
Introduction

The COVID-19 pandemic (COVID-19) has impacts that 
extend beyond public health, influencing environmental 
parameters such as air quality, while also altering consumer 
behaviors and business models globally. This paper focuses on 
PM2.5 concentrations (PM2.5) and examines their fluctuations 
in relation to COVID-19-related factors in Southeast Asia. 
Previous studies have highlighted shifts in consumer behaviors, 
such as increased reliance on online purchasing and delivery 
services driven by health concerns and lockdown measures (Li 
et al. 2020; Lim et al. 2021; Wang et al. 2020; Webster, 2020). 
These studies can be categorized into three themes: public 
health, consumer behavior, and environmental outcomes. By 
investigating how these factors and regional policies influence 

PM2.5, this paper contributes a detailed analysis that enhances 
understanding of the pandemic’s multifaceted effects within 
the Southeast Asian context.

The first theme explores how COVID-19 has impacted 
consumer behavior, such as purchasing decisions (Li et al. 
2020; Wang et al. 2020). The second theme addresses public 
health concerns, such as social distancing and diseases related 
to COVID-19 (Barouki et al. 2021; Liao et al. 2020). The third 
theme focuses on environmental and health-related issues, 
such as the relationship between air pollution, COVID-19 
vaccination, and daily confirmed COVID-19 cases (Lim et al. 
2021; Meo et al. 2021; Wetchayont, 2021). This theme also 
considers the impact of pollution, particularly air quality, on 
public health outcomes (Frączek et al. 2023; Godłowska et 
al. 2022).
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Abstract: This paper examines the influence of COVID-19-related factors on PM2.5 concentrations (PM2.5) 
in Singapore, Indonesia, and Thailand from January 2018 to December 2021. Using data from four sources, 
cluster analysis based on six socioeconomic indices was employed to select these countries for focused 
analysis. Generalized Additive Mixed Models (GAMM) were applied to assess associations between PM2.5 
and COVID-19 factors, including new cases, deaths, vaccinations, stringency index, time series (STOL), 
and COVID-19 status (dummy variable). Results show that PM2.5 levels in Singapore and Indonesia were 
significantly impacted by COVID-19 measures, with F-statistics for new cases (22.875, p < 0.001), deaths 
(12.563, p = 0.012), as well as significant associations for vaccinations (t = 5.976, p < 0.001), stringency index 
(t = 5.124, p < 0.001), and the dummy variable (t = 6.624, p < 0.001). In contrast, PM2.5 levels in Thailand were 
unaffected by these factors, likely due to seasonal pollution sources. The model explains 90.3% of the variation 
in PM2.5 (adjusted R² = 0.872).

This paper offers important insights for policymakers on incorporating air quality into health policies and 
highlights how pandemic responses varied across countries. By examining the impact of COVID-19 factors 
on PM2.5 in different nations, the study enhances understanding through detailed data and averaging periods. 
It reveals differences in how countries’ air quality responded to the pandemic, contributing to discussions on 
environmental management and public health. These findings inform policy decisions and facilitate discussions 
on better managing environmental and health challenges during global crises.
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The third theme specifically focuses on the association 
between COVID-19 and air pollution. Numerous studies are 
currently being conducted to examine the association between 
COVID-19 and meteorological parameters such as climate, air 
pollution, and the environment (Kotsiou et al. 2021; Liu et al. 
2021; Lorenzo et al. 2021; Meo et al. 2021; Valdés Salgado et 
al. 2021; Wetchayont, 2021). For instance, Liu et al. (2021) 
examine the effect of air pollution on COVID-19 in China, 
Japan, Korea, Canada, the United States, Russia, England, 
Germany, and France, finding that high levels of air pollution 
combined with a reduction in air quality contribute to an increase 
in new confirmed cases of COVID-19. Kotsiou et al. (2021) 
reported that PM2.5 negatively influences new COVID-19 
cases in Italy. However, Valdés Salgado et al. (2021) found no 
statistically significant link between COVID-19 death rates 
and PM2.5 or PM10 in Chile.

On the other hand, numerous studies have compared air 
pollution levels before and after the COVID-19 lockdown. 
These studies generally conclude that air pollution, particularly  
PM2.5, decreased during the COVID-19 lockdown due to 
reduced transportation emissions and decreased business and 
industrial activities (Gkatzelis et al. 2021; Kaewrat & Janta, 
2021; Lee & Finerman, 2021; Wetchayont, 2021). For instance, 
Lee and Finerman (2021) found a 10% to 20% reduction in 
air pollution emissions in South Korea during the COVID-19 
pandemic. They noted that a 1% reduction in commuting 
flows led to a corresponding reduction in air pollutants – 
approximately 0.08% to 0.17 % for air pollutants such as 
PM2.5, PM10, NO2, CO, and SO2. Similarly, Wetchayont 
(2021) examined the impact of the COVID-19 lockdown on 
air pollution in Greater Bangkok, Thailand, across three time 
periods: (1) before, (2) during, and (3) after the lockdown. The 
COVID-19 lockdown restricted certain types of traffic as well 
as commercial and industrial activities, resulting in significant 
changes to the levels and characteristics of air pollution 
(Wetchayont, 2021).

