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Abstract. Regular and fast monitoring of transmission line faults is of great importance for the uninterrupted transmission of electrical 

energy. Rapid detection and classification of faults accelerates the repair process of the system, reducing downtime and increasing the 

efficiency and reliability of the power system. In this context, machine learning stands out as an effective solution for transmission line 

fault detection. In this study, fault detection is performed using machine learning techniques such as decision trees, logistic regression and 

support vector machines. Random Search hyperparameter optimization was applied to improve the performance of the models. The models 

were trained and tested with data from fault-free and faulted cases. While the support vector machines model showed the lowest 

performance with 74.19% test accuracy, the logistic regression model achieved 97.01% test accuracy. The decision tree model showed the 

best performance with low error rates. Error measures such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were 

also used to evaluate the predictive power of the models. This research demonstrates how machine learning-based methods can be 

effectively used in the detection of transmission line faults and presents the performance of different algorithms in a comparative manner. 
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1. INTRODUCTION 

In order to keep up with the increasing demand for 

electricity, the electric power system is getting larger and 

more complicated overall. The distribution, transmission, 

and generating systems make up the three primary parts of 

the electric power system. In addition to distributing 

electricity to nearby customers, the system carries electrical 

energy from producing facilities to regional substations, 

often via high voltage. 

One of the biggest risks to the power system's continuity and 

dependability is transmission line failure [1]. To avoid power 

system disruptions, it's critical to identify and fix these flaws. 

Faults in transmission lines can arise suddenly for a number 

of causes. Lighting, partial discharges (corona), wind, falling 

trees, ice and snow loading, polluted insulators, and pierced 

or damaged insulators are common sources of overhead line 

faults. Series and shunt faults are the two main categories 

into which transmission line defects fall. There are two types 

of shunt faults: symmetrical and asymmetrical. Single line-

to-ground faults (A-G, B-G, C-G), line-to-line faults (AB, 

BC, CA), and double line-to-ground faults (AB-G, BC-G, 

CA-G) are all considered asymmetrical faults. Symmetrical 

faults include triple line-to-ground faults (ABC-G) and 

three-phase line faults (ABC) [2]. The categorization of 

transmission line fault types is shown in Figure 1. 

To stop electrical system damage and preserve electrical 

power flow, protection techniques must quickly identify and 

categorize defects. This accelerates the correction of 

undesired power losses, protecting linked equipment. To 

preserve power flow and restore the electrical system's 

stability, it is critical to identify the precise site of the fault 

[3]. For a very long time, line identification, classification, 

and localization techniques have been effectively used by 

 researchers. The assessment and utilization of several fault 

analysis techniques by electricity distribution firms 

facilitates the identification, classification, and forecasting of 

fault locations on transmission lines within power networks. 

As a result, they have the difficult issue of deciding on a 

particular fault classification strategy. In this paper, a 

detailed review of various techniques used for precise fault 

identification, categorization and troubleshooting on 

transmission lines in electric power systems is presented. 

The motivation of the study is to emphasize the importance 

of using effective and innovative methods such as machine 

learning (ML) methods in the detection and classification of 

faults in transmission lines. In this context, the paper presents 

machine learning based fault detection models specifically 

for electric power transmission line systems. 

The motivation of this study is to emphasize the importance 

of using machine learning methods for the detection and 

classification of faults in power transmission lines. For the 

reliability of power systems, the rapid detection and 

classification of such faults is critical to maintain the stability 

of the system. Where traditional methods are inadequate, 

solutions offered by artificial intelligence and machine 

learning techniques provide more effective results, 

especially in the early detection and classification of 

symmetric and asymmetric faults. In this context, the study 

comparatively examines various machine learning models 

such as decision trees, logistic regression and support vector 

machines to detect and classify faults in transmission lines. 

The limitations of the study are that the dataset used is 

limited to certain types of faults and the applicability to a 

wider range of faults in real-time applications should be 

investigated in future work. 
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Fig. 1. Classification of fault types in transmission line [3] 

 

A brief overview of the issue is provided in Section 1 of this 

paper. The study is divided into the following sections. The 

work done for transmission line fault detection is included in 

Section 2. The materials and techniques needed for the 

applications are presented in Section 3, and the results and 

comments are presented in Section 4. Future work and 

conclusions are presented in Section 5. 

