www.journals.pan.pl

BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES DOI: 10.24425/bpasts.2024.152710

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

# **Descriptor continuous-and discrete-time linear systems with zero transfer matrices**

**Tadeusz Kaczorek**1<sup>∗</sup> **, Jerzy Klamka**2∗∗ **, Andrzej Dzielinski ´** 3 ∗∗∗

<sup>1</sup> Bialystok University of Technology, Faculty of Electrical Engineering, ul. Wiejska 45D, Bialystok, Poland; <sup>2</sup> Polish Academy of Sciences, Institute of Theoretical and Applied Informatics, ul. Bałtycka 5, Gliwice, Poland;

<sup>3</sup> Warsaw University of Technology, Faculty of Electrical Engineering, ul. Koszykowa 75, Warsaw, Poland

**Abstract.** In this paper, necessary and sufficient conditions for zeroing of the transfer matrices of descriptor continuous-time and discrete-time linear systems are established. The conditions are illustrated by simple numerical examples of the descriptor continuous-time and discrete-time linear systems. Also some remarks on the systems with delays on control are given.

**Key words:** controllability and observability, descriptor continuous-time linear systems, descriptor discrete-time linear systems, zero transfer matrices

### **1. INTRODUCTION**

In the theory of linear control systems the notions of controllability, and observability introduced by Kalman [\[9,](#page-4-0) [10\]](#page-4-1) play fundamental role [\[11,](#page-4-2) [12,](#page-4-3) [13\]](#page-4-4). Some recent developments on this crucial notions have been presented in the papers [\[6,](#page-4-5) [7,](#page-4-6) [8,](#page-4-7) [13\]](#page-4-4) and the references therin. On the other hand the descriptor (aka singular or implicit) systems have been subject to intensive investigations in recent years (see eg. [\[1,](#page-4-8) [2,](#page-4-9) [5\]](#page-4-10) for details). In this paper we shall concentrate on controllability, and its dual concept observability of descriptor continuous-time and discrete-time linear systems. Moreover, as direct consequences of these notions, in the paper necessary and sufficient conditions for the zeroing of the transfer matrices of descriptor continuous-time and discrete-time linear systems are introduced and proved. Zeroing problem has some direct consequences when considering the decoupling of coupled systems, one of the most interesting problems in system theory and control. The decoupling control strategies allow us to simplify the control itself and also the identification procedure of the parameters of complex control systems in the context of noninteracting control (see e.g. [\[14\]](#page-4-11) for details). Zeroing problem for the transfer matrix of Roesser model of 2-D linear systems was discussed in the paper [\[4\]](#page-4-12). The entropy of the content may be entropy in a future is the entropy of the content may change in a future is a future is the entropy of the content may change p

The paper is organized as follows: in Section [2](#page-0-0) the controllability and in Section [3](#page-1-0) the observability of the descriptor linear systems are analyzed. Necessary and sufficient conditions for zeroing of the transfer matrices of the descriptor continuoustime and discrete-time linear systems have been established and illustrated by simple numerical examples in Sections [4](#page-1-1) and [6](#page-2-0) respectively. In Section [7](#page-3-0) zeroing of transfer function for linear, continuous-time, descriptor systems with delays in control are considered. Concluding remarks are given in Section [8.](#page-3-1)

### **2. CONTROLLABILITY OF DESCRIPTOR CONTINUOUS-TIME LINEAR SYSTEMS**

<span id="page-0-4"></span>Let us consider the descriptor, finite-dimensional, linear continuous-time system:

$$
\mathbb{E}\dot{x} = \mathbb{A}x + \mathbb{B}u \tag{1a}
$$

<span id="page-0-3"></span><span id="page-0-1"></span>
$$
y = \mathbb{C}x,\tag{1b}
$$

where  $t \in [0, t_f]$ , and  $x = x(t) \in \mathbb{R}^n$ ,  $u = u(t) \in \mathbb{R}^m$ ,  $y = y(t) \in \mathbb{R}^n$  $\mathbb{R}^p$  are the state, input and output vectors respectively, and  $E, A \in \mathbb{R}^{n \times n}$ ,  $\mathbb{B} \in \mathbb{R}^{n \times m}$ ,  $\mathbb{C} \in \mathbb{R}^{p \times n}$  are constant matrices. It is assumed that:

<span id="page-0-6"></span>
$$
\det[\mathbb{E}s - \mathbb{A}] \neq 0. \tag{2}
$$

In this case the equation [\(1a\)](#page-0-1) has a unique solution, given in [\[5\]](#page-4-10).