The theme of air quality is significantly influenced by 
external environmental factors and localized pollution sources, 
as discussed in the study by Frączek et al. (2023) and Godłowska 
et al. (2023). Frączek et al. identified shortcomings in natural 
ventilation systems within schools, linking them to inconsistent 
fungal aerosol concentrations influenced by factors such as 
relative humidity and inadequate air exchange. Conversely, 
Godłowska et al. (2022) demonstrated how urban air quality 
forecasts can be improved using precise meteorological data 
and detailed emission inventories, emphasizing the positive 
impact of Krakow’s policy to phase out coal furnaces. 
Furthermore, Wong et al. (2024) employed cluster analysis 
and Generalized Additive Mixed Models (GAMM) to study 
the effects of COVID-19 and population dynamics on the 
Air Quality Index (AQI) in Malaysian cities. Their findings 
indicate that while population density significantly impacts 
AQI, the COVID-19 pandemic did not alter AQI variations, 
suggesting an anticipated overall improvement in air quality.

Research Objective and Questions
Previous studies on the association between COVID-19 and 
air pollution have demonstrated that pollutants such as PM2.5, 
NO2, SO2, alongside overall air quality, can affect COVID-19 
infection rates (Lee & Finerman, 2021; Lim et al. 2021; Liu et 

al. 2021; Meo et al. 2021; Frączek et al. 2023; Godłowska et 
al. 2022; Wong et al. 2024). However, these studies are often 
limited by their narrow focus on a single country and the use 
of data collection periods shorter than 36 months. Moreover, 
while many of these studies overlook issues related to time-
series data, Wong et al. (2024) address these concerns, though 
their study is also limited to a single country context.

Consequently, this paper aims to address the research 
gap by concentrating on the relationship between PM2.5 with 
COVID-19-related factors in Southeast Asia. However, a key 
limitation of this research lies in the use of secondary data, 
which often presents challenges such as non-parametric,  and 
nonlinear characteristics, as well as missing values. Thus, 
the study employs Cluster Analysis and GAMM to meet the 
research gap (Augustin et al. 2009; Chen, 2000; Wong et 
al. 2024; Wood, 2006, 2011). The central research question 
is: Does an association exist between COVID-19-related 
factors, including COVID-19 new cases, deaths, vaccinations, 
stringency index, time series data, and COVID-19 status 
(presence or absence of cases), and PM2.5 in various countries?

Generalized Additive Mixed Models 
Generalized Additive Mixed Models (GAMM) are advanced 
statistical methods that enhance Generalized Additive Models 
(GAM) by including random effects, allowing for greater 
flexibility in handling hierarchical or correlated data structures. 
Built on the framework of Generalized Linear Models (GLM), 
GAMM uses smooth functions to model nonlinear association 
between variables. These models are particularly effective for 
analyzing time-series data and other datasets with complex 
dependencies (Wood, 2006, 2011, 2017).

The GAM is a smooth fitting curve consisting of 
polynomials like a spline, designed to approximate the data 
as closely as possible without causing excessive overfitting 
(Brömssen, 2016; Constantinescu, 2019; Hastie & Tibshirani, 
2017; Wood, 2006, 2011, 2017). One key advantage of GAM is 
its ability to explore nonlinear and nonmonotonic correlations 
between variables. The general equation for GAM is provided 
below,
      

time-series data, Wong et al. (2024) address these concerns, though their study is also limited 

to a single country context. 

Consequently, this paper aims to address the research gap by concentrating on the 

relationship between PM2.5 with COVID-19-related factors in Southeast Asia. However, a 

key limitation of this research lies in the use of secondary data, which often presents 

challenges such as non-parametric,  and nonlinear characteristics, as well as missing values. 

Thus, the study employs Cluster Analysis and GAMM to meet the research gap (Augustin et 

al. 2009; Chen, 2000; Wong et al. 2024; Wood, 2006, 2011). The central research question is: 

Does an association exist between COVID-19-related factors, including COVID-19 new 

cases, deaths, vaccinations, stringency index, time series data, and COVID-19 status 

(presence or absence of cases), and PM2.5 in various countries? 