 
2. LITERATURE REVIEW 

Significant progress has been made in a number of areas in 

recent years regarding the identification and categorization 

of power system failures. Finding power system flaws is 

crucial, particularly in businesses where prolonged blackouts 

can result in significant financial losses. Historically, eye 

examination and trial-and-error switching have been used by 

power companies as conventional means of defect 

identification. Furthermore, systems based on artificial 

neural networks have been employed for defect 

categorization and detection. 

Neural network techniques based on artificial intelligence 

(AI) are commonly employed to develop tools for 

investigating power system faults. Three layers make up the 

architecture on which ML are based: input, output, and 

hidden layer. The capacity of ML to learn on their own and 

only need a few parameter adjustments is one of its main 

advantages. The network modifies its weights during 

training, making it easier to implement real-time problems. 

It does have several drawbacks, though, such the lengthy 

training periods required to analyse multidimensional 

situations. Large data sets and dispersed data are also 

necessary for ML to update the weights in its structural 

model, and multidimensional analysis will always need 

lengthy training times [4]. Failure analysis using artificial 

neural networks may be done in a number of ways. For 

instance, a model for defect classification and identification 

utilizing a feed-forward artificial neural network is shown in 

[5]. For every one of the eleven fault situations, three-phase 

root mean square voltages and currents are used to train the 

model. Four fault parameters are produced by this approach, 

which are used to locate the fault, classify the fault, locate 

the ground fault, and indicate if the fault is present.  

The contribution of the study to the literature is provided by 

a comprehensive review of a number of artificial intelligence 

based methods used in the detection and classification of 

transmission line faults. By comparatively evaluating the 

effectiveness of traditional and modern methods such as 

Support Vector Machines, Logistic Regression and Decision 

Trees, it contributes to a better understanding of existing 

methods and techniques in this field. There are similar 

studies in the literature. However, the accuracy obtained with 

our proposed method is better than other studies in the 

literature. 

For defect identification and classification, Kumar and 

colleagues employed a feed-forward neural network trained 

with a back propagation technique [6]. Gowrishanka et al. 

classified and detected faults in transmission lines using 

artificial neural networks and discrete wavelet transforms 

[7]. The authors employ wavelet transform to extract 

information from the transient signal in both the time and 

frequency domain, and they apply ANN to classify faults. 

Neural network-based high-speed fault localization and 

detection approach was proposed by [8]. Albatsh et al. 

determined the weakest or most susceptible areas of the 

power system using four voltage stability indices. They 

carried out a comparison analysis of the indices based on 

how sensitive these indices were to the voltage collapse point 

[9]. The objective of Choudhury et al. 3 is to illustrate how a 

power grid experiencing a phase-ground failure differs from 

a system using solely PSS in terms of the coordinated 

functioning of PSS and SVC [10]. In their investigation, 

Shekhawat et al. highlighted significant concerns pertaining 

to voltage stability indices [11]. Using MATLAB-PSAT to 

simulate the Uganda Power System, Kyomugisha et al. 

assessed voltage stability and related improvement methods 

[12]. A review of several methods for accurate defect 

diagnosis, categorization, and troubleshooting is provided by 

Kanwal et al. [13].  

Modified IEEE 39-bus and IEEE 9-bus systems were used in 

the Jiriwibhakorn et al. study's implementation. The 

outcomes of the ANFIS installation demonstrate that ANFIS 

has a high degree of accuracy when predicting CCT values. 

Furthermore, a comparison between the ANFIS findings and 

the commonly utilized ANN results shows that the ANFIS 

produces better results faster [14]. Goni et al. use the extreme 

learning machine (ELM) method to propose a self-activating 

fault detection and classification system in their work. 

MATLAB Simulink is used to simulate fault data [15]. 