Remark 1 *Note that, if*

<span id="page-0-2"></span>
$$
y = \mathbb{C}x + \mathbb{D}u, \quad \mathbb{D} \in \mathbb{R}^{p \times m}
$$
 (3)

*then defining*

$$
\bar{y} = y - \mathbb{D}u = \mathbb{C}x \tag{4}
$$

*we may reduce the case [\(3\)](#page-0-2) to [\(1b\)](#page-0-3).*

Definition 1 ([\[3\]](#page-4-13)) *The system [\(1a\)](#page-0-1) is called completely controllable if for any initial state*  $x(0) \in \mathbb{R}^n$  *and every finite state*  $x_f \in \mathbb{R}^n$  there exists an input  $u(t) \in \mathbb{R}^m$ , for  $t \in [0,t_f]$  such that  $x(t_f) = x_f.$ 

Theorem 1 *The system [\(1a\)](#page-0-1) is completely controllable if and only if:*

$$
rank[Es - A, B] = n \quad \text{for all} \quad s \in C \tag{5a}
$$

<span id="page-0-8"></span><span id="page-0-7"></span>
$$
rank[\mathbb{E}, \mathbb{B}] = n,\tag{5b}
$$

*where* C *is the field of complex numbers.*

Proof of this theorem is given in [\[3\]](#page-4-13).  $\blacksquare$ 

The transfer matrix of the system [\(1\)](#page-0-4) has the form:

<span id="page-0-5"></span>
$$
\mathbf{T}(s) = \mathbb{C}[\mathbb{E}s - \mathbb{A}]^{-1}\mathbb{B}
$$
 (6)

The transfer matrix [\(6\)](#page-0-5) represents the controllable part of the system [\(1\)](#page-0-4) [\[3\]](#page-4-13).

<span id="page-0-0"></span><sup>∗</sup> e-mail: t.kaczorek@pb.edu.pl

<sup>∗∗</sup>e-mail: jerzy.klamka@iitis.pl

<sup>∗∗∗</sup>e-mail: andrzej.dzielinski@pw.edu.pl

www.journals.pan.pl

T. Kaczorek, J. Klamka, and A. Dzieliński

# <span id="page-1-0"></span>**3. OBSERVABILITY OF DESCRIPTOR CONTINUOUS-TIME LINEAR SYSTEMS**

Let us consider the descriptor continuous-time linear system [\(1\)](#page-0-4) satisfying the condition [\(2\)](#page-0-6)

Definition 2 ([\[3\]](#page-4-13)) *The system [\(1\)](#page-0-4) is called completely observable if there exists*  $t_f > 0$  *such that knowing the input u(t), and the output y*(*t*) *for t*  $\in$   $[0,t_f]$  *it is possible to find (compute) the initial state vector*  $x_0$  *of the system.* 

Theorem 2 *The system [\(1a\)](#page-0-1) and [\(1b\)](#page-0-3) is observable if and only if*

$$
rank \begin{bmatrix} \mathbb{E} s - \mathbb{A} \\ \mathbb{C} \end{bmatrix} = n \quad \text{for all} \quad s \in \mathbb{C} \tag{7a}
$$

$$
rank\begin{bmatrix} \mathbb{E} \\ \mathbb{C} \end{bmatrix} = n.
$$
 (7b)

Proof of this theorem is given in [\[3\]](#page-4-13). $\blacksquare$ 

Therefore, the transfer matrix [\(6\)](#page-0-5) represents only the controllable and observable part of the system [\(1\)](#page-0-4) [\[3\]](#page-4-13).