Generalized Additive Mixed Models  

Generalized Additive Mixed Models (GAMM) are advanced statistical methods that enhance 

Generalized Additive Models (GAM) by including random effects, allowing for greater 

flexibility in handling hierarchical or correlated data structures . Built on the framework of 

Generalized Linear Models (GLM), GAMM uses smooth functions to model nonlinear 

association between variables. These models are particularly effective for analyzing time-

series data and other datasets with complex dependencies (Wood, 2006, 2011, 2017). 

The GAM is a smooth fitting curve consisting of polynomials like a spline, designed 

to approximate the data as closely as possible without causing excessive overfitting 

(Brömssen, 2016; Constantinescu, 2019; Hastie & Tibshirani, 2017; Wood, 2006, 2011, 

2017). One key advantage of GAM is its ability to explore nonlinear and nonmonotonic 

correlations between variables. The general equation for GAM is provided below, 

                              (1) 

In Equation (1), α represents the intercept, f denotes the smooth function,   is the response 

variable, χi is the explanatory variable ∀i=1,2, ,n, and ɛ is the error term (Brömssen, 2016; 

Fahrmeir & Lang, 2001; Hastie & Tibshirani, 2017; Wood, 2017). 

GAM employs a smoothing function technique, developed by Trevor Hastie and 

Robert Tibshirani, to model the relationship between a  dependent variable, Y, and a set of 

predictor variables, X (Hastie & Tibshirani, 2017). The model uses a contiguous function to 

link these variables, addressing linear models that struggle with dependent variables. 

Numerous regression issues require flexible, semi-parametric predictors to capture covariate 

associations, often incorporating unobserved random effects (Chen, 2000; Fahrmeir & Lang, 

2001; Wood, 2006, 2011; Wood, 2017). 

  (1)

In Equation (1), α represents the intercept, f denotes the smooth 
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∀i=1,2,⋯,n, and ɛ is the error term (Brömssen, 2016; Fahrmeir 
& Lang, 2001; Hastie & Tibshirani, 2017; Wood, 2017).

GAM employs a smoothing function technique, developed 
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GAM assumes data independence, however, time series 
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& Tibshirani, 2017; Wood, 2017). The generalized additive 
mixed model (GAMM) can be expressed as (Wood, 2017):
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of tree canopy in Baden-Württemberg, Germany, depends on its location and the level of air 
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A smoothness penalty controls the “wiggliness” or complexity 
of the smooth function:

J(f)= βT Sβ 
S is a positive semi-definite matrix. The penalty helps maintain 
a balance between fitting the data and ensuring the function 
remains smooth.

In addition, GAMM utilizes a penalized regression method 
in machine learning, which creates smoothness for multiple 
variables. This approach offers several benefits: (1) Rescaling 
covariates linearly is invariant; (2) The range of smoothness 
is adjustable; (3) Reduced smoothness improves computing 
efficiency; (4) Smoothing can be automatically generated from 
any edge smoothing base, allowing for versatile modeling; 
(5) Smoothing can be easily incorporated into standard linear 
or generalized linear mixed models (Constantinescu, 2019; 
Fahrmeir & Lang, 2001; Groll & Tutz, 2012; Tuerlinckx et 
al. 2006; Wood, 2006; Wood, 2017). Furthermore, GAMM 
processes nonlinear relationships between explanatory and 
dependent variables by adapting machine learning techniques 
to modeling. It combines data mining characteristics with 
enhanced descriptive power (Constantinescu, 2019; Fahrmeir 
& Lang, 2001; Groll & Tutz, 2012; Wood, 2017).

GAMM has numerous applications in the fields of 
medicine, finance, public health, business, and management. 
For instance, Augustin et al. (2009) found that the defoliation 
time of tree canopy in Baden-Württemberg, Germany, depends 
on its location and the level of air pollution. The data on air 
pollution includes various crossover and time-dependent 
features, including repeated measurements.

Due to GAMM’s ability to combine the benefits of both the 
GAM and the generalized linear mixed model (Constantinescu, 
2019; Fahrmeir & Lang, 2001; Groll & Tutz, 2012; Hastie & 
Tibshirani, 2017; Tuerlinckx et al. 2006; Wood, 2006, 2011; 
Wood, 2017), GAMM can conduct data mining to uncover 
complex relationships among variables. Therefore, this paper 
examines how GAMM can analyze air pollution datasets 
through data mining, detect variables (such as COVID-19-
related factors), and examine changes in time series data across 
two categories: countries and PM2.5.

