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Abstract: To address the overvoltage problem caused by the reverse flow of current when
a high proportion of distributed photovoltaic (PV) is connected to the distribution network,
this paper proposes a grid-connected voltage regulation control strategy based on the
cluster division of the Distributed Model Predictive Control (DMPC) algorithm. Firstly,
the overvoltage responsibility of each node is calculated using the Shapley value method.
This is combined with k-means clustering to achieve effective cluster division, enabling
dynamic adjustment of the active and reactive power of photovoltaic power generation units
to stabilize regional voltage. Secondly, a group grid-connected voltage control strategy
is introduced. This strategy controls the active and reactive power outputs by integrating
real-time power output and voltage information from PV generating units in the region with
the DMPC algorithm, ensuring overall voltage stability of the grid-connected system. Finally,
actual overvoltage data from a 10 kV distribution line in the Dingxi power grid, Gansu
Province, is used to verify that under the proposed control strategy, PV grid-connected
overvoltage nodes are maintained within 1.06 p.u. The control effect is improved by a margin
of 0.05 compared to traditional control methods. This demonstrates the effectiveness of
the grouped grid-connected voltage regulation control strategy, achieving smoother voltage
regulation performance in distributed PV grid-connected systems.
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1. Introduction

1.1. Motivation and aims

With the emergence of global energy shortages, China has proposed a “dual-carbon” national
strategic goal aimed at peaking carbon dioxide emissions by 2030 and achieving carbon neutrality
by 2060. Increasing the share of new energy generation is pivotal in implementing the “dual-carbon”
goal. This strategy also involves enhancing the proportion of non-fossil energy consumption,
thereby facilitating the broader objective of energy transformation. [1].

According to China’s National Energy Administration statistics on May 6, 2024, China’s
overall PV new grid-connected capacity in the first quarter of 2024 was a total of 4.5740 (MW); of
which: centralized PV power plants – 2.1930 (MW); distributed PV - 2.3810 (MW) including
household distributed – 6920 (MW). By the end of March 2024, the cumulative grid-connected
capacity was 6595 (MW). Especially in Northwest China, light resources are abundant, and the
PV industry is developing more rapidly. In the future, following the national strategy to accelerate
the transformation of clean and low-carbon energy supply, it is inevitable to continue to vigorously
develop new energy sources. However, the rapid development of distributed PV high penetration
and PV power generation that is intermittent and fluctuating will cause the grid regulator control
to face many challenges [2]. When there is a high penetration of PV in the distribution network, it
exacerbates frequency and voltage fluctuations, thereby affecting the safe and stable operation of
the distribution network. This can lead to issues with power balance, power quality on the user
side, and the overall reliability of the power supply [3].

The main issues that may arise upon connecting to the network include voltage overruns,
voltage imbalances, line overloading, flicker, and exceeding harmonic standards. Among these,
overvoltage problems are typically the primary limiting factor for PV integration capacity.
When a high proportion of distributed PV is connected to the distribution network, excessive
midday sunlight can lead to PV generation surpassing user demand. In the absence of energy
storage systems, this can cause reverse power flow, resulting in overvoltage issues within the
distribution network [4]. Addressing distributed PV grid-connected point voltage regulation and
control to limit overvoltage problems will be crucial for overcoming the primary limitations
on PV development in the future. Currently, two primary grid-connected PV control methods
are prevalent: centralized and decentralized [6]. Addressing the electricity supply shortage in
Cameroon, Reference [10] constructs a procedural methodology for assessing installed solar
PV capacity on the interconnected grid for dynamic analysis. It evaluates the technical stability
of the grid against substantial disturbances under optimal solar PV penetration. Furthermore,
Reference [11] proposes an optimal configuration of Phasor Measurement Units (PMUs) to
tackle the dynamic stability issues of the Southern Interconnected Grid (SIG) in Cameroon,
providing a system path for distributed solar PV generation to accommodate growing loads. The
aforementioned reference focuses on the use of flexible power equipment.

