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Optimal control problems on the co-adjoint
Lie groupoids

Ghorbanali HAGHIGHATDOOSTo

In this work we study the invariant optimal control problem on Lie groupoids. We show that
any invariant optimal control problem on a Lie groupoid reduces to its co-adjoint Lie algebroid.
In the final section of the paper, we present an illustrative example.
Key words: optimal control problem, invariant control system, Hamiltonian system, co-adjoint
Lie groupoid

1. Introduction

Control systems and optimal control theory are the main branches of most
area of the sciences. Especially in mathematics, they have taken a major place.
The interplay between optimal control theory, geometry and analytical mechanics
is interest of many authors. Geometric investigations of the optimal control prob-
lems are done by many control theorists. Ever since the optimal control emerged
in Mathematics, it has strongly influenced geometry. In particular, it played a key
role in the birth of differential geometry and defining the ‘straight line’ or the
concept of ‘geodesic’ by means of an extermal curve of the problem. But more
recently, modern control theory has been heavily influenced by geometry and
Hamiltonian mechanics(see [8–10] for more details).

Most works concern invariant control systems. It means that the system has a
symmetry, i.e. some group is the symmetry of the system. Many authors studied
optimal control problems defined on some Lie groups. This formalism has been
taken in V. Jurdjevic’s works in [10, 11]. In this case the theory of Hamiltonian
systems on Lie groups is based on a particular realization of the cotangent bundle
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of a Lie group 𝐺 as the product of 𝐺 and the dual of its Lie algebra 𝔤, i.e. 𝑇∗𝐺
realized as 𝐺 × 𝔤∗.

After that is considered some Hamiltonian function for every invariant vector
field on the realization of the co-tangent bundle of the Lie group and are formed the
reduced equations which are defined in terms of Lie-Poisson structure on the dual
of the Lie algebra of the Lie group. In the following, by a suitable symplectic form
is defined correspondence Hamiltonian vector field and Hamiltonian equation and
proved that the extermal curves of the optimal control problem are among of the
integral curves of this Hamiltonian system.

The generalization of the Jurdjevic’s idea is done by E. Martinez in [7], where
control systems and optimal control problems on a Lie algebroid are studied. By
considering the prolongation of the dual bundle of the Lie algebroid with respect
to the Lie algebroid itself is introduced a Hamiltonian function on the direct
product of the dual bundle of the Lie algebroid and a bundle so-called control
space over a base manifold of the Lie algebroid.

The Hamiltonian section associated with the Hamiltonian function is con-
structed and is shown that integral curves of the Hamiltonian vector field, which
is given by the projection of the Hamiltonian section under the anchor of the pro-
longation, are the critical trajectories. Then, E. Martinez showed that the solutions
of the optimal control problem are described by trajectories of the Hamiltonian
system.

It is worth noting that in [10, 11] it has been presented the optimal control
problems on the Lie group and on the co-adjoint orbits of the Lie group. The
idea is continued by realization of the co-tangent bundle of the Lie group and
by defining a symplectic form over the co-tangent bundle and constructing the
Hamiltonian equations. It is shown that the solutions of these equations are the
solutions of the optimal control problem.

Unfortunately, for the Lie groupoid, the co-tangent bundle does not admit any
realization, so we cannot apply the Jurdjevic’s method for the Lie groupoid and
get extermal solutions. But in [4,5] it is shown that any control system as well as
any optimal control problem on a Lie groupoid reduces to its Lie algebroid.

In this work, at first we study a right-invariant control system as well a right-
invariant optimal control problem on an arbitrary Lie groupoid and show that
they can be reduced to the co-adjoint Lie groupoid of the Lie groupoid which
has been constructed in [1]. Then by using the reduction in the co-adjoint Lie
algebroid and by applying the method which is presented in [7], we study control
systems and optimal control problems on the co-adjoint Lie algebroid. We end
the paper with an illustrative example. In other words, we consider the trivial
Lie groupoid and an optimal control problem on its co-adjoint Lie algebroid and
show that the optimal control problem can be reduced to the optimal control
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problem on the co-tangent bundle of the orbits of the co-adjoint representation of
the Lie group. Also, we show that the extermal solutions of the optimal control
problem on the co-adjoint Lie algebroid of the trivial Lie groupoid are obtained
from the solutions of the corresponding Hamiltonian system on the co-tangent
bundle of the co-adjoint orbits of the Lie group. The paper is organized as follows.
In Section 2 we recall some facts about co-adjoint Lie groupoid and co-adjoint
Lie algebroid (see [1] for more details) and define a control system on a Lie
groupoid. In Section 3 we study reduction in optimal control problem on a Lie
groupoid to its co-adjoint Lie groupoid. In Section 4 we study the reduction of
the optimal control problem on a Lie groupoid to its Lie algebroid. In Section 5
we study the optimal control problem on the co-adjoint Lie algebroid of a regular
Lie groupoid. The paper, in Section 6, is finished by an illustrative example.

2. Main Concepts

2.1. Lie groupoid and Lie algebroid

It is well-known that a groupoid which is denoted by𝐺 ⇒ 𝑀 , consists of two
sets 𝐺 and 𝑀 together with structural mappings 𝛼, 𝛽, 1, 𝜄 and 𝑚, where source
mapping 𝛼 : 𝐺 → 𝑀, target mapping 𝛽 : 𝐺 −→ 𝑀, unit mapping 1 : 𝑀 −→ 𝐺,

inverse mapping 𝜄 : 𝐺 −→ 𝐺 and multiplication mapping 𝑚 : 𝐺2 −→ 𝐺 where
𝐺2 = {(𝑔, ℎ) ∈ 𝐺 × 𝐺 | 𝛼(𝑔) = 𝛽(ℎ)} is subset of 𝐺 × 𝐺.

A Lie groupoid is a groupoid 𝐺 ⇒ 𝑀 for which 𝐺 and 𝑀 are smooth
manifolds, 𝛼, 𝛽, 1, 𝜄 and 𝑚, are differentiable mappings and besides of 𝛼, 𝛽 are
differentiable submersions.

The right translations on a Lie groupoid𝐺 over𝑀 , 𝑅𝑔 : 𝐺𝛽(𝑔) = 𝛼
−1(𝛽(𝑔)) →

𝐺𝛼(𝑔) = 𝛼
−1(𝛼(𝑔)) are diffeomorphisms of the 𝛼-fibers only and not of the whole

groupoid.
A smooth mapping 𝑋 : 𝐺 → 𝑇𝐺 is called a vector field on 𝐺, i.e. for every

𝑔 ∈ 𝐺, 𝑋 (𝑔) ∈ 𝑇𝑔𝐺, where 𝑇𝑔𝐺 is the tangent space to 𝐺 at 𝑔 ∈ 𝐺.
According to the above, to talk about right-invariant vector fields on 𝐺, we

have to restrict attention to those vector fields which are tangent to the 𝛼-fibers.
In other words, we take the elements of the sections of the sub-bundle 𝑇𝛼𝐺 of
𝑇𝐺 defined as

𝑇𝛼𝐺 = Ker(𝑑𝛼) ⊂ 𝑇𝐺.

A Lie algebroid 𝐴 over a manifold 𝑀 is a vector bundle 𝜏 : 𝐴 −→ 𝑀 with
the following items:

1. A Lie bracket [| , |] on the space of smooth sections Γ(𝜏),

[| , |] : Γ(𝜏) × Γ(𝜏) −→ Γ(𝜏), (𝑋,𝑌 ) ↦−→ [|𝑋,𝑌 |] .
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2. A morphism of vector bundles 𝜌 : 𝐴 −→ 𝑇𝑀, called the anchor map,
where 𝑇𝑀 is the tangent bundle of 𝑀, such that the anchor and the bracket
satisfy the following Leibniz rule:

[|𝑋, 𝑓𝑌 |] = 𝑓 [|𝑋,𝑌 |] + 𝜌(𝑋) ( 𝑓 )𝑌,

where 𝑋,𝑌 ∈ Γ(𝜏), 𝑓 ∈ 𝐶∞(𝑀) and 𝜌(𝑋) 𝑓 is the derivative of 𝑓 along the
vector field 𝜌(𝑋).