Upadhyay et al. constructed a flaw detector and classifier 

using a feed-forward ANN with a backpropagation 

technique. Performance is evaluated using mean squared 

error (MSE) and the confusion matrix of the classifier and 

detector [16]. Using an extended ANN, Obi et al. located the 

issue [17]. Using the Global Positioning System (GPS) and 

the Global System for Mobile Communications (GSM), 

problem analysis was carried out in this manner. For training, 

testing, and validation, the ANN's mean square error value 
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satisfies the desired MSE. Using MRA, the Taguchi 

technique, and the discrete wavelet transform, an artificial 

neural network model is created. Using the variations in 

wavelet entropies of three-phase voltages, three-phase 

currents, and neutral current, the study aims to identify, 

classify, and forecast the location of faults. Using the 

Taguchi approach, an orthogonal dataset was created in order 

to train the ANN [18]. In a study by Affijulla and Tripathy, 

the three-phase current signal of the transmission line was 

deconstructed to the fifth level of detail. Using a DWT-ANN 

approach, these data were used to extract features and 

complete fault classification and detection. The classification 

accuracy of this hybrid model was determined to be 90.60% 

[19]. 

Applications for transmission line monitoring can make use 

of ML, a crucial machine learning technology. A neural 

network can be trained using offline data, which makes it 

very helpful for fault analysis and detection in power 

systems. ML can be used to resolve the issue of distance 

relays falsely tripping owing to over- or under-reach faults. 

According to one study, ML can provide improved zone 

access capabilities together with transmission line failure 

detection. An ML method for suppressing fault resistance on 

distance relays based on pattern recognition is given in a 

research [20]. It was found that the network adjusted to 

changes in the power system network following extensive 

training with a variety of failure patterns. A feed-forward 

back-propagation neural network was employed by the 

authors of the research to identify faults in a three-phase 

transmission line. They fixed issues that, in the event of relay 

and circuit breaker failure, may cut off a sizable portion of 

the system network from the power source. The 

implementation of artificial intelligence technique in power 

system fault analysis and detection has been encouraged by 

the heuristic procedure utilized by power system operators in 

fault analysis. A neural network approach was used to locate 

the power system's malfunctioning component. To represent 

busbars, transformers, and transmission lines, a multilayer 

perceptron neural network and general regression are 

utilized. Network topological changes might be handled by 

the intended module without requiring the network to be 

retrained. 

The study presents a comprehensive review of various AI-

based methods used in the detection and classification of 

transmission line faults. In this way, the effectiveness of 

traditional and modern methods is comparatively evaluated. 

A comparative analysis of machine learning techniques such 

as support vector machines, logistic regression and decision 

trees has been carried out in the study. This analysis provides 

a better understanding of the methods in the literature by 

comparing the success of these techniques in detecting and 

classifying transmission line faults. 

 
3. MATERIAL AND METHOD 

3.1. Model of the Transmission Line in the Power 
System  

We looked at a power system that is depicted in Figure 2 and 

is made up of a three-phase, 50Hz, 154kV transmission line 

that is connected to a power source on both ends. Distance 

relay protection is the foundation of the ML relay that is 

utilized. The model depicts a Türkiye transmission line. 

Figure 2 adapted from Akhikpemelo et al [21]. 

 

 
Fig. 2. Transmission line model [22]  

MATLAB software is used to model the transmission system 

and simulate different forms of faults, producing a fault data 

set for network testing and training. Table 1 lists the power 

system parameters that were utilized. 
TABLE 1. Electrical parameters of the power system 

Parameters Value 

Frequency 50 Hz 

Generator output voltage 14.6 kV 

Transmission line voltage 154 kV 

Desired active power 100 MW 

Reactive power value 27 MVAr 

 

Line-ground faults (A-G, B-G, and C-G), double-line-

ground faults (AB-G, AC-G, and BC-G), line-line faults 

(AB, AC, and BC), and 3-phase faults (ABC) are among the 

several types of faults. simulated by altering the faults 

module's fault type constraint. Various fault data were 

produced for L-G, LL-G, LL, and LLLL-G problems by 

utilizing the transmission line system's MATLAB software 

model.  A multilayer feed-forward network is built initially. 