This paper adopts an alternative perspective by employing intelligent control technology to
enhance power system stability and concentrates on resolving the grid-connected over-voltage
problem caused by photovoltaic access.
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1.2. Literature review and identification of research gaps

In the field of overvoltage issues, current researchers primarily address the problem through
three mainstream approaches:

1. configuring energy storage systems,
2. regulating reactive power in conjunction with limiting active power output, and
3. adjusting the tap switching position of on-load regulator transformers.
Reference [12] analyzes and studies the impact of smart transformers on various radial

distribution systems. It introduces an improved backward/forward trending algorithm for the
deployment of smart transformers in radial distribution systems. The direct trending method is
utilized, focusing on the seamless integration of smart transformers with the grid and addressing
grid updating challenges. The optimal configuration of smart transformers is optimized to minimize
power losses in the grid. The effectiveness of the approach in addressing common grid issues using
smart transformers is evaluated. However, the final solution necessitates frequent transformer
operations, which may introduce new transient disturbances to the distribution grid. This aspect of
transformer regulation grid integration has not been adequately addressed.

Neural networks and other adaptive algorithms for power control methods are also frequently
mentioned. For example, Reference [13] utilizes a Back Propagation (BP) neural network prediction
model, combining weather forecasts, light intensity, temperature, and real-time output power of PV
power generation to predict the need to reduce active power and control PV power output to prevent
overvoltage occurrences. This method requires processing a large amount of data, which is highly
demanding, and the final prediction accuracy cannot be guaranteed to meet the required standards.

References [14] construct a mathematical model for optimal voltage regulation of energy
storage by determining the power and state of charge (SOC) of the energy storage system. It
allocates energy storage within the cluster based on the total power required by the cluster where
the node with the overrun voltage is located, and determines the timing of storage actions to
maximize the operating benefit of the distributed energy storage. The results show that the control
scheme significantly limits voltage overruns. However, the high cost of current energy storage
equipment makes it impractical to install such equipment at each PV point. Additionally, due to
the complexity of the grid structure across the entire power sector, determining the reasonable
capacity of energy storage installations remains a practical issue. Furthermore, the impact of this
scheme on the overvoltage correlation between clusters is not considered.

References [16] consider the relevant constraints of different PV systems and loads within
a specific region, linearizes the non-linear constraints, and ultimately establishes a distributed
optimal dispatch model for active distribution networks to achieve efficient and optimal scheduling.
The method of distributed optimization adopted can refine the problem of interest game among
the stakeholders under operational constraints.

To address this issue, this paper undertakes cluster division control. Several prevalent approaches
for cluster division optimization in current studies include the network division method proposed
by Reference [19], which utilizes the k-means clustering algorithm. Additionally, intelligent
heuristic algorithms such as the immunity algorithm [21] are frequently employed for cluster
segmentation of distribution networks. Furthermore, there are multi-attribute cluster segmentation
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approaches that integrate factors like geographic distances, line resistances, and loads. For instance,
Reference [18] establishes a second-order conical optimization model to iteratively optimize
through an active-reactive power partitioning approach, with an objective function aimed at
minimizing regulation. Cluster division is performed based on the influence of active and reactive
power on overvoltage control and corresponding indicators.

A summary of the contribution and novelty presented in this study are as follows:

– The Shapley value method, derived from cooperative game theory, is employed to quantify
the overvoltage liability attributed to each PV node. This approach allows for the calculation
and determination of output values, thereby addressing the issue of frequent inverter actions.

– Due to the complexity arising from numerous control variables, which leads to a computa-
tional dimensionality explosion, this paper integrates mainstream solutions with the k-means
clustering method to achieve cluster division. This facilitates the dynamic adjustment of
active and reactive power in PV power generation units. The proposed approach aims to
stabilize regional voltage, maximize power utilization, and mitigate the issue of voltage
overruns.

– The DMPC algorithm is employed on a cluster-based basis to regulate voltage control
strategies following grid connection and address instances of voltage limit violations.

2. PV grid-connected overvoltage mechanism analysis

2.1. Nodal overvoltage liability calculation

The network wiring topology shown in Fig. 1 serves as an example to illustrate the mechanism
of overvoltage generation when PV systems are grid-connected. In the distribution line depicted,
divided into four regions at nodes i/ j/k+1, there are two branches, with the three branch end nodes
labeled F/N/R. Additionally, within the three branches and at node i + 2, there are connections to
the distributed PV systems.