Given a Lie groupoid 𝐺 over 𝑀 , we define the vector bundle 𝐴 = 𝐿𝑖𝑒(𝐺) =
𝐴𝐺, whose fiber at 𝑥 ∈ 𝑀 coincides with the tangent space at the unit 1𝑥 of the
𝛼- fiber at 𝑥. In other words, 𝐴𝐺 := (𝑇𝛼𝐺)𝑀 .

It is easy to see that every fiber of the sub-bundle 𝑇𝛼𝐺 at an arrow ℎ : 𝑦 → 𝑧

of 𝐺 is 𝑇𝛼
ℎ
𝐺 = 𝑇ℎ𝐺 (𝑦,−), where 𝐺 (𝑦,−) = 𝛼−1(𝑦) = 𝐺𝛼(ℎ) . Consider the right

translation 𝑅𝑔 : 𝐺 (𝑦,−) → 𝐺 (𝑥,−), 𝑔′ → 𝑔′𝑔. The differential of the right
translation by 𝑔 induces a map 𝑑𝑅𝑔 : 𝑇𝛼

ℎ
𝐺 → 𝑇𝛼

ℎ𝑔
𝐺.

Definition 1. Vector field 𝑋 on 𝐺 is called vertical if it is vertical with respect to
𝛼, that is, 𝑋𝑔 ∈ 𝑇𝑔𝐺𝛼(𝑔) , for all 𝑔 ∈ 𝐺. We call 𝑋 right- invariant on 𝐺 if it is
vertical and 𝑋𝑔ℎ = 𝑑𝑅𝑔 (𝑋ℎ), for all (ℎ, 𝑔) ∈ 𝐺 (2) .

It is easy to show that Γ(𝐴𝐺) - the space of sections of vector bundle 𝐴𝐺 can
be identified the space of right-invariant vector field on 𝐺. We denote the space
of right-invariant vector field on 𝐺 by

𝜒𝛼inv(𝐺) = {𝑋 ∈ Γ(𝑇𝛼𝐺) : 𝑋ℎ𝑔 = 𝑑𝑅𝑔 (𝑋ℎ), (ℎ, 𝑔) ∈ 𝐺 (2)}.

From above, we have the space of sections Γ(𝐴𝐺) which is isomorphic to the
space of right-invariant vector fields on 𝐺, 𝜒𝛼inv(𝐺). On the other hand, the space
𝜒𝛼inv(𝐺) is a Lie sub-algebra of the Lie algebra 𝜒(𝐺) of vector fields on 𝐺 with
respect to the usual Lie bracket of vector fields. Also, the push-forward of vector
field on the 𝛼−fibers along 𝑅𝑔, preserves brackets. So we obtain a new bracket on
Γ(𝐴𝐺) which is uniquely determined. The Lie bracket on 𝐴𝐺 is the Lie bracket
on Γ(𝐴𝐺) obtained from the Lie bracket on 𝜒𝛼inv(𝐺). The anchor of 𝐴𝐺 is the
differential of the target mapping 𝛽, i.e. 𝜌 = (𝑇𝛽)𝐴𝐺 : 𝐴𝐺 → 𝑇𝑀 . As a result,
we obtain that 𝐴𝐺 is a Lie algebroid associated to the Lie groupoid 𝐺.

2.2. Control system

A curve 𝑔 : 𝐼 → 𝐺 is called 𝛼-curve if 𝑔 be smooth and d𝑔
d 𝑡 ∈ 𝑇𝛼𝐺, i.e. for

all 𝑡 ∈ 𝐼, 𝑔(𝑡) belongs to the 𝛼-fibers of 𝐺.
A control system on a Lie groupoid 𝐺 is an ODE of the form

d𝑔
d𝑡

= 𝐹 (𝑔, 𝑢). (1)
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Here 𝐹 : 𝐺×R𝑚 → 𝑇𝛼𝐺 is a smooth mapping and 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), ..., 𝑢𝑛 (𝑡))
taking values in a subset𝑈 of R𝑚 is called a control function.

The control system (1) is said right-invariant if for all (ℎ, 𝑔) ∈ 𝐺 (2) and 𝑢 ∈ 𝑈,
we have

𝑑𝑅𝑔 (𝐹 (ℎ, 𝑢)) = 𝐹 (𝑅𝑔 (ℎ), 𝑢).
It is easy to show that every right-invariant vector field on a Lie groupoid 𝐺
over the manifold 𝑀 is determined by its value at the points in 𝑀 . Also, each
right-invariant system is uniquely defined by its values at the points in 𝑀 . In other
words,

𝑑𝑅𝑔 (𝐹 (1𝛽(𝑔) , 𝑢)) = 𝐹 (𝑅𝑔 (1𝛽(𝑔)), 𝑢) = 𝐹 (𝑔, 𝑢).
By a control system on a Lie groupoid 𝐺 over 𝑀 we mean a system of

differential equations (1) where 𝑔 is said to be the state point and 𝑢 are the control
coordinates. Solutions of the system (1) are said to be trajectories of the system.

An optimal control problem consists in finding the trajectories of the control
system which connect some predetermined states and minimize the integral of
some function 𝑓 so-called cost function depending on state and control coordi-
nates.

A function 𝑓 : 𝐺 × R𝑚 → R is called right-invariant if

𝑓 (𝑅𝑔 (ℎ), 𝑢) = 𝑓 (ℎ, 𝑢),

for all (ℎ, 𝑔) ∈ 𝐺 (2) and 𝑢 ∈ R𝑚.
Every right-invariant function on𝐺 ×R𝑚 is uniquely determined by its values

at the points in 𝑀 . In other words, 𝑓 (𝑔, 𝑢) = 𝑓 (𝑅𝑔 (1𝛽(𝑔)), 𝑢).
An optimal problem on 𝐺 is said to be right-invariant if both cost function 𝑓

and the control system are right-invariant.

2.3. Co-adjoint Lie groupoid and Co-adjoint Lie algebroid

A Lie groupoid 𝐺 ⇒ 𝑀 together with structural mappings 𝛼, 𝛽, 1, 𝜄 and 𝑚,
which are defined above, is called regular if the mapping (𝛽, 𝛼) is mapping with
constant rank. In [1] we associated to every regular Lie groupoid 𝐺 over 𝑀 a Lie
groupoid so-called co-adjoint Lie groupoid. The adjoint and co-adjoint action of
𝐺 on the isotropy Lie groupoid 𝐼𝐺 of 𝐺, are defined as follows:

The isotropy group of 𝐺 ⇒ 𝑀 at 𝑝 ∈ 𝑀 is 𝐼𝑝 = 𝛼−1(𝑝) ∩ 𝛽−1(𝑝). It is
well-known that 𝐼𝑝 is a Lie group where its composition law and inverse map are
the restrictions of multiplication map𝑚 and inverse map 𝜄 to 𝐼𝑝, respectively. The
union of all isotropy groups 𝐼𝑝 when 𝑝 rounds over in 𝑀 construct a groupoid
over 𝑀 , i.e. 𝐼𝐺 = (∪𝐼𝑝)𝑝∈𝑀 is a groupoid over 𝑀 . Note that the isotropy groupoid
of Lie groupoid is not a smooth manifold in general. If we consider 𝐺 being
a regular Lie groupoid, then its associated isotropy groupoid is Lie groupoid.
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We denote the associated isotropy Lie groupoid to Lie groupoid 𝐺 ⇒ 𝑀 by
𝐼𝐺 and the Lie algebroid associated to isotropy Lie groupoid by 𝐴𝐼𝐺 and call it
isotropy Lie algebroid.