Materials and methods

Research Design
The research methodology of this paper is divided into two 
steps. First, a cluster analysis was performed on the six-core 
socioeconomic indexes of ten Southeast Asian countries 
using SPSS to identify homogenous groups based on shared 
characteristics. Second, the paper unitized GAMM via R Studio 
to analyze the association between PM2.5 concentrations and 
COVID-19-related factors. This two-step approach enables a 
focused examination of the variables significantly influencing air 
quality within the selected cluster of Southeast Asian countries.

Data Extraction
This paper accessed four websites to download the relevant 
data. First, the “Basic Statistics 2020” dataset was downloaded 
from the Asian Development Bank’s website (Asian 
Development Bank, 2020). This dataset provides the core 
socioeconomic indexes for ten Southeast Asian countries. The 
Asian Development Bank defines these six core indexes as 
follows: (1) total population (in millions), (2) average annual 
population growth rate, (3) nominal gross domestic product 
(GDP) (in billions of USD), (4) annual GDP growth rate, (5) 
inflation rate, and (6) current account balance (as a percentage 
of GDP). These six variables were utilized in the first step of 
the cluster analysis.

This paper obtained data on COVID-19-related factors 
from the “Our World in Statistics” website (Mathieu et al. 2021). 
In the second step, GAMM analysis was used to analyze six 
variables: (1) COVID-19 new cases, (2) COVID-19 deaths, (3) 
COVID-19 vaccinations, (4) stringency index, (5) time series 
STOL, and (6) COVID-19 status. Specifically, the time series 
variable (STOL) represents monthly data from January 2018 
to December 2021, The COVID-19 status variable is a binary 
indicator (‘Dummy’), where 0 represents no COVID-19 cases, 
and 1 represents the presence of  COVID-19 cases, based on 
the same time series. However, the dataset is limited by country 
availability. For instance, Vietnam, Laos, and Myanmar lack 
complete datasets on COVID-19-related factors. 

 The unit for COVID-19-related factors is a numerical 
count, while PM2.5 is measured in micrograms per cubic 
meter (μg/m³). This paper uses data from two sources that 
provide country-level PM2.5 data. Specifically, PM2.5 data 
for Thailand and Indonesia were obtained from the ‘Berkeley 
Earth’ website (Berkeley Earth, 2020), and data for Singapore 
were sourced from the ‘World Air Quality Project’ website 
(The World Air Quality Index Project, 2022). The stringency 
index is a composite measure scaled from 0 to 100, with 100 
representing the strictest response. It is calculated based on nine 
indicators, including school closures, workplace closures, and 
travel prohibitions, as reported by the ‘Our World in Statistics’ 
website (Mathieu et al. 2021). 

Process
This paper gathered three datasets from four sources for a two-
step analysis. In the first step, six variables representing the core 
socioeconomic indexes of ten ASEAN countries were analyzed 
using cluster analysis. This analysis identified a cluster of 
countries with similar socioeconomic backgrounds from ten 
ASEAN countries, which were selected for further examination. 
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Second, the COVID-19-related factors collected in this 
paper include (1) new COVID-19 cases, (2) COVID-19 
deaths, (3) COVID-19 vaccinations, and (4) the stringency 
index for the period from 2018 to 2021. These data are 
reported daily; therefore, the paper used measures of central 
tendency to calculate monthly averaged values of all variables. 
Additionally, the paper designed two derived variables: (1) 
‘STOL,’ which represents an ordered monthly time series 
from January 2018 to December 2021), and (2) ‘Dummy,’ a 
binary variable indicating whether a COVID-19 case occured 
in a given month (0 = no case, 1 = case). As a result, six 
variables represent parameters associated with COVID-19-
related factors.

Third, PM2.5 values, measured in micrograms per cubic 
meter (μg/m³), and recorded hourly. Similar to the COVID-
19-related factors, measures of central tendency were applied 
to calculate monthly averages for PM2.5 values from January 
2018 to December 2021. Finally, the sample size for both  

COVID-19-related factors and PM 2.5 is 144, representing a 
cluster country over 48 months. 

All original data in this paper were averaged monthly using 
a central tendency approach, specifically the arithmetic mean, 
to calculate yearly values. This method was chosen because 
GAMM operates most effectively with central tendency 
measures, which represent a significant or typical value for 
a dataset, typically the mean (Hastie & Tibshirani, 2017; 
Tuerlinckx et al. 2006; Weisberg, 1992; Wood, 2017). The 
arithmetic mean was favored because it effectively aggregates 
all data points into a single representative value. 