Example 1 *Let us consider the descriptor system [\(1a](#page-0-1)[,1b\)](#page-0-3) with the matrices:*

$$
\mathbb{E} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},
$$
  

$$
\mathbb{A} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \mathbb{B} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}, \mathbb{C} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}
$$
 (8)

<span id="page-1-2"></span>*This system satisfies the condition [\(2\)](#page-0-6) since*

$$
\det[\mathbb{E}s - \mathbb{A}] = \begin{vmatrix} -1 & s-1 & -2 \\ 0 & -2 & s+1 \\ 0 & 0 & -1 \end{vmatrix} = -2 \neq 0.
$$
 (9)

*The system with matrices [\(8\)](#page-1-2) satisfies the condition [\(5a\)](#page-0-7)*

rank[Es – A, B] = rank 
$$
\begin{bmatrix} -1 & s-1 & -2 & 1 & 0 \ 0 & -2 & s+1 & 0 & -1 \ 0 & 0 & -1 & 0 & 0 \end{bmatrix}
$$
 = 3 = n. (10)

*but the condition [\(5b\)](#page-0-8) is not satisfied*

rank[**E**, **B**] = rank 
$$
\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & -1 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$
 = 2 < n = 3. (11)

*Therefore the system is not controllable. The system is also not observable. It satisfies the condition*

rank 
$$
\begin{bmatrix} \mathbb{E}s - \mathbb{A} \\ \mathbb{C} \end{bmatrix}
$$
 = rank  $\begin{bmatrix} -1 & s-1 & -2 \\ 0 & -2 & s+1 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$  = 3 = n. (12)

*but the condition [\(7b\)](#page-1-3) is not satisfied*

rank 
$$
\begin{bmatrix} \mathbb{E} \\ \mathbb{C} \end{bmatrix}
$$
 = rank  $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$  = 2 < n = 3. (13)

*The transfer matrix of the system has the form*

<span id="page-1-4"></span>
$$
\mathbf{T}(s) = \mathbb{C}[\mathbb{E}s - \mathbb{A}]^{-1} \mathbb{B} = [0 \ 1 \ 0]
$$
  
 
$$
\times \begin{bmatrix} -1 & s-1 & -2 \\ 0 & -2 & s+1 \\ 0 & 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = [0 \ 0.5]. (14)
$$

<span id="page-1-3"></span>*Let us note that in this case*

<span id="page-1-7"></span>
$$
\mathbb{C}\mathbb{B} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \end{bmatrix}
$$
 (15)

## <span id="page-1-6"></span><span id="page-1-1"></span>**4. DESCRIPTOR CONTINUOUS-TIME LINEAR SYSTEMS WITH ZERO TRANSFER MATRICES**

In this section the necessary and sufficient conditions for the zeroing of the transfer matrices will be established.

Theorem 3 *The transfer matrix [\(6\)](#page-0-5) of the descriptor linear continuous-time system [\(1\)](#page-0-4) is zero matrix if and only if the following conditions are satisfied:*

*1. the system [\(1\)](#page-0-4) is uncontrollable*

$$
\exists s \in \mathbf{C} : \text{rank} \left[ \mathbb{E} s - \mathbb{A} \quad \mathbb{B} \right] < n \quad \text{or/and} \quad \text{rank} [\mathbb{E}, B] < n \tag{16}
$$

*2. the system [\(1\)](#page-0-4) is unobservable*

$$
\exists s \in \mathbf{C} : \text{rank} \begin{bmatrix} \mathbb{E} s - \mathbb{A} \\ \mathbb{C} \end{bmatrix} < n \quad \text{or/and} \quad \text{rank} \begin{bmatrix} \mathbb{E} \\ \mathbb{C} \end{bmatrix} < n \quad (17)
$$

*3. the product of the matrices* C*, and* B *is zero matrix*

<span id="page-1-5"></span>
$$
\mathbb{C}\mathbb{B} = 0. \tag{18}
$$

Proof: The proof is based on Kalman decomposition of the descriptor linear system [\[3\]](#page-4-13). If the system is uncotrollable and/or unobservable then in the transfer matrix [\(6\)](#page-0-5) the cancellations of the poles and zeros occurs (for example in [\(14\)](#page-1-4). The transfer matrix [\(6\)](#page-0-5) is zero matrix if and only if the condition [\(18\)](#page-1-5) is satisfied.