Definition 2. A smooth left action of Lie groupoid G on smooth map 𝐽 : 𝑁 −→ 𝑀

is a smooth map 𝜃 : 𝐺 𝛼 × 𝐽 𝑁 −→ 𝑁 which satisfies the following properties:
1. For every (𝑔, 𝑛) ∈ 𝐺 𝛼 × 𝐽 𝑁, 𝐽 (𝑔.𝑛) = 𝛽(𝑔).
2. For every 𝑛 ∈ 𝑁, 1𝐽 (𝑛) .𝑛 = 𝑛.
3. For every (𝑔, 𝑔′) ∈ 𝐺2 and 𝑛 ∈ 𝐽−1(𝛼(𝑔′)), 𝑔.(𝑔′.𝑛) = (𝑔𝑔′).𝑛

(where 𝑔.𝑛 := 𝜃 (𝑔, 𝑛) and 𝜃 (𝑔) (𝑛) := 𝜃 (𝑔, 𝑛)).

Similar to the action of the Lie groupoid on smooth mapping (definition 2),
the definition of action of a Lie algebroid on a smooth mapping will be as follows:

Definition 3. An action of a Lie algebroid (𝐴, 𝑀, 𝜋, 𝜌, [| , |]) on map 𝐽 : 𝑁 −→ 𝑀

is a map
𝜃 : Γ(𝐴) −→ 𝔛(𝑁) which for all 𝑓 ∈ 𝐶∞(𝑀) and 𝑋, 𝑌 ∈ Γ∞(𝐴), satisfies in
the following properties:

1) 𝜃 (𝑋 + 𝑌 ) = 𝜃 (𝑋) + 𝜃 (𝑌 ),
2) 𝜃 ( 𝑓 𝑋) = 𝐽∗ 𝑓 𝜃 (𝑋),
3) 𝜃 ( [|𝑋,𝑌 |]) = [𝜃 (𝑋), 𝜃 (𝑌 )],
4) 𝑇𝐽 (𝜃 (𝑋)) = 𝜌(𝑋),

where 𝐽∗ : 𝐶∞(𝑀) −→ 𝐶∞(𝑁) such that 𝐽∗ 𝑓 = 𝑓 ◦ 𝐽 ∈ 𝐶∞(𝑁) is pullback of 𝑓
by 𝐽.

Remark 1. Let 𝜃 be the action of a Lie groupoid 𝐺 on smooth map 𝐽 : 𝑁 −→ 𝑀

which was introduced into definition 2. As mentioned in [14], every action of a
Lie groupoid 𝐺 on 𝐽 : 𝑁 −→ 𝑀 induces an action 𝜃′ of a Lie algebroid 𝐴(𝐺)
on 𝐽 : 𝑁 −→ 𝑀 as follows:

𝜃′(𝑋) (𝑛) :=
d
d𝑡

���
𝑡=0

Exp(𝑡𝑋)𝐽 (𝑛) .𝑛.

Definition 4. Let 𝐺 be a Lie groupoid over 𝑀. Then 𝐺 is regular Lie groupoid
if the anchor (𝛽, 𝛼) : 𝐺 −→ 𝑀; 𝑔 ↦−→

(
(𝛽(𝑔), 𝛼(𝑔)

)
is a mapping of constant

rank.

Consider the regular Lie groupoid 𝐺 ⇒ 𝑀 and its associated isotropy Lie
groupoid 𝐼𝐺 . 𝐺 acts smoothly from the left on 𝐽 : 𝐼𝐺 −→ 𝑀 by conjugation,
means 𝐶 : 𝐺 × 𝐼𝐺 −→ 𝐼𝐺 , 𝐶 (𝑔) (𝑔′) := 𝑔𝑔′𝑔−1 is an action of 𝐺 on 𝐼𝐺 which
we call it conjugation action.
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On the other hand, the conjugation action induces an action of a Lie groupoid
𝐺 on 𝐴𝐼𝐺 −→ 𝑀 . We call this action adjoint action of 𝐺 on 𝐴𝐼𝐺 which can be
defined as follows:

Ad : 𝐺 × 𝐴𝐼𝐺 −→ 𝐴𝐼𝐺 ,

Ad𝑔𝑋 :=
(

d
d𝑡

)
𝑡=0

𝐶 (𝑔)Exp(𝑡𝑋),

where 𝑝 ∈ 𝑀 , 𝑔 ∈ 𝐺 𝑝 = 𝛼
−1(𝑝) (the 𝛼-fibers over 𝑝) and 𝑋 ∈ (𝐴𝐼𝐺)𝑝 .

The action Ad induces an adjoint action of 𝐴𝐺 on 𝐴𝐼𝐺 −→ 𝑀 as follows:

ad : 𝐴𝐺 × 𝐴𝐼𝐺 → 𝐴𝐼𝐺 ,

ad𝑋𝑌 = ad(𝑋) (𝑌 ) :=
d
d𝑡

���
𝑡=0

Ad (Exp(𝑡𝑋))𝑌,

where 𝑋 ∈ (𝐴𝐺)𝑝, 𝑌 ∈ (𝐴𝐼𝐺)𝑝 and 𝑝 ∈ 𝑀.
One can easily prove that for every 𝑋 ∈ Γ(𝐴𝐺) and 𝑌 ∈ Γ(𝐴𝐼𝐺)

ad𝑋 (𝑌 ) = [|𝑋,𝑌 |] .

Another action of 𝐺 on dual bundle 𝐴∗𝐼𝐺 which is called co-adjoint action
of 𝐺, is defined as follows:

Ad∗ : 𝐺 × 𝐴∗𝐼𝐺 −→ 𝐴∗𝐼𝐺 ,

Ad∗𝑔𝜉 (𝑋) := 𝜉 (Ad𝑔−1𝑋).
In other words

⟨Ad∗𝑔𝜉, 𝑋⟩ = ⟨𝜉,Ad𝑔−1𝑋⟩,
where 𝑔 ∈ 𝐺 𝑝, 𝜉 ∈ (𝐴∗𝐼𝐺)𝑝 .

Again, the action Ad∗ induces so-called co-adjoint action of a Lie algebroid
𝐴𝐺 on 𝐴∗𝐼𝐺 which is defined by:

ad∗ : 𝐴𝐺 × 𝐴∗𝐼𝐺 −→ 𝐴∗𝐼𝐺 ,

ad∗𝑋𝜉 (𝑌 ) := 𝜉 (ad−𝑋 (𝑌 )) = 𝜉 ( [|𝑌, 𝑋 |])
or

⟨ad∗𝑋𝜉,𝑌⟩ = ⟨𝜉, ad(−𝑋)𝑌⟩,
where 𝜉 ∈ (𝐴∗𝐼𝐺)𝑝 . For more details, about adjoint and co-adjoint actions
see [14].

Now we define the co-adjoint Lie groupoid as follows:

𝑂 (𝜉) = {Ad∗𝑔𝜉 | 𝑔 ∈ 𝐺},
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where 𝜉 is an element of (𝐴∗𝐼𝐺)𝑝. It turns out that for all 𝜉 that the stabilizer
𝐺𝜉 = {𝑔 : 𝐴𝑑∗𝑔𝜉 = 𝜉} is a normal Lie subgroupoid of 𝐺, the co-adjoint orbit
𝑂 (𝜉) has a natural structure of a Lie groupoid with following structural mappings:
𝛼′, 𝛽′, 𝑚′, 1′ and 𝜄′ which are given by

1) source mapping: 𝛼′ : 𝑂 (𝜉) −→ 𝑀, Ad∗𝑔𝜉 ↦−→ 𝛼(𝑔),
2) target mapping: 𝛽′ : 𝑂 (𝜉) −→ 𝑀, Ad∗𝑔𝜉 ↦−→ 𝛽(𝑔),
3) multiplication mapping: 𝑚′ : (𝑂 (𝜉))2 −→ 𝑂 (𝜉)

(Ad∗𝑔𝜉,Ad∗ℎ𝜉) ↦−→ Ad∗
𝑚(𝑔,ℎ)𝜉 = Ad∗𝑔ℎ𝜉,

As we assumed that the Lie subgroupoid𝐺𝜉 is normal, so the multiplication
𝑚′ will be well-defined.

