values and ignore outliers, which can lead to more stable signal
characteristics. By representing a signal using a feature vector, both BOW and BOP make it easier
to compare different signals and identify similarities or differences. The BOWmethod was applied
to an averaged time series of measurements during one minute for a given route using the reference
meter and the developed measurement system. BOW uses a sliding window to extract subseries,
and then it uses the Piecewise Aggregate Approximation and Symbolic Aggregate Approximation
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(a) (b)

(c)

Fig. 10. Bihistogram: (a) Cessna C172, (b) Aero AT-3 and (c) Tecnam P2006T.

techniques to turn each subseries into a word. As a result, this method converts every time series
into a word bag [30–33].

In the case of the Cessna 172 aircraft, in the generalized time series for one minute, there
is a noticeable sequence of patterns b b b b d, c a c c c, b b b b, d b c and b d b in the time
series obtained by the developed measurement system as well as by the reference meter. The
aforementioned pattern sequences occur at different places in the generalized time series. This
is because the measurements were made at different instants but due to the influence of various
factors such as differences between flight paths the instruments’ readings may have differed slightly.
The plot of patterns from the BOW method are shown in Figs. 11 and 12 for the developed
measurement system and for the reference meter for the Cessna C172 aircraft.

Fig. 11. BOW method for the readings of developed measurement system (Cessna 172).
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Fig. 12. BOW method for readings of reference meter (Cessna 172).

The BOP method was used to find patterns, occurring in the signals and to compare them in
more depth. The BOP method is a method that works in a similar way to the BOW, except that it
returns the frequencies of each word for a given time series [27]. It was decided to reduce the
maximum pattern ength to 3 characters so that the method will find short but similar patterns.

In both time series for the Cessna 172 aircraft, the same patterns were found, which differ only
in frequency of occurrence. For the results of the reference method, the predominant patterns are
a b a and b a a, and for the developed measurement system these are a a a b. Based on the readings
obtained by the developed measurement system, it can be seen that the effective value of the electric
field is 1.77 V/m. Most results were within the range of 0.2–1.0 V/m. The pattern of frequency
plot and measurements of the electric field performed with the developed measurement system for
Cessna 172 are shown in Figure 13.

(a) (b)

Fig. 13. Results for Cessna C172: (a) BOW method and (b) electric field measured by the developed measurement system.

In the case of Aero AT-3, the generalized time series for one minute for both the readings from
the new measurement system and the reference meter exhibits the occurrence of c c b, a c c c and
b b d patterns. For the patterns described above, there is a slight difference in the value of the
E component. The plot of patterns for the BOW method for the developed measurement system
and for the reference meter are given in Figures 14 and 15, respectively.

In both time series for the Aero AT-3 aircraft, the same patterns were found, which differ only
in frequency of occurrence. In the readings, obtained on the ground by the reference meter, the
predominant patterns are a a a and a b b. In the readings, obtained on the ground by the developed
measurement system, the predominant patterns are b a a and b b a. In the case of Aero AT-3, it can
be observed that the maximum electric field was 5.27 V/m. The range of other results obtained
during the test flights is from 0.19 to 1.0 V/m. The pattern frequency plot and an example of the
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Fig. 14. BOW method for the developed measurement system (Aero AT-3).

Fig. 15. BOW method for the reference meter (Aero AT-3).

(a) (b)

Fig. 16. Results for Aero AT-3 aircraft: (a) BOWmethod, (b) electric field measured by the developed measurement system.

electric field measured by the developed measurement system for the Aero AT-3 aircraft are shown
in Figure 16. (błąd numeracji rysunków)

The BOW method for the generalized time series for the Tecnam P 2006T aircraft exhibits
patterns d c b, b b d, a b b b, c b b, b b b d c and d c b b for the developed measurement system and
the reference meter, respectively.

The BOP method for the readings of the developed measurement system as well as for the
reference meter did not show the appearance of pattern a a a. The frequency pattern and the electric
field measured by the developed measurement system for the Tecnam P2006T aircraft are shown
in Figure 17.
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(a) (b)

Fig. 17. Results for the Tecnam P2006T aircraft: (a) BOW method and (b) electric field measured by the developed
measurement system.

(a) (b)

Fig. 18. Electric field measured by the developed measurement system in: (a) Mi-8 helicopter, (b) PZL M28 Bryza aircraft.

The described method was also tested on a Mi-8 helicopter and a PZL M28 Bryza plane (see
Fig. 18a). The maximum reading for the MI 8 aircraft is 2.4 V/m. Most of the remaining results
are within the range of 0.1-1.5 V/m. The maximum reading observed for the PZL M28 Bryza
airplane was E = 5.31 V/m. It can be observed that most of the remaining measurements are
between 0.1 V/m and 3.1 V/m (see Fig. 18b).

Having compared the obtained valueswith the guidelines included inDirective 2013/35/EU [34],
we can conclude the observed electric fields in the aircrafts and helicopters do not exceed the
maximum permissible level.We used a broadband device, therefore we compared themeasurements
with the maximum permissible level of 28 V/m, taken from the Directive 2013/35/EU.

4. Conclusions

The new portable low-cost measurement system to measure electric field was developed. The
calibration was performed using the NHT3DL reference meter. The calibration procedure was
developed using several artificial neural network models. The model based on the KNN regressor
was chosen because it showed the highest accuracy among the tested models. The accuracy of
the calibration using the decision tree model is confirmed by the high consistency between the
measurements taken by the developed measurement system and the reference meter.
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The differences between the average measurements taken by the developed measurement
system and the reference meter were less than 1%. The accuracy of the obtained results is
satisfactory. The developed measurement system is cheaper that the professional measurement
systems while its accuracy is comparable. It can be used widely used, e.g. in a matrix system.

The authors plan to conduct further research with a number of measurement systems located
at various points of an aircraft in order to determine which components come from the aircraft
and which come from sources in the external anthropogenic environment. Further experimental
studies will also be carried out to quantify any factors influencing field values.
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