Appropriately, further hidden layers were added to test the 

network's viability. In order to set up the network for 

training, the biases and weights of each network object were 

initialized. Training was done in batch training mode, which 

is more quicker and yields lower errors. The quantity of 

validation checks, the size of the gradient performance, and 

the network performance were all significant factors during 

the training process. Now that the network has been trained 
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and validated, it can be utilized to determine how the relay 

system will react to various failure scenarios. Then, rather of 

using the standard mathematical calculations, the Neural 

Network program is transferred to the microprocessor-based 

relay [23]. 

3.2. Support Vector Machines (SVM) 
SVM is a machine learning technique used in high voltage 

transmission line fault detecting procedures. The SVM 

method is a useful tool for solving regression and 

classification issues. A hyperplane, or dividing line, is drawn 

in the space created by SVM, which represents data points in 

that space. The goal of this line is to increase the separation 

between two groups. The points that are closest to this line 

are the support vectors, which establish the distance between 

classes [24]. 

3.3. Logistic Regression 

Logistic Regression is a statistical modelling method used 

especially in classification problems. This regression is used 

for situations where the dependent variable is categorical. It 

is usually used for binary classification, but can also be 

extended to multi-class classification problems [25].  

3.4. Decision Tree  

Decision Tree-based models for detecting faults in high-

voltage transmission lines are often built using machine 

learning techniques. These models are designed to perform 

tasks such as detecting, classifying and potentially 

identifying the causes of faults.   

3.5. Random Search Optimization 

Random search optimization is an effective approach to 

hyperparameter optimization of machine learning models. It 

attempts to find optimal hyperparameter combinations by 

evaluating randomly selected points in the parameter space. 

Unlike systematic search methods such as Grid Search, 

Random Search tries a certain number of random 

combinations instead of exhaustively exploring all 

possibilities. This approach significantly reduces 

computational cost, especially for models with large and 

complex hyperparameter spaces, and allows for good results 

in less time. Furthermore, random sampling increases the 

probability of exploring a larger region of the 

hyperparameter space, which increases the chances of 

reaching the global optimum[26]. 

Random search can be more effective when working with 

high-dimensional data sets and complex models. While Grid 

Search is more expensive in terms of time and computational 

resources because it must try all combinations, Random 

Search can achieve similar or better performance by trying 

only a certain number of combinations. Especially in 

practical applications such as machine learning-based power 

system fault detection, the flexibility and computational 

efficiency of Random Search offers significant advantages in 

model optimization. This method can increase the 

generalization ability of the model by reducing overlearning 

and improving performance metrics, thus playing a critical 

role in improving the reliability and accuracy of machine 

learning models. 

3.6. Training and Testing Dataset  

An artificial neural network model designed to use three 

different algorithms was selected [27,28]. This dataset 

contains scaled current and voltage values of three phases. 

For the 6 inputs in the dataset, there are 11 different fault 

conditions and no-fault conditions. The truth table for these 

fault types is shown in Table 2. 
TABLE 2. Truth table for various fault types  

 Failure 

Type 

A 

Line 

B Line C 

Line 

Ground 

1 A-G 1 0 0 1 

2 B-G 0 1 0 1 

3 C-G 0 0 1 1 

4 A-B 1 1 0 0 

5 A-C 1 0 1 0 

6 B-C 0 1 1 0 

7 A-B-G 1 1 0 1 

8 A-C-G 1 0 1 1 

9 B-C-G 0 1 1 1 

10 A-B-C 1 1 1 0 

11 A-B-C-G 1 1 1 1 

 

Instantaneous voltages and currents for all three phases have 

been scaled by the neural network in use for five distinct fault 

circumstances as well as the fault-free state. The data 

collection contains 7861 labelled data points. The fault type 

of these data indicates that there are 1134 A-B-G faults, 1133 

A-B-C-G faults, 1129 A-G faults, one A-B-C fault, 1004 B-

C faults, and 2365 No Faults in the system.  