4) unit mapping: 1′ : 𝑀 −→ 𝑂 (𝜉), 𝑝 ↦−→ Ad∗1𝑝
𝜉,

5) inverse mapping: 𝜄′ : 𝑂 (𝜉) −→ 𝑂 (𝜉), Ad∗𝑔𝜉 ↦−→ Ad∗
𝑔−1𝜉.

We call 𝛼′, 𝛽′, 𝑚′, 1′ and 𝜄′, source, target, multiplication, unit and inverse
mapping, respectively, for Lie groupoid 𝑂 (𝜉).

We call this Lie groupoid co-adjoint Lie groupoid and denote it by G𝜉 . In
the latter, if it is not confused, for a fixed selected 𝜉 we denote the co-adjoint Lie
groupoid associated to 𝜉 by G. (For more details, see [1]).

Also it is shown in [1] that the Lie algebroid of the co-adjoint Lie groupoid
which we call co-adjoint Lie algebriod is

𝐴G = Ker𝑇𝛼′|Ad∗1𝑝 𝜉
= 𝑇𝜉𝑂 (𝜉) |Ad∗1𝑝 𝜉

= {ad∗𝑋𝑝
𝜉 | 𝑋𝑝 ∈ (𝐴𝐺)𝑝}.

As we mention above, the space of sections of vector bundle 𝐴G can iden-
tify the space of right-invariant vector fields on G, on the other hand, each
right-invariant vector field on the co-adjoint Lie groupoid is determined by
a right-invariant vector field on the Lie groupoid 𝐺. In other words, letting
G = {Ad∗𝑔𝜉 | 𝑔 ∈ 𝐺}, it is easy to check that, 𝑇𝛼′G == {ad∗𝑋𝜉 | 𝑋 ∈ 𝑇𝛼𝐺}.
Also by definition of 𝛼′ for every 𝑦 ∈ 𝑀 , G(𝑦,−) = 𝐺 (𝑦,−), therefore, for
�̃� = Ad∗𝑔𝜉 ∈ G. We have 𝑅�̃� : G𝛽′ (�̃�) → G𝛼′ (�̃�) , ℎ̃ → ℎ̃.�̃� or

𝑅�̃� ( ℎ̃) = 𝑅Ad∗𝑔𝜉 (Ad∗ℎ𝜉) = Ad∗𝑔𝜉.Ad∗ℎ𝜉,

where (ℎ, 𝑔) ∈ 𝐺 (2) and by multiplication in G we have Ad∗𝑔𝜉.Ad∗ℎ𝜉 = Ad∗ℎ𝑔𝜉 =

Ad∗
𝑅𝑔 (ℎ)𝜉. As a result we obtain

𝑅�̃� ( ℎ̃) = Ad∗
𝑅𝑔 (ℎ)𝜉,

where 𝑅𝑔 : 𝐺𝛽(𝑔) → 𝐺𝛼(𝑔) .
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Also, for 𝑑𝑅�̃� : 𝑇𝛼′
ℎ̃
G → 𝑇𝛼

′

ℎ̃�̃�
G, we have

𝑑𝑅�̃� (𝑋ℎ̃) = ad∗
𝑑𝑅𝑔 (𝑋ℎ)𝜉, (2)

where 𝑋
ℎ̃
= ad∗𝑋ℎ𝜉. As a result from (2) we obtain the following lemma:

Lemma 1. The vector field 𝑋 = ad∗𝑋𝜉 on G is right-invariant if only if 𝑋 is
right-invariant on 𝐺, that is

𝑑𝑅�̃� (𝑋ℎ̃) = 𝑋ℎ̃�̃� if only if 𝑑𝑅𝑔(𝑋ℎ) = 𝑋ℎ𝑔 .

3. Reduction in optimal control problem

Consider the invariant control system (1) on a Lie groupoid 𝐺 ⇒ 𝑀 . In this
section we define a control system on the co-adjoint Lie groupoid G ⇒ 𝑀 .
Control system on the co-adjoint Lie groupoid we define as follows:

Let �̃� = Ad∗𝑔𝜉 be an element of G and let �̃� : 𝐼 → G be a curve in G. It is easy
to show that �̃� : 𝐼 → G is �̃�-curve in G if 𝑔 : 𝐼 → 𝐺 is 𝛼-curve in 𝐺.
For any �̃�-curve �̃� in G we consider following system

d �̃�
d𝑡

= 𝐹 (�̃�, 𝑢), (3)

where 𝐹 (�̃�, 𝑢) = ad∗
𝐹 (𝑔,𝑢)𝜉. By considering lemma 1, we have following main

theorem:

Theorem 1. The control system (3) on the co-adjoint Lie groupoid G is right-
invariant if only if the control system (1) is right-invariant on the Lie groupoid𝐺.

Proof. Let the system (1) be right- invariant, that is, for all (𝑔, ℎ) ∈ 𝐺 (2) , i.e.
𝑑𝑅𝑔 ◦ 𝐹 (ℎ, 𝑢) = 𝐹 (𝑅𝑔 (ℎ), 𝑢).

We show that for all (�̃�, ℎ̃) ∈ G(2) and 𝐹 ( ℎ̃, 𝑢) = ad𝐹 (ℎ,𝑢)𝜉, where �̃� = Ad∗𝑔𝜉
and ℎ̃ = Ad∗ℎ𝜉 :

𝑑𝑅�̃� ◦ 𝐹 ( ℎ̃, 𝑢) = 𝐹 (𝑅�̃� ( ℎ̃), 𝑢).
We have

𝑑𝑅�̃� ◦ 𝐹 ( ℎ̃, 𝑢) = 𝑑𝑅�̃� (ad∗
𝐹 (ℎ,𝑢)𝜉) = ad∗

𝑑𝑅𝑔◦𝐹 (ℎ,𝑢)

= ad∗
𝐹 (ℎ𝑔,𝑢)𝜉 = 𝐹 ( ℎ̃𝑔, 𝑢) = 𝐹 ( ℎ̃�̃�, 𝑢) = 𝐹 (Ad∗ℎ𝑔𝜉, 𝑢)

= 𝐹 (Ad∗ℎ𝜉.Ad∗𝑔𝜉, 𝑢) = 𝐹 ( ℎ̃�̃�, 𝑢) = 𝐹 (𝑅�̃� ( ℎ̃), 𝑢).
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Conversely, let the system (3) be right-invariant, i.e.

𝑑𝑅�̃� ◦ 𝐹 ( ℎ̃, 𝑢) = 𝐹 (𝑅�̃� ( ℎ̃), 𝑢).