Considering the objectives and strengths of GAMM, 
this paper adopts central tendency measures for analyzing 
COVID-19-related factors and PM2.5 data. This approach was 
selected to address two primary challenges presented by the 
dataset. First, the secondary data exhibit characteristics such 
as non-parametric, nonlinear distributions, as well as missing 
values. Second, there is uneven data availability, particularly 

Fig 1. The Cluster Analysis of Ten ASEAN Countries  

Index Minimum Maximum Mean Std. Deviation

Total Population (Million) 0.452 266.912 65.562 80.461

Ave. Annual Population Growth Rate 0.308 2.069 1.114 0.484

Nominal GDP ($ Billion) 13.469 1119.152 314.898 338.577

Annual Growth Rate of GDP 0.733 7.054 4.802 2.072

Inflation Rate -0.411 8.626 2.351 2.523

Current Account Balance (% of GDP) -17.595 16.970 0.754 9.790

Note: N = 10 (Brunei, Cambodia, Indonesia, Lao. Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam)

Table 1. The Descriptive Statistics of Ten Southeast Asian  Countries’ Core Indexes
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from smaller regions, such as certain cities in Indonesia, 
where complete datasets may not be accessible. These issues 
necessitate a statistical method capable of effectively handling 
such complexities. 

Furthermore, past studies have adopted different analysis 
concepts, ranging from techniques to data. For example, 
Mathieu et al. (2021) showed that, although cities have 
varying numbers of new COVID-19 cases, they applied central 
tendency measures to present their analysis results. Lee and 
Finerman (2021) also used central tendency measures of 
PM2.5, PM10, NO2, CO, and SO2 to represent South Korea in 
their analysis of the association between air pollution emissions 
and the country. Wong et al. (2024) similarly employed central 
tendency measures to analyze COVID-19 and AQI data in 
Malaysian cities using GAMM. Therefore, each country’s 
COVID-19-related factors and PM2.5 data can be combined 
into a single index based on central tendency. 

Data analysis

Descriptive Statistics of Southeast Asian Countries’ 
Core Six Indexed
The Asian Development Bank provides six core indexes to 
describe the socioeconomic characteristics of countries. Table 
1 presents the descriptive statistics for these core indexes 
across ten Southeast Asian countries. 

Cluster Analysis
The first step involved conducting a cluster analysis using 
SPSS, applying six core indexes to group ten Southeast Asian 
countries, as shown in Figure 1. This analysis categorized the 

countries into three distinct clusters: Cluster One includes 
the Philippines, Vietnam, Malaysia, and Brunei; Cluster Two 
comprises Cambodia, Laos, and Myanmar; and Cluster Three 
consists of Singapore, Thailand, and Indonesia. Each cluster 
represents countries with shared demographic and economic 
characteristics. This structured approach facilitates analysis of 
patterns among Southeast Asian countries, enabling an organized 
exploration of similarities and differences within the region.

Cluster Three was selected for the next step of analysis 
because of its comprehensive COVID-19-related data and 
PM2.5 measurements. In contrast, several countries in Clusters 
One and Two lack complete datasets for these variables. 
Singapore, Thailand, and Indonesia, however, provide full 
datasets, enabling a thorough examination of the relationship 
between COVID-19-related factors and PM2.5. This selection 
supports the paper’s bojective of exploring the association 
between the pandemic and air quality issues. Consequently, 
Cluster Three is well-suited for analyzing the pandemic and 
pollution in Southeast Asia.

Descriptive Statistics of COVID-19 Related Factors 
and PM2.5
The data extraction section details the numerical counts of 
COVID-19-related factors, averaged monthly, which include 
new cases, deaths, vaccinations, and the stringency index. 
The stringency index, a composite measure ranging from 0 to 
100, is derived from nine indicators such as school closures, 
workplace closures, and travel restrictions, with 100 indicating 
the strictest response (Mathieu et al. 2021). PM2.5levels, 
expressed in micrograms per cubic meter (μg/m³), were also 
analyzed. Table 2 summarizes the descriptive statistics for 

Table 2. The Descriptive Statistics of COVID-19 & PM2.5 in Thailand, Singapore, and Indonesia

Country Factor Minimum Maximum Mean Std. Deviation

Thailand N = 48

New Cases 0.000 607442.000 42758.288 118475.997

Deaths 0.000 6732.000 417.269 1266.713

Vaccinations 0.000 19468115.000 1533918.577 4357256.325

Stringency Index 0.000 76.264 23.240 28.208

PM 2.5 8.595 46.945 24.532 11.972

Singapore N = 48

New Cases 0.000 101853.000 5373.173 17205.540

Deaths 0.000 312.000 15.923 61.859

Vaccinations 0.000 2143437.000 224605.462 486526.535

Stringency Index 0.000 74.642 22.819 25.899

PM 2.5 34.806 98.400 50.769 9.954

Indonesia N =48

New Cases 0.000 1231386.000 81975.385 204133.225

Deaths 0.000 38904.000 2771.038 7366.514

Vaccinations 0.000 51168870.000 5239050.308 12828159.213

Stringency Index 0.000 73.822 27.709 33.011

PM 2.5 0.000 20.505 9.043 5.269



 Impact of COVID-19 on PM2.5 Concentrations in Singapore, Indonesia, and Thailand: Cluster Analysis 121

these factors across Thailand, Singapore, and Indonesia, 
including the minimum, maximum, mean, and standard values. 
This provides a quantitative overview of COVID-19-related 
factors and PM2.5 conditions in these countries.