The data set used in the study was obtained from simulations 

performed with MATLAB Simulink. Phase voltage and 

current values were collected for transmission line faults 

(e.g. A-G, A-B-G, B-C) and fault-free conditions. For each 

fault condition, the instantaneous current and voltage data of 

the phases were recorded and then normalised and added to 

the data set. The data set includes 6 input variables (voltage 

and current values of three phases) and 11 fault conditions 

and fault-free conditions. For example, for the A-G fault, the 

short circuit of phase A with earth was simulated and the data 

in this case was labelled and recorded. 80% of the data set 

was used for training and 20% for testing. Machine learning 

models were trained and tested with these data. 

To better understand the structure of the data in the dataset, 

the correlation between each feature was calculated and 

visualized as shown in Figure 3. This correlation matrix 

shows the relationships between the various variables used 

for fault detection in the power systems considered in the 

study. The matrix contains the correlation coefficients 

between pairs of variables, ranging from -1 to +1. When the 

correlation coefficient is +1, there is a positive and strong 

relationship between the two variables, and when it is -1, 

there is a negative and strong relationship. A correlation 

coefficient of 0 indicates that there is no linear relationship 

between the variables. For example, a coefficient of 0.76 was 

calculated between G and A in the correlation matrix. This 

indicates that these two variables have a strong positive 

relationship. There is a coefficient of -0.37 between Ia and 

Ib. This indicates that there is a weak negative relationship 

between the two variables. 

Such correlation relationships can be useful for 

understanding whether certain types of faults in the system 

are related to each other and for modeling faults more 

effectively. For example, highly correlated variables like A 

and G can be analyzed together, while negatively correlated 
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variables like Ib and Ic should be considered for different 

analyses. 

The correlation matrix plays an important role in fault 

detection because faults often represent deviations from 

normal in the system. These deviations can cause a 

significant change in correlation between different sensors. 

By identifying which sensors are more strongly correlated 

with each other, correlation matrix analysis can help pinpoint 

the location and type of a potential failure. A high correlation 

indicates that a deviation in a particular sensor may be 

associated with a similar deviation in other sensors, which 

could be a possible symptom of failure. Therefore, the 

correlation matrix can be used as an effective tool in fault 

detection.  

It is anticipated that the mean square error number would 

drop as the neural network is trained. The validation check 

then looks at the deviations of the trained neural network. 

Both faulty and fault-free circumstances are identified by the 

fault detection approach. Using an 80% training and 20% test 

data split, a complete dataset comprising all simulated fault 

current and fault-free current data is produced. 

 
 

 
Fig. 3.  Correlation matrix 

 
4. RESULTS AND DISCUSSION 

Python programming language was used for machine 

learning training and models were created with the widely 

preferred scikit-learn library. Scikit-learn provides a large set 

of tools that enable easy implementation of machine learning 

algorithms. Models such as decision trees, logistic regression 

and support vector machines were trained and tested using 

this library. In addition, the Random Search method for 

hyperparameter optimisation of the models was also 

implemented through the scikit-learn library. NumPy and 

Pandas libraries were used for data processing and analysis. 

There are five different fault and no fault conditions in the 

neural network used. These states are A-G, A-B-G, B-C, A-

B-C, A-B-C, A-B-C-G and No Fault. The current and voltage 

graphs with and without faults obtained with three different 

regression models are as shown in the figures above. Logistic 

regression, Support Vector Machines and Decision Tree ML 

models were used. To improve the performance of the 

machine learning models used in this study, a 

hyperparameter optimization method such as Random 

Search is used. Random search optimization plays an 

important role in maximizing the potential of the model. As 

a result of the application of Random Search Optimization, 

the training and testing accuracy of the Support Vector 

Machines, Logistic Regression, and Decision Tree models 

are improved, as well as the error metrics such as RMS and 

MAE. Especially in the Decision Tree model, this 

optimization algorithm was used to reduce the risk of 

overlearning and to increase the generalization ability of the 

model. Hyperparameter optimization with random search 

improves the performance of existing models and increases 

the reliability and success of these models in the application 

domain. This type of optimization contributes to the 

advancement of machine learning based fault detection 

studies. The parameters used in the training with logistic 

regression are given in Table 3. 
 