At first we prove following relation:

𝑑𝑅�̃� (ad∗𝑋𝜉) = ad∗
𝑑𝑅𝑔 (𝑋)𝜉,

where 𝑋 ∈ 𝐴𝐺. Let 𝑋 = ad∗𝑋𝜉 ∈ 𝐴G, there exists an �̃�-curve �̃�(𝑡) ∈ G, such
that ¤̃𝛾(0) = 𝑋 and �̃�(0) = �̃�. As we describe above 𝑑𝑅�̃� (𝑋) ∈ 𝑇 �̃�

ℎ̃�̃�
G , so for all

𝜙 : G�̃� → R we have

𝑑𝑅�̃� (𝑋) (𝜙) = 𝑋 (𝜙 ◦ 𝑅�̃�) =
(

d
d𝑡

)
𝑡=0

(𝜙 ◦ 𝑅�̃� (�̃�(𝑡)))

=

(
d
d𝑡

)
𝑡=0
𝜙(�̃�(𝑡).�̃�) =

(
d
d𝑡

)
𝑡=0
𝜙(Ad∗

𝛾(𝑡)𝜉.Ad∗𝑔𝜉),

where 𝛾(𝑡) is an 𝛼-curve in 𝐺 and 𝑔 ∈ 𝐺. Therefore we have (by multiplication
in G)

𝑑𝑅�̃� (𝑋) (𝜙) =
(

d
d𝑡

)
𝑡=0
𝜙(Ad∗

𝛾(𝑡).𝑔𝜉)

=

(
d
d𝑡

)
𝑡=0
𝜙(Ad∗

𝑅𝑔 (𝛾(𝑡))𝜉) = ad∗
𝑑𝑅𝑔 (𝑋)𝜉 (𝜙),

where 𝑋 = ¤𝛾(0).
We obtain

𝑑𝑅�̃� (𝑋) = ad∗
𝑑𝑅𝑔 (𝑋)𝜉.

Now if we take as a 𝑋 = 𝐹 ( ℎ̃, 𝑢) = ad∗
𝐹 (ℎ,𝑢)𝜉, we have

𝑑𝑅�̃� (𝐹 ( ℎ̃, 𝑢)) = ad∗
𝑑𝑅𝑔◦𝐹 (ℎ,𝑢)𝜉, (I)

but
𝑑𝑅�̃� (𝐹 ( ℎ̃, 𝑢)) = 𝐹 (𝑅�̃� ( ℎ̃), 𝑢) = ad∗

𝐹 (𝑅𝑔 (ℎ),𝑢)𝜉. (II)

Because ad∗ is linear, so from (I) and (II) we get:

𝑑𝑅𝑔 ◦ 𝐹 (ℎ, 𝑢) = 𝐹 (𝑅𝑔 (ℎ), 𝑢).

In other words, the system (1) is right-invariant. So the proof is completed. 2

Corollary 1. Every right-invariant control system on any regular Lie groupoid
reduces to its co-adjoint Lie groupoid.
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3.1. Optimal control problem on a Lie groupoid and its reduction
to the co-adjoint Lie groupoid

By definition, an optimal control problem on a Lie groupoid 𝐺 ⇒ 𝑀 for the
control system (1) is associated with the cost function 𝑓 : 𝐺 × 𝑈 → R and a
controlled pair (𝑔(𝑡), 𝑢(𝑡)). The problem is to find a controlled pair (𝑔(𝑡), 𝑢(𝑡))

with 𝑡 ∈ [𝑡0, 𝑡1] such that the integral
∫ 𝑡1

𝑡0

𝑓 (𝑔(𝑡), 𝑢(𝑡))d𝑡 is minimal among

all controlled pair (𝑔(𝑡), 𝑢(𝑡)) with some additional conditions that will not be
mentioned here. Now let us have an optimal control problem on a regular Lie
groupoid 𝐺 ⇒ 𝑀 . This problem is reduced to an optimal control problem on
the co-adjoint Lie groupoid G ⇒ 𝑀 . By the corollary 1, every right-invariant
control system on a Lie groupoid is reduced to a right-invariant control system
on its co-adjoint Lie groupoid. Now if we have a right-invariant cost function
𝑓 : 𝐺 ×𝑈 → R, we define a new cost function on G as follows:
Consider function �̃� : G ×𝑈 → R as �̃� (�̃�, 𝑢) = 𝑓 (𝑔, 𝑢) where �̃� = Ad∗𝑔𝜉.

If 𝑓 is right-invariant cost function on 𝐺 × 𝑈, �̃� is also right-invariant on
G ×𝑈 because

�̃� (𝑅�̃� ( ℎ̃), 𝑢) = �̃� ( ℎ̃�̃�, 𝑢) = �̃� ( ℎ̃𝑔, 𝑢)
= 𝑓 (ℎ𝑔, 𝑢) = 𝑓 (𝑅𝑔 (ℎ), 𝑢) = 𝑓 (ℎ, 𝑢) = �̃� ( ℎ̃, 𝑢),

where �̃� = Ad∗𝑔𝜉 and ℎ̃ = Ad∗ℎ𝜉.
According to above, theorem 1 and corollary 1, we have the following propo-

sition.

Proposition 1. Any right-invariant optimal control problem on a Lie groupoid
𝐺 ⇒ 𝑀 reduces to an optimal control problem on its co-adjoint Lie groupoid
G ⇒ 𝑀.

4. Optimal control problem on a Lie algebroid

Some concepts and definitions in this section have been taken from [4] and [7].
Let (𝐴, 𝑀, 𝜌, [., .], 𝜋) be a Lie algebroid.

Definition 5. A control system on a Lie algebroid 𝐴 over 𝑀 with a vector bundle
so-called control space 𝜋 : 𝐶 → 𝑀 is a section 𝑓 of 𝐴 along 𝜋, i.e. 𝑓 : 𝐶 → 𝐴.
A trajectory of the system 𝑓 is an integral curve of the vector field 𝜌( 𝑓 ) along 𝜋,
i.e. a trajectory is a solution of following equation

¤𝑥(𝑡) = 𝜌( 𝑓 (𝑐(𝑡))), (4)

where 𝑐(𝑡) is a curve in 𝐶 and 𝑥(𝑡) = 𝜋(𝑐(𝑡)).



726 GH. HAGHIGHATDOOST

Now, if we have an optimal control problem on the Lie algebroid 𝐴, in
other words, given a cost function 𝐿 ∈ 𝐶∞(𝐶), the problem is to minimize
the integral of 𝐿 over the set of trajectories of the system (4), i.e. minimize∫ 𝑡1

𝑡0

𝐿 (𝑐(𝑡))d𝑡which 𝑐(𝑡) is a trajectory of the system 𝑓 satisfying some boundary

conditions. To solve the problem, a Hamiltonian function 𝐻 ∈ 𝐶∞(𝐴∗ ×𝑀 𝐶),
𝐻 (𝜂, 𝑐) = ⟨𝜂, 𝑓 (𝑐)⟩ − 𝐿 (𝑐) is used and its associated Hamiltonian control system
𝜎𝐻 on a subset of T 𝐴∗-prolongation of 𝐴∗ along 𝑝𝑟1 : 𝐴∗ ×𝑀 𝐶 → 𝐴∗. Because
of the Pontryagin Maximum Principle, which is the fundamental result in optimal
control theory, the solutions of this Hamiltonian system can be candidates for the
maximal solutions of the optimal control system. We will continue the discussion
in this regard to the next sections of the paper.

4.1. Reduction in optimal control problem on Lie groupoid to its Lie algebroid

As it is claimed in [4,5], every right-invariant control system on a Lie groupoid
𝐺 reduces to a system on the associated Lie algebroid 𝐴𝐺. In other words,
equivariant control systems and optimal control problems on a Lie groupoid 𝐺
lead naturally to systems and problems on the associated Lie algebroid 𝐴𝐺.

Example 1. A right-invariant control system on the trivial Lie groupoid 𝐺 =

𝑀 × G × 𝑀 , where 𝑀 is a smooth manifold and G is a Lie group, is determined
by a vector field on 𝑀 and a right-invariant vector field on the Lie group 𝐺. In
other words, a right-invariant control system (1) on𝐺 reduces to a control system
of the form (3) on the trivial Lie algebroid

𝐴𝐺 = 𝑇𝑀 + (𝑀 × g),

where g is the Lie algebra of G.