According to the Distflow tidal equation [21], take branch 1 as an example to derive the voltage
relationship between node n and the previous node n-1 as:

U2
n = U2

n−1 − 2(PnRn +QnXn) + (R2
n + X2

n)
P2
n +Q2

n

U2
n

, (1)

where: Un and Un−1 are the voltages at node nand the previous node n − 1, respectively; Pn and
Qn are the active and reactive power from the previous node to the next node, respectively; Rn and
Xn are the resistance and impedance values between node nand the previous node, respectively.
Since the third term of the three terms of the above equation is much smaller than the other two
terms, the simplification gives:

U2
n = U2

n−1 − 2(PnRn +QnXn). (2)
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Fig. 1. Distribution network simplified topology

Superimposed on nodes above node n:

U2
n = U2

n−1 − 2(PnRn +QnXn) + 2
n∑

k=1
PkRk +QkXk . (3)

The above equation combined with the topology from Fig. 1 can be obtained:

P2 = (PL2 − PG2) +

F∑
n=3freedF

(PLn − PGn) +

N∑
n=3freedN

(PLn − PGn) +

R∑
n=3freedR

(PLn − PGn), (4)

Q2 = (QL2 −QG2) +

F∑
n=3freedF

(QLn −QGn) +

N∑
n=3freedN

(QLn −QGn) +

R∑
n=3freedR

(QLn −QGn). (5)

The single node i and k active reactive power are calculated as:

Pi =

F∑
n=i

(PLn −QGn), Qi =

F∑
n=i

(QLn −QGn),

Pk =

F∑
n=k

(PLn −QGn), Qk =

F∑
n=k

(QLn −QGn), (6)

where PLn, QLn, PGn, QGn (n = 1, 2, 3, ...) are the active load, reactive load and active reactive
generation at node n, respectively.

Based on Eqs. (1)–(6), it is evident that the voltage at the PV grid-connected point is not
solely contingent upon the output of the PV system itself. It is also influenced by the outputs of all
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PV systems across other branch circuits and the entirety of the distribution system. Furthermore,
as indicated by Eq. (3), the voltage at node n, in relation to the first node, is susceptible to the
transmission power along its respective supply path. In instances where the distributed PV power
exceeds the load demand, the reverse transmission power along the supply line will elevate the
voltage at the grid-connected node, potentially leading to overvoltage issues.

In the case of increasing PV penetration; the main solutions to the overvoltage problem on PV
distribution lines with high penetration are to reduce active power back-feeding on the line and to
increase inductive reactive power flow in two ways. In distribution lines, local power control can
effectively address overvoltage at a single node. However, the reactive capacity of a single node
is constrained, and the influence of reactive power compensation both upstream and downstream
of a node on a single line necessitates analysis. With increasing penetration, single node control
exhibits limited suppression efficacy. Line voltage overvoltage often stems from the cumulative
impact of PV power backflow across multiple nodes along the entire line. Consequently, the entirety
of the distribution line is examined as a whole, employing cluster division and coordinated control
units to tackle overvoltage issues comprehensively. The subsequent delineation outlines the specific
criteria for cluster division and the distribution of responsibilities in the calculation process.

2.2. Nodal overvoltage liability calculation

The overvoltage generation in the actual distribution line stems from the cumulative effect of
power backflow from all PV nodes. Therefore, by incorporating overvoltage generation into the
responsibility calculation based on cluster division, adjustments for overvoltage across the entire
distribution line can be comprehensively and accurately controlled. Within the same distribution
system, which includes multiple PV nodes, the Shapley value calculation method from cooperative
game theory is applied to ascertain the specific responsibility magnitude of each PV node in
causing overvoltage.

When utilizing the Shapley value method [21] a crucial step involves defining the utility
function, which, in the context of the overvoltage problem, is represented by the overvoltage
index. Here, a weighted voltage deviation index, known as the load-weight voltage deviation index
(LVDI), is considered. This index incorporates both the load size and the overall overvoltage level
as the primary weighting factors.

LVDI(H) =
∑
i

Ui,t −Umax

Umax
τi,t (H), (7)

where: LVDI(H) is the load deviation voltage weighted index at time t, Ui,t is the voltage at node i
at moment t, which is the upper voltage limit specified by the distribution network; H is the set
of all nodes where overvoltage occurs, and τi,t (H) is the load node weights at that moment. The
specific calculation is:

τi,t (H) =
P̂i,t∑

m

P̂m,t

, (8)
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where P̂i,t is the load of node i at moment t. For the degree of node overvoltage, combined with
the node load weights, the overvoltage offset indicator of the whole network is finally calculated;
the Shapley value method is used to calculate the impact of each node voltage indicator. Each
node Shapley value calculation formula is:

µi,t =
∑
C∈K

(C)[LVDIt (C) − LVDIt (C\{i})]

νi,t (C) =
[(|C | − 1)! (|K | − |C |)]

|K |!