Figures 2 to 6 present the variables analyzed for Thailand, 
Singapore, and Indonesia. Each figure focuses on one variable: 
COVID-19 new cases, COVID-19 deaths, COVID-19 
vaccinations, the stringency index, or PM2.5 levels in each 
country. These variables are tracked over the period from January 
2018 to December 2021. The figures facilitate a comparison 
of temporal changes in each variable within each country. By 
examining these trends, the paper underscores the impact of 
COVID-19 and environmental factors on the studied regions.

The figures illustrate the trends and fluctuations of each 
variable over the study period. For instance, Figure 2 shows 
that the number of new COVID-19 cases in Thailand rose 
steadily until August 2021, peaking before declining. Figure 
6 indicates missing data for Indonesia between March and 
August 2018, which may affect the analysis for that period. 
Additionally, the stringency index varies among the countries, 
reflecting differences in government responses to COVID-19. 
PM2.5 levels exhibit fluctuations in air quality over time, 
offering insights into environmental impacts. These detailed 
visual representations provide a comprehensive understanding 
of the temporal dynamics affecting Thailand, Singapore, and 
Indonesia.

Fig 2. Monthly COVID-19 New Cases in Indonesia, Singapore, and Thailand (January 2020 to December 2021)

Fig 3. Monthly COVID-19 Deaths in Indonesia, Singapore, and Thailand (January 2020 to December 2021)

Fig 4. Monthly COVID-19 Vaccinations in Indonesia, Singapore, and Thailand (January 2020 to December 2021)
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Figures 2 to 6 depict trends in COVID-19 cases, deaths, 
vaccinations, the stringency index, and PM2.5 levels for 
Indonesia, Singapore, and Thailand. Figure 2 shows a sharp 
rise in monthly COVID-19 new cases starting in early 2020, 
peaking in mid-2021. Indonesia experienced the highest peak, 
followed by Thailand, while Singapore reported significantly 
lower case numbers. Figure 3 shows a similar trend in deaths, 
with Indonesia recording the highest mortality, and Singapore 
and Thailand reporting comparatively  fewer deaths. Figure 4 
highlights the rise in vaccinations, with Indonesia administering 
the most, followed by Thailand, while vaccination levels 
stabilized across all three countries by late 2021. Figure 5 
describes the stringency index, which remained elevated 
throughout 2020 and 2021. Singapore and Thailand exhibited 
similar levels initially, while Indonesia maintained moderately 
stable restrictions. Finally, Figure 6 presents PM2.5, trends, 
with Singapore reporting the highest concentrations and 
Indonesia the lowest. PM2.5 levels fluctuated over time but 
showed no consistent upward or downward trend.

Generalized Additive Mixed Model
The Generalized Additive Mixed Model (GAMM) was 
established using the R Studio’s GAMM package (gamm4 

version 0.2-6) to examine the impact of selected variables on 
PM2.5. The model equation is structured as follows: 

Equation: PM2.5 ~ Nation + s(STOL) + s(New Cases) + 
s(Deaths) + Vaccinations + Stringency Index + Dummy  (4)

In Equation (4), ‘Nation’ represents country indicators for 
Thailand, Singapore, and Indonesia. Within the GAMM 
framework, ‘Nation’ is treated as a categorical variable with three 
levels corresponding to the three countries. Typically, one country 
serves as the reference category, in this case, Thailand, against 
which the other countries are compared. The coefficients for 
‘Nation’ in the model output represent the differences in PM2.5 
levels between the reference country and the other countries.

The smooth terms s(STOL), s(New Cases), and s(Deaths) 
capture the nonlinear associations between these variables 
and PM2.5 levels. STOL represents the monthly time series, 
while New Cases and Deaths are COVID-19-related factors. 
Vaccinations and the Stringency Index are included as linear 
terms, and Dummy is a binary variable indicating the presence 
or absence of COVID-19 during the study period.