In general, let we have a right-invariant control system (1) on the Lie groupoid
𝐺. We define reduced control system on the Lie algebroid 𝐴𝐺 of 𝐺 as follows:

𝑓 : 𝑀 ×𝑈 → 𝐴𝐺, 𝑓 (𝑥, 𝑢) = 𝐹 (1𝑥 , 𝑢) = 𝑑𝑅𝑔−1𝐹 (𝑔, 𝑢).

Since 𝐹 : 𝐺 ×𝑈 → 𝑇𝛼𝐺, so for every 𝑔 ∈ 𝐺, 𝑢 ∈ 𝑈 we have 𝐹 (𝑔, 𝑢) ∈ 𝑇𝛼𝑔 𝐺.
On the other hand, (𝐴𝐺)𝑥 = 𝑇𝛼1𝑥

𝐺. so 𝐹 (1𝑥 , 𝑢) ∈ 𝑇𝛼1𝑥
𝐺 = (𝐴𝐺)𝑥 . Therefore

𝑓 : 𝑀 ×𝑈 → 𝐴𝐺, 𝑓 (𝑥, 𝑢) = 𝐹 (1𝑥 , 𝑢) is well-defined.
As a result, on the Lie algebroid 𝐴𝐺, we have a control system reduced in the

control system (1) on the Lie groupoid 𝐺.
From the above discussion, we conclude that:

Corollary 2. Every right-invariant control system and every optimal control
problem on a Lie groupoid reduce in its co-adjoint Lie algebroid.
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So in the latter, we only study control systems and optimal control problems
on the co-adjoint Lie algebroids.

5. Optimal control problem on the co-adjoint Lie algebroid

Some contents of this section have been taken in [1, 3, 7].
Let 𝐺 ⇒ 𝑀 be a regular Lie groupoid with structural mappings 𝛼, 𝛽, 1, 𝑖, 𝑚.

Also let (𝐴𝐺, 𝑀, [., .], 𝜌, 𝜏) be the Lie algebroid of 𝐺 over 𝑀 , where [., .] is
the bracket on the sections of vector bundle 𝐴𝐺 over 𝑀 and 𝜌 is the anchor
𝜌 : 𝐴𝐺 → 𝑇𝑀 and 𝜏 : 𝐴𝐺 → 𝑀 is the bundle map. Let us denote the co-
adjoint Lie groupoid of the Lie groupoid 𝐺 ⇒ 𝑀 by G ⇒ 𝑀 with the structural
mappings �̃�, 𝛽, 1̃, �̃� and𝑚. Let (𝐴G, 𝑀, [̃., .], �̃�, �̃�) be its Lie algebroid.( For more
details see [1]). As we showed in [1], the co-adjoint orbit

G = {(Ad∗𝑔𝜉) : 𝑔 ∈ 𝐺},

for an arbitrary element 𝜉 of (𝐴∗𝐼𝐺)𝑥 , where 𝐴∗𝐼𝐺 is dual bundle of the isotropy
Lie algebroid 𝐴𝐼𝐺 (see [1]). Also in [1] we showed that co-adjoint Lie algebroid
associated with the co-adjoint Lie groupoid is

𝐴G = (𝑇 �̃�𝜉 G)1̃𝑥
= ({ad∗𝑋𝜉 : 𝑋 ∈ 𝑇𝑔𝐺})Ad∗1𝑥

.

Moreover, it is proven that for the Lie algebroids 𝐴𝐺 and 𝐴G we have

[̃𝑋,𝑌 ] = ad∗[𝑋,𝑌 ]𝜉,

where 𝑋 = ad∗𝑋𝜉 and 𝑌 = ad∗𝑌𝜉 are right-invariant vector field on G and 𝑋,𝑌 are
right-invariant vector fields on 𝐺.

5.1. Poisson structure on dual of the co-adjoint Lie algebroid

It is well-known fact, there exists a linear Poisson structure on the dual of any
Lie algebroid. (For more details see [12, 13])

Let 𝑋 be a section of 𝜏 : 𝐴𝐺 −→ 𝑀, the linear function �̂� is defined on 𝐴∗𝐺
as follows:

�̂� : 𝐴∗𝐺 −→ R,

�̂� (𝜃) = 𝜃 (𝑋 (𝜏∗(𝜃))),
where 𝜃 ∈ 𝐴∗𝐺 and 𝜏∗ : 𝐴∗𝐺 −→ 𝑀 is the dual bundle of 𝜏 : 𝐴𝐺 −→ 𝑀.

The linear Poisson structure on 𝐴∗𝐺, which is indicated by {., .}𝐴∗𝐺 , is char-
acterized by the following conditions:

{., .}𝐴∗𝐺 : 𝐶∞(𝐴∗𝐺) × 𝐶∞(𝐴∗𝐺) −→ 𝐶∞(𝐴∗𝐺),
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{�̂�,𝑌 }𝐴∗𝐺 = −[|𝑋,𝑌 |],
{ 𝑓 ◦ 𝜏∗ , �̂�}𝐴∗𝐺 = (𝜌(𝑋) ( 𝑓 )) ◦ 𝜏∗,

{ 𝑓 ◦ 𝜏∗ , 𝑔 ◦ 𝜏∗}𝐴∗𝐺 = 0,

where 𝜏∗ : 𝐴∗𝐺 −→ 𝑀, 𝑓 , 𝑔 ∈ 𝐶∞(𝑀) and 𝑓 ◦ 𝜏∗, 𝑔 ◦ 𝜏∗ ∈ 𝐶∞(𝐴∗𝐺).
Also, linear Poisson bivector on 𝐴∗𝐺 is defined by

Π𝐴∗𝐺 (𝑑𝜑, 𝑑𝜓) = {𝜑, 𝜓}𝐴∗𝐺 ,

where 𝜑, 𝜓 ∈ 𝐶∞(𝐴∗𝐺).
Let 𝐻 : 𝐴∗𝐺 −→ R be a smooth function on 𝐴∗𝐺. The Hamiltonian vector

field XΠ𝐴∗𝐺
𝐻

of 𝐻 is defined by

XΠ𝐴∗𝐺
𝐻

(𝐹) = {𝐹, 𝐻}𝐴∗𝐺 = Π𝐴∗𝐺 (𝑑𝐹, 𝑑𝐻), (5)

where 𝐹 ∈ 𝐶∞(𝐴∗𝐺). Now, consider (𝐴G, 𝑀, �̃�, [̃ | , |]) as the associated Lie
algebroid to the co-adjoint Lie groupoid G ⇒ 𝑀 . Using what was previously
described in the linear Poisson structure on 𝐴∗𝐺, in the following we will show
that 𝐴∗G, the dual of 𝐴G, has linear Poisson structure.

As we know, every section of �̃� : 𝐴G → 𝑀 can be written by 𝑋 = 𝑎𝑑∗
𝑋
𝜉,

where 𝑋 is a section of 𝜏 : 𝐴𝐺 → 𝑀 .
According to above, for a section 𝑋 = 𝑎𝑑∗

𝑋
𝜉 of Γ(�̃�) we consider the associated

linear function ˆ̃
𝑋 on 𝐴∗G as follows:

ˆ̃
𝑋 : 𝐴∗G −→ R,

ˆ̃
𝑋 (𝛿) = 𝛿(𝑋 (�̃�∗(𝛿))),

where 𝛿 ∈ 𝐴∗G and �̃�∗ : 𝐴∗G −→ 𝑀 is dual bundle of �̃� : 𝐴G −→ 𝑀.

In other words, the above formula indicates that
ˆ̃
𝑋 = âd∗𝑋𝜉.

Also, the linear Poisson structure on 𝐴∗G can be considered as

{., .}𝐴∗G : 𝐶∞(𝐴∗G) × 𝐶∞(𝐴∗G) −→ 𝐶∞(𝐴∗G),

{ ˆ̃
𝑋,

ˆ̃
𝑌 }𝐴∗G = −[|

̂̃
𝑋,𝑌 |] = − ̂ad∗[|𝑋,𝑌 |]𝜉.