 

TABLE 3. Logistic regression parameters 

Parameter Value 

Penalty L2 

Class_weight none 

Intercept_scaling 1 

Max_iter 250 

Random_state 50 

As a result of the training of Logistic Regression, 97.1% 

training accuracy and 96.7% test accuracy were obtained in 

predicting the fault in transmission lines. RMSE is 0.691, 

MAE is 0.119, and R2 Score is calculated as 85.181. The 

confusion matrix of the logistic regression is presented in 

Figure 4. As can be seen in the confusion matrix, some A-G 

Fault is incorrectly predicted. This reduces the accuracy of 

the model. 
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Fig. 4. Confusion matrix of logistic regression   
 

The graph showing the prediction of transmission line fault 

and actual fault values predicted by the logistic regression 

algorithm is given in Figure 5. The actual fault types in the 

data set and the fault type predicted by the logistic regression 

algorithm are given in Table 4. 

 
Fig. 5. Comparison of graphs of actual faults on the transmission line 
and faults predicted by logistic regression 
 
TABLE  4. True and predict values of ID numbers randomly extracted 
from the dataset. 

Dataset 

ID 

True 

Fault 

Type 

Predicted 

Fault 

Type 

1556 2 2 

3739 0 0 
7451 5 5 

4652 1 1 

2594 4 0 
4270 0 0 

6816 5 5 

1643 2 2 
55 3 3 

662 3 3 

 

The parameters used in the training with Support Vector 

Machines (SVM) regression are shown in Table 5. 
. 

TABLE  5. SVM regression parameters 

Parameter Value 

Epsilon 0.12 

cache_size 200 

Shrinking true 

Max_iter -1 

Coef0 0.0 

 

SVM training resulted in 74.19% training accuracy and 

76.51% test accuracy in predicting the fault in transmission 

lines. RMSE is 0.0.877, MAE is 0.388, R2 Score is 76,136. 

SVM confusion matrix is presented in Figure 6. When the 

confusion matrix resulting from the SVM model is analysed, 

it is seen that the predicted failure types are more inaccurate 

than Logistic regression.  

 
Fig. 6. Confusion matrix of SVM  
The graph showing the prediction of transmission line fault 

and actual fault values predicted by SVM algorithm is given 

in Figure 7. The actual faults in the data set and the faults 

predicted by the SVM regression algorithm are given in 

Table 6.  

 
Fig. 7. Comparison of graphs of actual faults on the transmission line 
and faults predicted by SVM 
TABLE  6. True and predict values of ID numbers randomly extracted 
from the dataset. 

Dataset 

ID 

True 

Fault 

Type 

Predicted 

Fault 

Type 

6816 5 5 
6859 5 5 

6731 5 5 

3681 0 2 
6326 5 5 

1664 2 2 

7053 5 5 
5488 1 5 

278 3 3 

172 3 3 

 

The parameters used in the training with Decision Tree 

regression are shown in Table 7. 

 
TABLE  7. Decision Tree regression parameters 

Parameter Value 

Splitter best 

Max_depth none 

min_samples_leaf 1 

Random_state none 

min_weight_fraction_leaf 0.0 
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As a result of the training of the Decision Tree Regression, 

99.71% training accuracy and 99.87% test accuracy were 

obtained in predicting the fault in transmission lines. RMS is 

0.017, MAE is 0.005, R2 Score is 99.851. The confusion 

matrix of this regression is presented in Figure 8. 

 
Fig. 8. Confusion matrix of Decision Tree  

The graph showing the prediction of transmission line fault 

and actual fault values predicted by the Decision Tree 

algorithm is given in Figure 9. The actual fault types in the 

data set and the fault types predicted by the Decision Tree 

algorithm are given in Table 8.  

 
Fig. 9. Comparison of graphs of actual faults on the transmission line 
and faults predicted by Decision Tree 
 
TABLE  8. True and predict values of ID numbers randomly extracted 
from the dataset. 