**Example 2** Let us consider the system  $(1)$  with the matrices  $\mathbb{E}$ , A*, and* B *as given in Example [1,](#page-1-6) and the matrix as follows*

$$
\mathbb{C} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} . \tag{19}
$$

*In this case the condition [\(18\)](#page-1-5) is satisfied since*

$$
\mathbb{C}\mathbb{B} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}, \quad (20)
$$

2 2 VOLUME XX, Z



*Descriptor continuous- and discrete-time linear systems with zero transfer matrices*

*and the transfer matrix is zero matrix*

$$
\mathbf{T}(s) = \mathbb{C}[\mathbb{E}s - \mathbb{A}]^{-1} \mathbb{B} = [0 \ 0 \ 1]
$$
  
 
$$
\times \begin{bmatrix} -1 & s-1 & -2 \\ 0 & -2 & s+1 \\ 0 & 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} = [0 \ 0]. \quad (21)
$$

This confirms the importance of the condition [\(18\)](#page-1-5)

# **5. CONTROLLABILITY AND OBSERVABILITY OF THE DE-SCRIPTOR DISCRETE-TIME LINEAR SYSTEMS**

Let us consider the descriptor, discrete-time, linear system

$$
\mathbb{E}x_{i+1} = \mathbb{A}x_i + \mathbb{B}u_i, \quad i = 0, 1, \dots
$$
 (22a)  

$$
y_i = \mathbb{C}x_i,
$$
 (22b)

where  $x_i \in \mathbb{R}^n$  is the state vector,  $u_i \in \mathbb{R}^m$  is the input vector, and  $y_i \in \mathbb{R}^p$  is the output vector.

It is assumed that

<span id="page-2-6"></span>
$$
\det[\mathbb{E}z - A] \neq 0 \tag{23}
$$

where  $z \in \mathbb{C}$ , and C is the set of complex numbers.

Definition 3 *The system [\(22a\)](#page-2-1) is called completely controllable if for any initial conditions*  $x_0 \in \mathbb{R}^n$  *and every final state*  $x_f \in \mathbb{R}^n$  *there exists an input u<sub>i</sub>* ∈  $\mathbb{R}^m$  *for i* = 0,1,...,*q* − 1 *such that*  $x_q = x_f$ .

Theorem 4 *The system [\(22a\)](#page-2-1) is controllable if and only if*

$$
rank \begin{bmatrix} \mathbb{E}_z & \mathbb{B} \end{bmatrix} = n \quad \text{for} \quad \text{all } z \in \mathbb{C} \tag{24}
$$

*and*

<span id="page-2-7"></span>
$$
rank \begin{bmatrix} \mathbb{E} & \mathbb{B} \end{bmatrix} = n.
$$
 (25)

Proof of this theorem is given in [\[3\]](#page-4-13). $\blacksquare$ 

Definition 4 *The system [\(22a\)](#page-2-1), [\(22b\)](#page-2-2) is called completely observable if there exists an integer*  $q > 0$  *such that knowing*  $u_i$ and  $y_i$  for  $i = 0, 1, \ldots, q$  it is possible to find (compute) its ini*tial state x*<sub>0</sub>*.* 

Theorem 5 *The system [\(22a\)](#page-2-1), [\(22b\)](#page-2-2) is observable if and only if*

$$
\text{rank}\begin{bmatrix} \mathbb{E}z - \mathbb{A} \\ \mathbb{C} \end{bmatrix} = n \quad \text{for} \quad \text{all } z \in \mathbb{C} \tag{26}
$$

*and*

<span id="page-2-8"></span>
$$
rank \begin{bmatrix} \mathbb{E} \\ \mathbb{C} \end{bmatrix} = n.
$$
 (27)

Proof of this theorem is given in [\[3\]](#page-4-13). $\blacksquare$ 

The transfer matrix of the system [\(22\)](#page-2-3) has the form

<span id="page-2-4"></span>
$$
\mathbf{T}(z) = \mathbb{C}[\mathbb{E}z - \mathbb{A}]^{-1}\mathbb{B}.
$$
 (28)

The transfer matrix [\(28\)](#page-2-4) represents only the controllable and observable part of the system [\(22\)](#page-2-3) [\[3\]](#page-4-13).

VOLUME XX, Z 3

# <span id="page-2-0"></span>**6. DESCRIPTOR, DISCRETE-TIME, LINEAR SYSTEMS WITH ZERO TRANSFER MATRICES**

<span id="page-2-10"></span>In this section the necessary and suffcient conditions for the zeroing of the transfer matrices will be extended to the descriptor, discrete-time linear systems.