It is easy to check that this Poisson structure on 𝐴∗G satisfies conditions which
are mentioned above.

For every Hamiltonian 𝐻 : 𝐴∗G −→ R, the Hamiltonian vector field XΠ𝐴∗G

𝐻
on 𝐴∗G will be considered as equation (5).
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So on dual of the co-adjoint Lie algebroid we have Poisson structure and its
associated Hamiltonian vector field for any function on the dual vector bundle.

5.2. The prolongation of vector bundle with respect to a Lie algebroid

Let us consider a general fiber bundle 𝜇 : 𝐸 → 𝑀 over the state space 𝑀 .
The prolongation of 𝐸 with respect to the Lie algebroid (𝐴, 𝑀, 𝜌, [., .], 𝜏) which
denoted by T𝐸 is defined as follows:

Indeed, the prolongation of 𝐸 with respect to 𝐴 is the 𝐴-tangent bundle to 𝐸 .
In other words, if we see the Lie algebroid 𝐴 as a substitute for the tangent to 𝑀 ,
then the tangent space to 𝐸 is not a suitable space for describing dynamics on 𝐸,
because the projection to 𝑀 of a vector tangent to 𝐸 is a vector tangent to 𝑀 and
what we want is an element of 𝐴, the new tangent bundle to 𝑀 .

This 𝐴-tangent bundle to 𝐸 is the vector bundle 𝜇1 : T𝐸 → 𝐴 which its each
fiber at the point 𝑝 ∈ 𝐸𝑥 , 𝑥 ∈ 𝑀 is the vector space

T𝑝𝐸 = {(𝑋,𝑉) ∈ 𝐴𝑥 × 𝑇𝑝𝐸 : 𝜌(𝑋) = 𝑇𝑝𝜇(𝑉)}.

Each element of T𝑝𝐸 we will denote by (𝑝, 𝑋,𝑉) where 𝑝 ∈ 𝐸 , 𝑋 ∈ 𝐴 and
𝑉 ∈ 𝑇𝑝𝐸. It is known that T𝐸 → 𝐸 is a Lie algebroid (for more details, see [7]
and [12]).

The anchor of this new Lie algebroid is the map 𝜌′ : T𝐸 → 𝑇𝐸 given by
𝜌′(𝑝, 𝑋,𝑉) = 𝑉 and the bracket is defined in terms of projectable sections as
follows.
A section 𝑍 of T𝑝𝐸 is of form 𝑍 (𝑝) = (𝜃 (𝑝), 𝑉 (𝑝)), where 𝜃 is a section of 𝐴
along 𝜇 and 𝑉 is a vector field on 𝐸 .

Definition 6. A section 𝑍 is projectable if there exists a section 𝜎 of 𝐴 such
that 𝜇2 ◦ 𝑍 = 𝜎 ◦ 𝜇, where 𝜇2 : T𝐸 → 𝐴, 𝜇2(𝑝, 𝑋,𝑉) = 𝑋 . It follows
that 𝑍 is projectable if and only if 𝜃 = 𝜎 ◦ 𝜇, and therefore 𝑍 is of the form
𝑍 (𝑝) = (𝜎(𝑚), 𝑉 (𝑝)), with 𝑚 = 𝜇(𝑝) ∈ 𝑀 .

The bracket of two projectable sections 𝑍1, 𝑍2 is defined by

[𝑍1, 𝑍2] (𝑝) = (𝑝, [𝜎1, 𝜎2] (𝑚), [𝑉1, 𝑉2] (𝑝)) .

For every 𝑝 ∈ 𝐸 it is clear that [𝑍1, 𝑍2] (𝑝) is an element of T𝐸 .

Definition 7. An element of T𝐸 is said to be vertical if it is in the kernel of 𝜇2,
and thus it is of the form (𝑝, 0, 𝑉) with 𝑉 a vertical vector, tangent to 𝐸 at 𝑝, i.e.
𝑉 is in the kernel of 𝑇𝑝𝜇 : 𝑇𝐸 → 𝑇𝑀 .
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Given a local basis {𝑒𝛼} of sections of 𝐴 and local coordinates (𝑥𝑖, 𝜂𝐼) on 𝐸
we consider a local base {X𝛼,V𝑙} of sections of T𝐸 as follows

X𝛼 (𝑝) =
(
𝑝, 𝑒𝛼 (𝑥), 𝜌𝑖𝛼

(
𝜕

𝜕𝑥𝑖

)
𝑝

)
, V𝐼 (𝑝) =

(
𝑝, 0,

(
𝜕

𝜕𝜂𝐼

)
𝑝

)
.

Thus, any element 𝑍 of T𝐸 at 𝑝

𝑍 =

(
𝑧𝛼𝑒𝛼 (𝑚), 𝜌𝑖𝛼𝑧𝛼

𝜕

𝜕𝑥𝑖
+ 𝑣 𝐼

(
𝜕

𝜕𝜂𝐼

)
𝑝

)
can be represented as

𝑍 = 𝑧𝛼X𝛼 + 𝑣 𝐼V𝐼

and (𝑥𝑖, 𝜂𝐼 , 𝑧𝛼, 𝑣 𝐼) are coordinates on T𝐸 . Vertical elements are therefore linear
combination of {V𝐼}.
The bracket of the elements of this basis are

[X𝛼,X𝛽] = 𝐶𝛾𝛼𝛽X𝛾, [X𝛼,V𝐽] = 0, [V𝐼 ,V𝐽] = 0

and the anchor applied to the section 𝑍 = 𝑧𝛼X𝛼 + 𝑣 𝐼V𝐼 gives the vector field

𝜌′(𝑍) = 𝜌𝑖𝛼𝑧𝛼
𝜕

𝜕𝑥𝑖
+ 𝑣 𝐼 𝜕

𝜕𝜂𝐼
.

The differential of coordinates and elements of the dual basis is given by:

𝑑𝑥𝑖 = 𝜌𝑖𝛼X𝛼, 𝑑X𝛾 = −1
2
𝐶
𝛾

𝛼𝛽
X𝛼 ∧ X𝛽.

𝑑𝜂𝐼 = V 𝐼 , 𝑑V 𝐼 = 0,

where {X𝛼,V 𝐼} denotes a dual basis and 𝜌𝑖𝛼 and 𝐶𝛾
𝛼𝛽

are local functions of the
anchor and the bracket of the Lie algebroid 𝐴 on 𝑀 , respectively. That is

𝜌(𝑒𝛼) = 𝜌𝑖𝛼
𝜕

𝜕𝑥𝑖
, [𝑒𝛼, 𝑒𝛽] = 𝐶𝛾𝛼𝛽𝑒𝛾 .

The differential is determined by the relations

𝑑𝑥𝑖 = 𝜌𝑖𝛼, 𝑑𝑒𝛼 = −1
2
𝐶
𝛾

𝛼𝛽
𝑒𝛼 ∧ 𝑒𝛽.

Now as a vector bundle 𝐸 we consider the dual of the Lie algebroid 𝐴, i.e.
𝐸 = 𝐴∗. In this case, on the prolongation of 𝐴∗ that is on T 𝐴∗ there exists a
canonical symplectic structure 𝜔0. Its definition is analogous to the definition
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of the canonical symplectic form on the cotangent bundle. First is defined the
canonical 1-form 𝜃 : T 𝐴∗ → R by

⟨𝜃, (𝜂, 𝑋,𝑉)⟩ = ⟨𝜂, 𝑋⟩.
Obviously, it vanishes on vertical sections and its coordinates expression is 𝜃 =

𝜂𝛼X𝛼 . The canonical symplectic form is the differential of the canonical 1-form
𝜔 = −𝑑𝜃, i.e.