, (9)

where: µi,t is the Shapley value of distributed PV subject i at moment t; C is the cluster division
containing node i; νi,t (C) is the weight value that node i occupies in cluster C at moment t;
LVDIt (C) is the detailed indicator of overvoltage generated by cluster C at power backward;
LVDIt (Ci) is the overvoltage indicator after removing node i; K is the set of all PV points
generating overvoltage; and |C |, |K | are the numbers of elements in the set C and K .

The specific node Shapley value is calculated and the value is applied to calculate the specific
overvoltage responsibility share size for each corresponding node [23]. The specific responsibility
percentage is:

Ri,t =
µi,t∑

i∈K

µi,t
× 100%, (10)

where Ri,t is the specific overvoltage liability value of node i at moment t.
Overvoltage problems can be effectively mitigated in a timely manner through reactive power

compensation and active curtailment strategies tailored for distributed PV systems [24]. On a per-
distribution line basis, overvoltage incidents are addressed through in-situ prevention measures. As
voltage readings near predetermined upper and lower thresholds, proactive steps are implemented
to either absorb or supply reactive power. The precise adjustment of reactive power is dictated by
the voltage level at the current control node, as illustrated in Fig. 2.

Q

Qup

Qdown

VupV1 V2

V
Vn

P

Vdown

Fig. 2. Q–V dynamically regulated PV power curve
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In the figure, Qup is the upper limit of the reactive power margin, which is related to the PV
capacity and power factor;Vup andVdown are the upper and lower limits of the node voltage, andV1,V2

are the critical values for controlling the power compensation. Then the Q–V curve obtained on the
basis of the current node voltage measurement data is the dynamic regulation of PV power process.

2.3. Control cluster unit division

This paper primarily focuses on coordinating communication connections between different
clusters, with node power to node voltage sensitivity serving as the main reference. Partitioning is
based on the degree of node coupling within the cluster being high, while the coupling between
partitions is relatively weak, as determined by voltage sensitivity.

The voltage control is dominated by voltage sensitivity between nodes and decoupling of
active/reactive power of the system based on trend calculation. The active/reactive power sensitivity
to voltage is derived from the Jacobi matrix calculated by the Niu La method [23].[

∆P
∆Q

]
=

[
DPθ DPU

DQθ DQU

] [
∆δ

∆U

]
, (11)

where: ∆P, ∆Q represent the node active and reactive power change; ∆δ, ∆U are the node voltage
phase angle and amplitude change; DPθ , DPU , DQθ , and DQU belong to the Jacobi matrix
elements in the equation that indicates the relationship between the node power and voltage
changes; the above formula is transformed into[

∆δ

∆U

]
=

[
MPθ MQθ

MPU MQU

] [
∆P
∆Q

]
, (12)

where: MPθ and MQθ represent the node active and reactive power regulation after the phase
angle change; MPU , and MQU stand for the corresponding change in power after the degree of
change in voltage amplitude. The above two formulas are derived from the entire distribution line
in a node voltage amplitude and active and reactive power to change the amount of the following
relationship between the existence of the formula.

∆U = MPU∆P + MQU∆Q. (13)

From Eqs. (12) and (13), it can be seen that when one of the active and reactive powers is
determined constant while the other is changed, the change in voltage magnitude is only related
to the corresponding sensitivity matrix. Therefore, decoupling control of active and reactive
power is possible. With the modular indicator function proposed by Louvain’s algorithm [24], the
corresponding indicators judge the quality of cluster division partition, reduce human interference
factors, and electrify indicators such as node edge power, node coupling degree, and so on, for
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complex network decomposition. The modularity function can be expressed as:

ρ =
1

2m

∑
i

∑
i

(
Ai j −

kik j

2m

)
δ (i, j) ,

m =
1
2

∑
i

∑
i

Ai j

δ (i, j) =
{

1 i, j located in the same cluster
0 other ,

(14)

where: Ai j is the connection edgeweight between ij two nodes, directly connected Ai j = 1, otherwise

Ai j = 0; ki is the sum of the weights of all nodes connected to i node, and m =
1
2

∑
i

∑
i

Ai j

is the sum of all the values of the whole network. The ρ value belongs to the penalty function
adjustment, and its size reflects the performance of the division between the corresponding clusters.