Theorem 6 *The transfer matrix [\(28\)](#page-2-4) of the descriptor, linear system [\(22\)](#page-2-3) is zero matrix if and only if the following conditions are satisfied:*

*1. the system [\(22\)](#page-2-3) is uncontrollable*

$$
\exists z \in \mathbf{C} : \text{rank} \begin{bmatrix} \mathbb{E} z - \mathbb{A} & B \end{bmatrix} < n \quad \text{or/and} \quad \text{rank} \begin{bmatrix} \mathbb{E} & B \end{bmatrix} < n \tag{29}
$$

<span id="page-2-3"></span><span id="page-2-2"></span><span id="page-2-1"></span>*2. the system [\(22\)](#page-2-3) is unobservable*

$$
\exists z \in \mathbf{C} : \text{rank}\begin{bmatrix} \mathbb{E}z - \mathbb{A} \\ \mathbb{C} \end{bmatrix} < n \quad \text{or/and} \quad \text{rank}\begin{bmatrix} \mathbb{E} \\ \mathbb{C} \end{bmatrix} < n \quad (30)
$$

*3. the product of the matrices* C*, and* B *is zero matrix*

<span id="page-2-9"></span>
$$
\mathbb{C}\mathbb{B} = 0. \tag{31}
$$

Proof of the theorem is similar (dual) to the proof of Theorem [3.](#page-1-7)

Example 3 *Let us consider the descriptor system [\(22\)](#page-2-3) with the matrices:*

$$
\mathbb{E} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix},
$$
  

$$
\begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \mathbb{E} = \begin{bmatrix} -1 \\ 0 & 0 \end{bmatrix},
$$

<span id="page-2-5"></span>
$$
\mathbb{A} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbb{B} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \mathbb{C} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -2 \end{bmatrix}
$$
(32)

*This system [\(22\)](#page-2-3) with matrices [\(32\)](#page-2-5) satisfies the condition [\(23\)](#page-2-6) since*

$$
\det[\mathbb{E}s - \mathbb{A}] = \begin{vmatrix} -1 & z & 2 \\ 0 & -1 & 2z \\ 0 & 0 & -1 \end{vmatrix} = -1 \neq 0.
$$
 (33)

*The system with matrices [\(32\)](#page-2-5) is uncontrollable, since it does not satisfy the condition [\(25\)](#page-2-7)*

rank[**E**, **B**] = rank 
$$
\begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
 = 2 < n = 3. (34)

*The system is also not observable since it does not satisfy but the condition [\(27\)](#page-2-8)*

$$
\text{rank}\begin{bmatrix} \mathbb{E} \\ \mathbb{C} \end{bmatrix} = \text{rank}\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -2 \end{bmatrix} = 2 < n = 3. \tag{35}
$$



#### T. Kaczorek, J. Klamka, and A. Dzieliński

*Note also that the condition [\(31\)](#page-2-9) is satisfied since*

$$
\mathbb{C}\mathbb{B} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{36}
$$

*The transfer matrix of the system with matrices [\(32\)](#page-2-5) has the form*

$$
\mathbf{T}(s) = \mathbb{C}[\mathbb{E}z - \mathbb{A}]^{-1} \mathbb{B} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -2 \end{bmatrix}
$$

$$
\begin{bmatrix} -1 & z & 2 \\ 0 & -1 & 2z \\ 0 & 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
$$
(37)

*This confirms Theorem [6.](#page-2-10)*

×

## <span id="page-3-0"></span>**7. CONTINUOUS-TIME LINEAR SYSTEMS WITH DELAYS IN CONTROL**

Dynamical systems with different delays in state variables and/or in the control are important class of control systems (see eg. [\[11\]](#page-4-2),[\[12\]](#page-4-3)). For delayed systems there exist many different kinds of controllability, e.g. relative controllability or functional controllability. In the sequel we shall concentrate on relative controllability. In this section, at first, we shall consider regular (nonsingular) linear continuous-time systems *S<sup>h</sup>* with delay  $h > 0$  in control, and with constant coefficients, described by the set of following equations:

<span id="page-3-2"></span>
$$
\dot{x}(t) = Ax(t) + B_0 u(t) + B_h u(t - h) \quad 0 < t \le t_f < \infty
$$
  
\n
$$
y(t) = Cx(t), \qquad (38)
$$

where  $t \in [0, t_f], x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$ , and  $h > 0$  is a constant delay. We assume that system is regular, i.e.  $\mathbb{E} = \mathbb{I}$  (identity matrix). For the above system the following relative controllability concept can be defined (see [\[11\]](#page-4-2), and [\[12\]](#page-4-3) for more details).