The GAMM analysis generated two outputs, summarized 
in Tables 3 and 4, detailing the effects of six variables based on 

Fig 6. PM2.5 in Indonesia, Singapore, and Thailand (January 2020 to December 2021)

Fig 5. Monthly Stringency Index in Indonesia, Singapore, and Thailand (January 2020 to December 2021)
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the model equation. Table 3 presents the fixed-effect estimates, 
capturing the non-smoothing impacts within the GAMM 
framework. Table 4 highlights the smoothing effects of STOL, 
New Cases, and Deaths on PM2.5 levels.

Table 3 presents the fixed-effect estimates from the GAMM 
model. Each column in Table 3 conveys specific information: 
the ‘Estimate’ column shows the predicted effect of each 
variable on PM2.5 levels, ‘Std. Error’ indicates the standard 
error associated with these estimates, ‘t value’ provides the 
t-statistic for each effect, and ‘Pr(>|t|)’ represents the p-value, 
reflecting statistical significance. 

Table 3 shows the factors influencing PM2.5 as estimated 
by the GAMM fixed-effect model. The estimate for Singapore 
(17.150) indicates that PM2.5 levels are higher in Singapore 
than in Indonesia when other factors are held constant. Both 
the vaccination rate and the stringency index have significant 
positive associations with PM2.5, suggesting that increases in 
these variables correspond to higher PM2.5 levels. In contrast, 
the variable for Thailand does not significantly affect PM2.5, 
suggesting that PM2.5 levels in Thailand are not impacted 
by the factors included in this model. The Dummy variable 
is also significant, reflecting baseline differences in PM2.5 
across the dataset.

Table 4 presents the smoothing effects of STOL, New Cases, 
and Death on PM2.5 levels. Each column conveys specific 
information: ‘edf’ (effective degrees of freedom) measures 
the complexity of each smooth term, ‘Ref. df’ indicates the 
reference degrees of freedom, ‘F’ shows the F-statistic for each 
smoothing effect, and ‘p-value’ reflects the significance level. 

Variable Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.317 0.803 6.624 0.000***

Singapore 17.150 1.814 9.455 0.000***

Thailand 0.131 2.516 0.052 0.959

Vaccinations 0.000 0.000 5.976 0.000***

Stringency 
Index 0.290 0.057 5.124 0.000***

Dummy 5.317 0.803 6.624 0.000***

Note: *** p< 0.001; ** p<0.01; * p< 0.05

Variable edf    Ref. df F p-value

s(STOL) 3.008 3.490 9.672 0.002**

s(New 
Cases) 1.755 2.085 22.875 0.000***

s(Deaths) 1.165 1.184 12.563 0.012*

Note:  *** p< 0.001; ** p<0.01; * p< 0.05;  
R-sq.(adj) = 0.872 Deviance explained = 90.3%

Table 3. GAMM’s Fixed-Effect Model on PM2.5

Table 4. GAMM’s Smoothing Fixed-Effect Model on PM 2.5

Fig 7. Smoothing Fixed-Effect Model on PM2.5 

Fig 8. Smoothing Fixed-Effect Model on Time Series (January 2018 to December 2021)
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The results indicate that the time series (STOL), 
New Cases, Deaths, and COVID-19 status (Dummy) are 
significantly associated with PM2.5, with varying degrees of 
impact as indicated by their respective F-statistics. The model’s 
performance is assessed using an adjusted R-squared value of 
0.827, demonstrating that the model accounts for 82.7% of the 
variation in PM2.5 levels. Additionally, the model explains 
90.3% of the deviance in PM2.5, suggesting a high level of fit 
for the included variables.

Based on the GAMM results shown in Figures 7 to 10, the 
smoothing effects of various factors on PM2.5 are presented. 
Figure 7 depicts the GAMM smoothing effect on PM2.5 over 
time, revealing consistent fluctuations that generally remain 
below 80 µg/m³. This indicates stable variations in PM2.5 
levels without extreme shifts. Figure 8 presents the smoothing 
effect of the time variable (STOL) on PM2.5 from January 
2018 to December 2021, showing an upward trend. This trend 
suggests a gradual increase in PM2.5 over the study period, 
indicating a positive association between time progression and 
PM2.5 levels.

Figure 9 displays the GAMM smoothing effect of 
COVID-19 new cases on PM2.5, revealing a negative 
association. As the number of new COVID-19 cases increases, 
PM2.5 levels tend to decrease, suggesting an inverse 
relationship between these variables. In contrast, Figure 10 
depicts the smoothing effect of COVID-19 deaths on PM2.5, 
indicating a stable association with a slight upward trend. This 
result suggests that as COVID-19 deaths increase, there is a 

modest rise in PM2.5 levels, reflecting a complex interaction 
between COVID-19 pandemic death rates and air quality. 
Together, these findings provide insights into the relationships 
between time, COVID-19 cases, deaths, and PM2.5 during the 
study period. 