During cluster partitioning, it’s essential to assess the quality of the resulting partitions while
minimizing human interference factors. Complex network decomposition is conducted using
electrification metrics such as node edge weights and degree of node coupling [25]. The number
of clusters directly impacts the control efficacy of the entire line, and the modular function is
employed to gauge the performance of division among corresponding clusters. Additionally, the
Sum of Squared Errors (SSE) is utilized to ascertain the optimal number of clusters and evaluate
the distance between nodes and cluster centers within each cluster, as expressed in Eq. (15):

SSE =
E∑
i=1

|Ci |∑
j=1

L2
jεi
, (15)

where Ljεi is the electrical distance of node j from the cluster center εi . |Ci | is the number of
nodes in cluster i. E is the number of cluster divisions. There is a negative correlation between the
number of cluster divisions and the number of nodes in the cluster, but it is not a linear relationship.
Therefore, according to the corresponding wiring circuit topology to calculate a reasonable index
choose the appropriate division of clusters.

In this paper, the sensitivity matrix is initially computed. Based on the sensitivity values,
k-means clustering division is conducted. Since k-means division relies on distance, the calculation
of distances in the node sensitivity matrix is performed. However, the outcomes of the K-means
algorithm are often influenced by the selection of the initial point. An improper selection of the
initial point may lead to convergence to a local optimal solution, rather than the global optimal
solution. In the classical K-means algorithm, the initial point is randomly chosen, potentially
resulting in different outcomes for each cluster division. To overcome these shortcomings, this
paper specifies the initial cluster centers based on the calculation results of responsibility sharing.
This approach aims to avoid unstable division results and escape local optima. Subsequently,
multiple iterations are conducted to refine the clustering.
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3. DMPC distributed predictive control algorithm

To achieve the objective of group-weighted consistency, this paper introduces new virtual de-
coupling control variables denoted as u and a weighting matrixW to the consistency algorithm [21]
This enhancement is based on the improved model equation as follows:

x(k + 1) = M x(k) +W−1u(k). (16)

An enhancement to the aforementioned equation can be achieved by incorporating the current
state x(k) of the system to predict the future x(k + 1). By default, the current moment is denoted
as k, the prediction time domain is denoted as Np, and the control time domain is denoted as
Nc , where Np ≥ Nc; The variables u(k) outside the control time domain Nc remain unchanged.
With the addition of the virtual control volume to the basic algorithmic model, distributed PV
grid-connected systems containing multiple inverter controls can mitigate the impact of a single
controller failure or abnormal data, ensuring system-wide control stability. Under the same
parameter model conditions, the enhanced model demonstrates improved convergence speed.

To detail the coupling between subsystems, the diagonal element Mi j of matrix M is the state
transfer term, and the non-diagonal element Mi j is the dynamic coupling term. When Mi j , 0 it
means that ij is a coupling between the two subsystems, otherwise it means that there is no effect,
and Eq. (18) is decomposed into the lower order subsystem form as:

x(k + 1) = Mii xi(k) +
∑
j∈Ni

Mii xi(k) + w−1
i ui(k), (17)

where Ni is the set of neighboring subsystems to subsystem i. There, the state coupling term xi(k)
exists since the matrix M is a non-diagonal matrix. Taking the state variables of system i at the
current moment k as inputs, one can predict the future state information of this system at the
k + 1 − k + Np moments.

Xi(k) = Fi xi(k) + GiUi(k) +
∑
j∈Ni

HiJ Xi(k), (18)

where Xi(k) is the state prediction matrix and Ui(k) is the input matrix. The form of each term in
the equation is as follows:

Xi (k) =


xi (k + 1 | k)
xi (k + 1 | k)

...

xi (k + 1 | k)


,Ui (k) =


uik

ui (k + 1)
...

ui(k + Nc − 1)


, Fi =

[
Mi j, M2

i j, · · ·M
Np

i j

]T
,

Gi =



w−1
i 0 0 0

Miiw
−1
i w−1

i · · · 0
...

...
. . .

...

MNP−1
ii w−1

i MNP−2
ii w−1

i · · ·

NP−NC∑
c=0

Mc
iiw
−1
i


,
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Hi j =


Mii 0 0 0

MiiMi j Mii · · · 0
...

...
. . .

...