Definition 5 *The system S<sup>h</sup> is called relatively controllable on time inteval*  $[0,t_f]$  *if for any initial relative state*  $x(0) \in \mathbb{R}^n$ , and every finite state  $x_f \in \mathbb{R}^n$  there exists an admissible input  $u(t) \in \mathbb{R}^m$ , for  $t \in [0,t_f]$  such that  $x(t_f) = t_f$ 

Since the delayed system  $S_h$  is linear, and time invariant the solution  $x(t, x(0), u(t))$  exists, and can be computed using the Laplace transformation, and for  $x(0) = 0$  it has the form

$$
Y(s) = \mathbb{C}[s\mathbb{I} - \mathbb{A}]^{-1}(\mathbb{B}_0 + \exp(-sh)\mathbb{B}_h)U(s) = \mathbb{T}(s)U(s),
$$
\n(39)

where  $\mathbb{T}(s)$  is the transfer matrix for system  $S_h$ .

**Remark 2** *Since for*  $t \in [0,h]$ *, and*  $u(t) = 0$  *for*  $t < 0$  *system is behaving like the one without delays, then it can be considered similarly as the system presented in Section* [2](#page-0-0) *for*  $det \mathbb{E} = 0$ *. Therefore the transfer matrix*  $\mathbb{T}(s) = 0$  *if matrix*  $\mathbb{CB}_0 = 0$ *.* 

Remark 3 *However, in general for t* > *h, the above statement is not true (see e.g. [\[15\]](#page-4-14))*

Extension of the system [\(38\)](#page-3-2) has the following form:

$$
\dot{x}(t) = Ax(t) + \sum_{i=0}^{M} \mathbb{B}_{i}u(t-h_{i}) \quad 0 < t \le t_{f} < \infty
$$
  

$$
y(t) = \mathbb{C}x(t),
$$
 (40)

where  $0 \le h_i < h_{i+1} < \infty$  for  $i = 0, 1, 2, \dots M$  are constant delays. Quite similar remarks as above can be formulated for dynamical system with many constant delays in the control.

Now, let us consider linear, continuous-time, descriptor system with constant delay in control described by the following equations:

<span id="page-3-3"></span>
$$
\mathbb{E}\dot{x}(t) = \Delta x(t) + \mathbb{B}_0 u(t) + \mathbb{B}_h u(t - h) \quad 0 < t \le t_f < \infty
$$
  
\n
$$
y(t) = \mathbb{C}x(t), \tag{41}
$$

where  $t \in [0, t_f], x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$ , and  $h > 0$  is a constant delay. This system is a direct generalization of system [\(38\)](#page-3-2). For delayed system [\(41\)](#page-3-3) controllability depends on the length of time interval  $[0, t_f]$ . In general, it is necessery to consider two cases, namely:  $t_f \leq h$ , and  $t_f > h$ .

Following [\[12\]](#page-4-3), we obtain the following Theorem:

Theorem 7 *System [\(41\)](#page-3-3) is completely, relatively controllable on interval* [0, $t_f$ ], where  $t_f \leq h$  if and only if

$$
rank \begin{bmatrix} \mathbb{E} s & \mathbb{B}_0 \end{bmatrix} = n \quad \text{for} \quad \text{all} \ s \in \mathbb{C} \tag{42}
$$

*and*

$$
rank \begin{bmatrix} \mathbb{E} & \mathbb{B}_0 \end{bmatrix} = n. \tag{43}
$$

Moreover, this result can be also extended to the second case, i.e. the following theorem is also true.