Dataset 

ID 

True 

Fault 

Type 

Predicted 

Fault 

Type 

3704 0 0 

6525 5 5 

2510 4 4 

7172 5 5 
311 3 3 

4361 0 0 

2221 2 2 
129 3 3 

4830 1 1 

3459 0 0 

 

Decision trees are used to classify data or perform regression 

analysis using a set of decision rules. This tree structure 

divides the dataset into small pieces and applies a specific 

decision algorithm on each piece. When building the 

decision tree, the algorithm tries to select features that best 

divide and classify the dataset. Each decision node is based 

on a specific feature and a specific value of that feature. In 

this way, the dataset is divided into smaller subsets. 

Table 9 shows the performance of different regression 

algorithms. First, the Support Vector Machines (SVM) 

model shows that the training accuracy is 76.51% and the 

test accuracy is 74.19%. This shows that the model provides 

sufficient learning on the training data, but has limited 

generalization ability on the test data. High Root Mean 

Square Error (RMS) and Mean Absolute Error (MAE) values 

can negatively affect the accuracy of the model's predictions. 

The logistic regression model stands out with a training 

accuracy of 96.77% and a testing accuracy of 97.01%. This 

indicates that the model fits the dataset well and has high 

generalizability. The low RMS (0.691) and MAE (0.119) 

values support the success of the model, as the predictions 

are highly reliable. Finally, the Decision Trees model has the 

highest accuracy rates on training and test data (99.71% 

training, 99.87% test). It also shows a high R² score 

(99.851%) with very low RMS (0.017) and MAE (0.005) 

values. This suggests that both the learning and 

generalization ability of the decision tree model are 

excellent. 

Overall, Table 9 reveals that decision trees perform the best, 

followed by logistic regression and SVM performs the worst. 

These results suggest that decision trees are the most suitable 

machine learning model for transmission line fault detection. 

While logistic regression also provides a good alternative, it 

is emphasized that the performance of SVM needs to be 

improved. 

The study examines in detail various artificial intelligence-

based methods used in the detection and classification of 

transmission line faults. Thus, the effectiveness of both 

traditional and modern methods can be comparatively 

evaluated. A comparative analysis of machine learning 

techniques such as support vector machines, logistic 

regression and decision trees has been carried out. This 

analysis provides a better understanding of the methods in 

the literature by comparing the success of these techniques 

in the detection and classification of transmission line faults. 

The algorithm parameters used are optimized to improve the 

results. The proposed methods have higher accuracy rates 

than similar studies in the existing literature. In particular, 

the decision tree algorithm achieved 99.87% test accuracy in 

detecting and classifying errors as a result of optimization.  
 

TABLE  9. Comparison of regression algorithms results 

Regressor Algorithm Training Accuracy Testing Accuracy RMS Score MAE Score R2 Score 

Support Vector Machines 76.51 74.19 0.877 0.388 76.136 

Logistic Regression 96.77 97.01 0.691 0.119 85.181 

Decision Tree 99.71 99.87 0.017 0.005 99.851 

 
5. CONCLUSIONS 

Disturbances in electric power transmission systems 

significantly impact reliability, often due to delays in fault 

identification and classification. These delays hinder prompt 

troubleshooting, emphasizing the need for early detection, 

rapid response, and swift restoration. This study explores the 

application of artificial neural networks for identifying and 
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classifying faults in three-phase transmission lines. To 

address both symmetrical and non-symmetrical issues, deep 

learning-based regression models, such as decision trees, 

logistic regression, and support vector machines, are 

employed. Random Search optimization enhances the 

performance of these machine learning models.  The models 

utilize phase currents and voltages from a 

Simulink/MATLAB transmission line model, with 

normalized instantaneous voltage and current inputs for fault 

detection and classification. Six distinct fault types are 

analyzed, demonstrating accurate identification of faults on 

154 kV transmission lines. Validation with real-time data 

from Türkiye Transmission Company confirms the models' 

effectiveness, with decision tree regression achieving 

99.87% accuracy. All tested shunt faults were correctly 

identified and classified, highlighting the potential of ML-

based models for improving system cost-effectiveness and 

maintenance efficiency. Future work will expand real-time 

applications, explore other fault types, and incorporate 

ensemble techniques combining machine learning and deep 

learning.  
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