MNP−1
ii Mi j MNP−2

ii Mi j · · · Mi j


,

where Xi(k) as a vector, is the prediction matrix prediction state quantity, in this case a physical
quantity related to power. The Fi matrix is the vector of coupled state matrices; the Gi matrix is
the decoupled control variable and coupled state product matrix, a lower-triangular matrix; Hi is
the lower-triangular coupled state matrix as a multiplicative product of the input vector and the
coupled state matrix.

In the distributed PV grid-connected system based on cluster partitioning, different neighboring
groups require communication connections. However, under the algorithm in Eq. (12), after
completing a communication, the prediction model of adjacent subsystems cannot be obtained.
Consequently, the predicted quantities xj(k +m) for subsystem i at that moment of coupling cannot
be acquired. To address this issue, an approximation is employed, replacing the predicted state
quantities with the state quantities at the k moment, thereby simplifying to:

Xj(k) = xi(k)INP , (19)

where INP is the column vector of order 1 with all elements of order 1.
The objective function for optimization is determined by taking the difference between the

output state vector and the state reference, and combining it with the associated weight matrix.
The minimum value is then selected.

minJi(k) = ‖Xi(k) − Ci(k)‖2Q + ‖Ui(k)‖2R , (20)

where Q = qINP and R = r INP are the weight matrices, and reference values of the state vector,
respectively, which can be calculated by the following expression:

Ci(k) =

∑
j∈Ni∪{i }

wj(k)xj(k)∑
j∈Ni∪{i }

wj(k)
INP , (21)

where Ni(k) ∪ {i} is the set of current and neighboring subsystems.
To minimize the objective function, the input variables in the objective function are derived

and made to be 0. The inputs to the optimal control can be calculated and corrected in the optimal
control, the main formula is:

û =
∑
j∈Ni

ai j(ui(k) − ui(k)). (22)

In the derivation of the DMPC algorithm above, only the information from the requested
subsystem and its nearby neighboring cluster systems is utilized. This, combined with the actual
coupling state information of the subsystems, helps in selecting the appropriate optimized objective
function. This function considers the relationship between the output state vector and the state
reference quantity, forming a type of distributed control algorithm. The actual computational
algorithm calculation flow is shown in Fig. 3.
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Fig. 3. Flowchart of DMPC algorithm

4. Simulation example analysis and discussion

Since distributed PV grid-connected overvoltage typically occurs between 10:00 and 16:00,
this paper focuses on verifying the control effectiveness during this time period. To achieve this,
the 10 kV distribution line data and wiring topology of the Dingxi area in Gansu Province are
combined with the IEEE 33-node model for simulation. The region experiences annual sunshine
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hours between 2240 and 2500 hours, with an average daily sunshine duration of more than 6
hours. The annual solar exposure ranges from 5260 to 5910 MJ/m2. The validated data is from
the distribution line data of Dingxi, Gansu Province, on September 13, 2023. The environmental
conditions on that day were: sunny during the day; temperatures ranging from 9°C to 26°C; a light
exposure of 15.5 MJ/m2; AQI of 30; and southerly winds at level 2. This data is used to verify
the effectiveness of the proposed cluster division and DMPC algorithm control for overvoltage
regulation in distributed energy distribution networks. The final example is shown in Fig. 4.
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Fig. 4. Calculation system diagram

In the example, node 0 serves as the system substation connection point. There are a total of
eight distributed PV access points, located at nodes 3, 6, 13, 19, 22, 24, 26, and 29. Additionally,
energy storage devices are connected at nodes 10, 21, and 30. The 24-hour output curves of the
distributed energy at each node are shown in Fig. 5.
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Fig. 5. Power curve at each node and PV point curve
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4.1. Cluster segmentation results

Using the point in time ofmaximum total load in the load profile as a reference, the responsibility
sharing and clustering algorithms mentioned in Section 3 are applied to cluster the remaining
nodes, excluding those connected to the substation. The responsibility calculation data and system
parameters at that time are used to compute the Jacobian matrix for active-reactive decoupling.
The corresponding weight matrix is generated by combining the electrical distance parameters.
The electrical distance of each node from node 0 is shown in Fig. 6.
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Fig. 6. Electrical distance between each node and node 0

Based on the electrical distance, the proposed algorithm divides the nodes into clusters. A
reasonable number of cluster divisions is determined to be 6, according to the elbow rule. The
resultant index of cluster divisions for the corresponding K-value is shown in Fig. 7 as follows:
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Fig. 7. Map of cluster division metrics

The results of the optimal division when K is chosen to be 6 are shown in Table 1. The
corresponding system division result is shown in Fig. 8 Node cluster division diagram.
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Table 1. Node cluster division table

Cluster number Node number

1 1, 2, 3, 4, 18, 19, 20, 21

2 5, 6, 7, 22, 23

3 8, 9, 24, 25, 26, 27

4 10, 11, 12, 13

5 14, 15, 28, 29, 30

6 16, 17, 31, 32
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Fig. 8. Node cluster partitioning diagram

4.2. Verification of final voltage regulation results

Figure 9 shows that integrating a large number of PV points in the distribution line causes the
voltage of the entire line to rise above 1.07 p.u.