Theorem 8 *The system [\(41\)](#page-3-3) is relatively controllable on interval*  $[0, t_f]$ *, where*  $t_f > h$ *, if and only if* 

$$
rank \begin{bmatrix} \mathbb{E} s & \mathbb{B}_0 & \mathbb{A} \mathbb{B}_h \end{bmatrix} = n \quad \text{for} \quad \text{all} \ \ s \in \mathbb{C} \tag{44}
$$

*and*

$$
rank \begin{bmatrix} \mathbb{E} & \mathbb{B}_0 & \mathbb{A} \mathbb{B}_h \end{bmatrix} = n.
$$
 (45)

**Remark 4** *Since for*  $t \in [0, h]$ *, and*  $u(t) = 0$  *for*  $t < 0$  *system [\(41\)](#page-3-3) is also behaving like the one without delays, then it can be considered similarly as the system presented in Section [2.](#page-0-0) Therefore the transfer matrix*  $\mathbb{T}(s) = 0$  *if matrix*  $\mathbb{CB}_0 = 0$ *.* 

Remark 5 *However, in general for t* > *h, the above statement is not true (see e.g. [\[15\]](#page-4-14)).*

#### <span id="page-3-1"></span>**8. CONCLUSIONS**

In this paper controllability and observability of descriptor linear, continuous-time and discrete-time, finite dimensional systems with constant coefficients have been discussed. Using pure algebraic methods taken directly from the theory of matrices is was proved, that controllability and observability of descriptor systems yields as a direct consequence the results for zeroing the transfer matrices of the systems considered. It should be pointed out, that in the proofs previous results known in the literature are used.

4 VOLUME XX, Z

*Descriptor continuous- and discrete-time linear systems with zero transfer matrices*

# **REFERENCES**

- <span id="page-4-8"></span>[1] Liyi Dai. *Singular Control Systems*. Springer Berlin, Heidelberg, 1989.
- <span id="page-4-9"></span>[2] Guang-Ren Duan. *Analysis and Design of Descriptor Linear Systems*. Springer New York, 2010.
- <span id="page-4-13"></span>[3] T. Kaczorek. *Linear control systems*. Wiley, 1992.
- <span id="page-4-12"></span>[4] T. Kaczorek. Zeroing the transfer function matrix of the Roesser model of 2-d linear systems. *International Journal of Applied Mathematics and Computer Science*, 33(4):513–519, 2023.
- <span id="page-4-10"></span>[5] T. Kaczorek and K. Borawski. *Descriptor Systems of Integer and Fractional Order*. Springer, 2021.
- <span id="page-4-5"></span>[6] T. Kaczorek and J.Klamka. Convex linear combination of the controllability pairs for linear systems. *Control and Cybernetics*, 50(1):1–11, 2021.
- <span id="page-4-6"></span>[7] T. Kaczorek, J. Klamka, and A. Dzieliński. Controllability of linear convex combination of linear discrete-time fractional systems. *Bulletin of the Polish Academy of Sciences Technical Sciences*, 70(5):1–6, 2022.
- <span id="page-4-7"></span>[8] T. Kaczorek, J. Klamka, and A. Dzieliński. Controllability and observability of the descriptor linear systems reduced to the standard ones by feedbacks. *Acta Mechanica*

*et Automatica*, 18(1):119–122, 2023.

- <span id="page-4-0"></span>[9] R.E. Kalman. On the general theory of control systems. In *Proceedings of the 1st IFAC Congress on Automatic Control*, pages 481–492. IFAC, 1960.
- <span id="page-4-1"></span>[10] R.E. Kalman. Mathematical description of linear dynamical systems. *SIAM Journal on Control, Series A*, 1(2):152–192, 1963.
- <span id="page-4-2"></span>[11] J. Klamka. Controllability of dynamical systems - a survey. *Archives of Control Sciences*, 2(3-4):281–307, 1993.
- <span id="page-4-3"></span>[12] J. Klamka. Controllability of dynamical systems. A survey. *Bulletin of the Polish Academy of Sciences Technical Sciences*, 61(2):221–229, 2013.
- <span id="page-4-4"></span>[13] J. Klamka. *Controllability and Minimum Energy Control*. Studies in Systems, Decision, and Control. Springer, 2018.
- <span id="page-4-11"></span>[14] A. P. Mercorelli. Theoretical dynamical noninteracting model for general manipulation systems using axiomatic geometric structures. *Axioms*, 11(7):1–24, 2022.
- <span id="page-4-14"></span>[15] L. Pandolfi. On the zeros of transfer functions of delayed systems. *System and Control Letters*, 1(3):204– 210, 1981.