Conclusion and discussion

This paper employed cluster analysis and GAMM to explore 
the effects of COVID-19-related factors on PM2.5 levels 
in Thailand, Singapore, and Indonesia. Cluster analysis 
grouped these countries based on socioeconomic indices and 
data availability, with Cluster Three, comprising Thailand, 
Singapore, and Indonesia, selected for further analysis due 
to comprehensive COVID-19 and PM2.5. GAMM results 
for Thailand showed no significant association between 
PM2.5 and COVID-19 factors, such as new cases, deaths, and 
vaccinations. Instead, seasonal variations, primarily driven by 
agricultural burning and industrial activities, were identified as 
the main contributors to PM2.5 fluctuations. While temporary 
reductions in PM2.5 were observed during lockdowns, these 
changes were not sustained, suggesting that COVID-19-related 
restrictions had limited influence on air quality in Thailand.

In contrast, the GAMM results for Singapore and Indonesia 
revealed significant associations between PM2.5 and COVID-
19-related factors, including vaccinations, the stringency 
index, and case counts. Specifically, the data suggested that as 
vaccination rates increased and mobility restrictions tightened, 

Fig 9. Smoothing Fixed-Effect Model on COVID-19 New Cases

Fig 10. Smoothing Fixed-Effect Model on COVID-19 Deaths
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PM2.5 levels tended to decrease. This pattern reflects a 
connection between mobility and economic activity due to 
pandemic-related measures and the observed improvements in 
air quality. PM2.5 levels in these countries were also responsive 
to changes in COVID-19 cases and deaths, implying that 
public health measures may have contributed to the temporary 
reduction in pollution. These findings highlight a divergence in 
the influence of COVID-19 measures on PM2.5 across the three 
countries studied, with Singapore and Indonesia showing greater 
sensitivity to health-related restrictions compared to Thailand. 

The specific environmental and policy contexts in each 
country may help explain the observed differences in PM2.5 
responses. In Thailand, PM2.5 is primarily driven by seasonal 
factors such as agricultural burning and industrial emissions, 
which may have outweighed the impact of COVID-19 
restrictions. This aligns with studies, such as Wetchayont (2021), 
which emphasize the role of seasonal emissions in shaping 
Thailand’s air quality. Conversely, the significant impact of 
COVID-19 measures on PM2.5 in Singapore and Indonesia is 
consistent with findings from Barouki et al. (2021) and Gkatzelis 
et al. (2021), who reported that reduced mobility and economic 
activity during lockdowns contributed to lower pollution levels 
in urban areas. These results suggest that public health measures 
can indirectly affect air quality, their impact varies depending on 
local pollution sources and policy responses.

These findings have important implications for air quality 
management policies during health crises. In Singapore and 
Indonesia, where COVID-19 measures influenced PM2.5 
levels, policymakers could consider integrating air quality 
goals into public health response plans. During future health 
emergencies, implementing temporary restrictions on industrial 
and vehicular emissions could help control pollution levels, 
benefiting both public health and environment. In Thailand, 
where PM2.5 is primarily driven by seasonal pollution, the 
focus should remain on specific sources, such as agricultural 
burning, as highlighted by researchers like Kaewrat and Janta 
(2021). This approach would allow for more effective, region-
specific air quality management tailored to local contexts.

This paper demonstrates that the association between 
COVID-19-related factors and PM2.5 varies across countries 
due to differences in environmental conditions and policy 
responses. In Thailand, PM2.5 is mainly influenced by 
seasonal factors, while in Singapore and Indonesia, COVID-
19-related restrictions and health policies impact air quality. 
These findings underscore the need for  air quality strategies 
that are of tailored to local conditions and pollution sources, 
as suggested by researchers such as Wong et al. (2024). For 
effective environmental policy, governments should consider 
regional characteristics to simultaneously address both public 
health and air quality goals during health crises.

Limitations and Further Research
This paper has two main constrains due to its use of data mining 
techniques. First, the data is based on secondary sources, which 
can result in missing or incomplete datasets. This limitation 
may affect the accuracy of the statistical methods used. Second, 
since the paper employs data mining, it does not begin with 
hypotheses. Instead, the focus is on exploring the associations 
among variables and understanding the underlying reasons for 
the observed results.

This paper offers two recommendations for future research. 
First, future studies could expand the analysis to countries in 
other regions, such as the European Union and North America. 
Second, while this paper focuses on data mining for analysis, 
future studies could incorporate a broader range of secondary 
data, including more than 36 months of time-series data, to 
strengthen the findings.
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