Specifically, the PV access points at nodes 24 and 26, due to their close electrical proximity, re-
sult in a significant voltage rise near these nodes,with overvoltages approaching 1.08 p.u. Conversely,
the 10th node does not experience overvoltage issues, even when the PV output causes overvoltage
along the whole line, because of the energy storage equipment configured at this node. This
outcome is observed in both the final experiment and conventional simulations. The cluster division
distributed predictive control strategy, however, demonstrates a more ideal control effect on dis-
tribution line overvoltage. It effectively reduces voltage volatility across the entire distribution line,
particularly evident in node 26 where the reduction is nearly 9%. The regulation effect is significant.

Based on the distribution line data, trend calculations are performed for the networks both
without and with distributed PV added. This is done to verify the overvoltage situation on the
distribution lines and confirm the actual impact of distributed PV on grid-connected voltage.
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Fig. 9. Control results validation chart

According to the Chinese national standard GB/T12325, the voltage deviation at a three-phase
common connection point of 20 kV and below should not exceed +7% of the nominal voltage.
Therefore, a voltage regulation value of 1.06 is utilized. From Fig. 9 it is evident that with the
addition of distributed PV, the voltage across the entire system increases significantly, leading
to an overvoltage situation along the entire line. Nodes 24 and 26 experience particularly severe
overvoltage issues with cluster 3 showing the most serious overvoltage among all the clusters.

5. Comparative validation and discussion of results

To verify the effectiveness of the control strategy presented in this paper, we have conducted
a comparative analysis that includes not only the traditional centralized control model but also two
additional methods: neural network predictive control, as mentioned in Reference [16], and the
non-cooperative subsystem autonomy model [26].

The traditional centralised control model is based on unified scheduling by the power sector
and autonomous operation of the subsystems, where each controller responds to real-time outputs
and self-optimizes according to basic constraints;

The strategy proposed in Reference [16] includes deep neural networks utilized to predict solar
PV power generation and electricity load. They adjust the electricity load based on the difference
between the two, thereby improving the utilization rate of PV power generation.
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In the non-cooperative subsystem autonomy model, the model aims to increase on-site PV
power consumption and thereby reduce the impact on the main grid. This is achieved by introducing
a feed-in tariff that is lower than the electricity price. To maximize local PV consumption capacity,
the initial value of the feed-in tariff is set to zero in this model.

As shown in Fig. 10 in the traditional centralized control mode, due to the distributed PV grid
connection, the field data from 11:00 to 15:00 during periods of serious over-voltage show that the
actual site exceeds the highest national regulation standards by more than 7%. Consequently, the
grid connection must be disconnected from the power supply, ensuring that the maximum voltage
remains at approximately 1.07 P.U.
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Fig. 10. Control results validation chart

After coordinated control in non-cooperative autonomous mode, the main transformer was
able to regulate the voltage overload within the subsystem to a certain extent. During this period,
the output power of the main inverter was observed to maximize profit. However, the lack
of coordination between the subsystems and the limited regulation capacity still resulted in a
maximum value exceeding 1.06 P.U., which did not fully exploit the entire consumption capacity.

The strategy proposed in Reference [16] is able to provide a certain degree of overvoltage
mitigation based on the predicted values, but the amount of data required is huge and the degree
of voltage fluctuation at the measurement points is high, resulting in severe network losses.

The strategy proposed in this paper maximizes the use of coordinated autonomy of the
subsystems, as well as coordinated communication with neighboring regions. It employs the
Shapley value to calculate the responsibility allocation, thereby minimizing the amount of data
required for prediction. This approach enables smooth overvoltage mitigation.

The energy storage device discharges during nighttime hours to supplement load requirements
and tries to absorb excess energy to prevent over-voltage when the PV system is generating power
from 6:00 to 14:00. However, it reaches its capacity limit after 14:00 and can no longer store
energy for further mitigation.
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To illustrate the economics of the control strategies proposed in this paper and the effectiveness
of the algorithms, the three aforementioned strategies are used for comparative validation. Table 2
presents the specific network losses, voltage deviations, power losses, and economic gains under
the four control schemes.

Table 2. Comparison of economics under different control methods

Norm
Traditional
centralised
control

Non-
synergistic
subsystem
autonomy

Reference
[16]

The
methodology
proposed

in this paper

Network losses/MW 0.1032 0.1005 0.0998 0.0952

Voltage deviation/P.U. 0.65 0.59 0.51 0.47

PV active reduction/MW 1.376 1.324 1.286 1.255

Economic gains/103yuan 13.61 14.25 14.66 15.12

The results indicate that real-world communication delays and distortions are considered, as
the DMPC controller maintains inter-controller communication with each subsystem, and each
subsystem controller performs local optimization for control tasks. Addressing the overvoltage
issue, optimal voltage control also reduces network losses, achieving aminimum loss of 0.0952MW
as proposed in this paper. Voltage deviation can be minimized to 0.47 P.U., thereby enhancing
voltage stability. Additionally, active power reduction is minimized to 1.255 MW among the four
schemes, ensuring optimal economic operation of the entire distribution network. These findings
highlight significant improvements in the system’s performance for overvoltage control, taking
into account communication and computational requirements.

Analytical discussion:

– Simulation and comparative verification demonstrate that the control strategy proposed in
this paper addresses the overvoltage issue caused by power back-feeding when distributed
PV systems are connected to the grid. It calculates the size of the overvoltage responsibility
for each node by combining indicators such as electrical distance with cooperative game
theory. By selecting the central responsible node, this approach resolves the challenge of
handling large amounts of data required for neural network predictions.

– Grouping the entire distribution system into clusters enables cluster autonomy, maximizing
the utilization of each inverter’s active and reactive power to regulate voltage capacity.
This approach reduces the mechanical action required for transformer regulation, thereby
decreasing network losses and increasing economic efficiency.

– If each cluster does not consider communication coordination, it cannot fully mobilize the
voltage regulation capability of the entire power system. This paper proposes a cluster-divided
DMPC control strategy to ensure communication between each region. This coordinated
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approach allows all regions to maximize the use of inverter capacity and effectively mitigate
overvoltage issues.

– In contrast, the DMPC-based voltage optimization proposed in this paper maximizes the
grid-connected capacity of PV systems while preventing congestion. It also achieves smooth
voltage regulation, thereby mitigating system-wide overvoltage issues and maximizing
economic benefits.

6. Conclusions

This paper simplifies the data of distributed photovoltaic grid-connected distribution lines in
Dingxi, Gansu Province, and constructs the corresponding topological grid structure. The Shapley
value method from cooperative game theory is used to calculate the overvoltage responsibility
sharing of the nodes. Then, reasonable clusters are divided based on the nodes’ electrical distance
index. On this basis, all cluster subsystems are coordinated to control the active and reactive
power output of the entire distribution line. The optimization objective function is to minimize
the combined weight difference between the output state vector and the state reference. Finally,
a comparative analysis with the control schemes proposed in recent literature is performed to
verify and discuss the advantages and disadvantages of each scheme. The simulation results show
that the overvoltage problem of the entire distribution line can be mitigated more effectively under
the group-distributed predictive control strategy, improving distributed PV grid-connected access.

The Shapley method used in this paper to calculate the corresponding nodal overvoltage
liability can lead to excessive computational complexity. Additionally, selecting the initial cluster
division centroid based on a higher liability value may cause the iteration to fall into a local
optimal solution. In the current power sector, when the voltage exceeds the national standard by
more than 10% without adding energy storage equipment, the only solution might be to manually
remove the entire PV node. However, the high cost of energy storage equipment and determining
the appropriate capacity for such equipment are issues that this paper does not address.

Recommendations for further research include the installation location and capacity of energy
storage equipment that can solve the PV grid-connected overvoltage problem in a specific area.
Additionally, the unique volatility and randomness of distributed photovoltaic systems in grid
connection will affect the stability of the entire power system. If an accurate model of photovoltaic
grid-connected volatility is established and the stability of the PV network is proven, it will enable
targeted dissipation of excessive PV active capacity output to address the overvoltage problem.
This will be a future research trend for distributed photovoltaic grid connection.
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