𝜔 = X𝛼 ∧V𝛼 + 1
2
𝐶
𝛾

𝛼𝛽
X𝛼 ∧ X𝛽.

As it is known that the structure of Lie algebroid on 𝐴 is equivalent to the
linear Poisson structure on 𝐴∗. It is easy to see that the Poisson bracket on 𝐴∗
can be expressed in terms of the symplectic form as follows: Given a function
𝐻 ∈ 𝐶∞(𝐴∗) there exists a unique so-called Hamiltonian section 𝜎𝐻 of T 𝐴∗ such
that 𝑖𝜎𝐻

𝜔 = 𝑑𝐻. Then the Poisson bracket {𝐻,𝐺} of two function 𝐻,𝐺 on 𝐴∗ is
given by

{𝐻,𝐺} = −𝜔(𝜎𝐻 , 𝜎𝐺).
Also, if 𝐻 : 𝐴∗ → R is a function then its differential is

𝑑𝐻 = 𝜌𝑖𝛼
𝜕𝐻

𝜕𝑥𝑖
X𝛼 + 𝜕𝐻

𝜕𝜂𝛼
V𝛼 .

In the case 𝐸 = 𝐴∗ ×𝑀 𝐶, where 𝐶 is control space 𝜋 : 𝐶 → 𝑀 . The coordinates
induced to T𝐸 by coordinates (𝑥𝑖, 𝜂𝛼, 𝑢𝑐) on 𝐸 = 𝐴∗ ×𝑀 𝐶 are denoted as
(𝑥𝑖, 𝜂𝛼, 𝑢𝑐, 𝑧𝛼, 𝑣 𝐼 , 𝑣𝑐) and the associated local basis by (X𝛼,V𝐼 ,V𝑐).

The differential is given by:

𝑑𝑥𝑖 = 𝜌𝑖𝛼X𝛼, 𝑑X𝛾 = −1
2
𝐶
𝛾

𝛼𝛽
X𝛼 ∧ X𝛽.

𝑑𝜂𝐼 = V 𝐼 , 𝑑V 𝐼 = 0.
𝑑𝑢𝑐 = V𝑐, 𝑑V𝑐 = 0.

The differential of any function 𝐻 on 𝐸 = 𝐴∗ ×𝑀 𝐶 is

𝑑𝐻 = 𝜌𝑖𝛼
𝜕𝐻

𝜕𝑥𝑖
X𝛼 + 𝜕𝐻

𝜕𝜂𝛼
V𝛼 + 𝜕𝐻

𝜕𝑢𝑐
V𝑐 .

Now let we have a control system 𝑓 on a Lie algebroid 𝜏 : 𝐴 → 𝑀 with
control space 𝜋 : 𝐶 → 𝑀 that is a section of 𝐴 along 𝜋. As we mentioned above,
a trajectory of the system 𝑓 is an integral curve of the vector field 𝜌( 𝑓 ) along 𝜋,
i.e. a trajectory is a solution of the following equation

¤𝑥(𝑡) = 𝜌 ( 𝑓 (𝑐(𝑡))) ,
where 𝑥(𝑡) = 𝜋(𝑐(𝑡)).
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An optimal problem on the Lie algebroid 𝐴 is minimizing integral of a cost
function 𝐿 ∈ 𝐶∞(𝐶) over the set of trajectories of the system which satisfies some
boundary conditions. To solve this problem we usually consider a Hamiltonian
function 𝐻 ∈ 𝐶∞(𝐴∗ ×𝑀 𝐶) by 𝐻 (𝜂, 𝑐) = ⟨𝜂, 𝑓 (𝑐)⟩ − 𝐿 (𝑐) and the associated
Hamiltonian control system 𝑓𝐻- a section, defined on a subset of T 𝐴∗ along
𝑝𝑟1 : 𝐴∗ ×𝑀 𝐶 → 𝐴∗ by means of the symplectic equation

𝑖 𝑓𝐻𝜔 = 𝑑𝐻.

The critical trajectories are the integral curves of the vector field 𝜌′( 𝑓𝐻). The
solutions of the optimal control problem are among the critical trajectories (see [7]
for details).

Now, consider the Lie algebroid (𝜏 : 𝐴𝐺 −→ 𝑀, 𝜌, [| , |]) associated to Lie
groupoid𝐺 ⇒ 𝑀 with non-zero bracket. Furthermore, suppose that (𝑥𝑖) are local
coordinates on 𝑀 and {𝑒𝛼} is a local basis of sections for 𝐴𝐺. Consider local
functions 𝜌𝑖𝛼, 𝐶

𝛾

𝛼𝛽
on 𝑀 which are called structure functions of Lie algebroid

𝐴𝐺. Also, consider co-adjoint Lie algebroid (�̃� : 𝐴G −→ 𝑀, �̃�, [̃ | , |]) of the
co-adjoint Lie groupoid G := 𝑂 (𝜉) ⇒ 𝑀.

As it is shown in [2], the basis of sections for co-adjoint Lie algebroid 𝐴G,
for every 𝜉 ≠ 0 are as follows:

�̃�𝛼 = ad∗𝑒𝛼𝜉.

Also, it is proven in [2] that the structure functions of the Lie algebroids 𝐴𝐺 and
𝐴G are equal, i.e. if 𝜌𝑖𝛼, 𝐶

𝛾

𝛼𝛽
are structure functions of the Lie algebroid 𝐴𝐺 and

�̃�𝑖𝛼, 𝐶
𝛾

𝛼𝛽
are structure functions of Lie algebroid 𝐴G, then

�̃�𝑖𝛼 = 𝜌𝑖𝛼, 𝐶
𝛾

𝛼𝛽
= 𝐶

𝛾

𝛼𝛽
.

Now for local coordinates (𝑥𝑖, 𝑦𝛼) on 𝐴G associated to the base{�̃�𝛼} of
sections of 𝐴G and coordinates (𝑥𝑖, 𝜂𝛼) on 𝐴∗G we define a local base {X̃𝛼, Ṽ𝛼}
of sections for the prolongation of T 𝐴∗G with respect to the co-adjoint Lie
algebroid 𝐴G by

X̃𝛼 (𝑝) =
(
𝑝, ad∗𝑒𝛼𝜉 (𝑥), 𝜌

𝑖
𝛼 (

𝜕

𝜕𝑥𝑖
)𝑝

)
, Ṽ𝛼 (𝑝) =

(
𝑝, 0,

(
𝜕

𝜕𝜂𝛼

)
𝑝

)
,

where 𝑝 ∈ (𝐴∗G)𝑥 .
The canonical symplectic form in these coordinates is as follows:

𝜔 = X̃𝛼 ∧ Ṽ𝛼 + 1
2
𝐶
𝛾

𝛼𝛽
X̃𝛼 ∧ X̃𝛽.
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As {X̃𝛼, Ṽ𝛼} is a basis for sections of 𝐴G so the local expression of the section
𝑓𝐻 is

𝑓𝐻 = 𝜆𝛼X̃𝛼 + 𝜇𝛼Ṽ𝛼 .

Then we obtain
𝑖 𝑓𝐻𝜔 = 𝜆𝛼Ṽ𝛼 −

(
𝜇𝛼 + 𝜂𝛾𝐶𝛾𝛼𝛽𝜆

𝛽
)
X̃𝛼 .

By definition 𝑑𝐻 and substitute it in above relations, we have

𝑓𝐻 =
𝜕𝐻

𝜕𝜂𝛼
X̃𝛼

(
𝜌𝑖𝛼
𝜕𝐻

𝜕𝑥𝑖
+ 𝜂𝛾𝐶𝛾𝛼𝛽

𝜕𝐻

𝜕𝜂𝛽

)
Ṽ𝛼

defined on the subset
𝜕𝐻

𝜕𝑢𝑐
= 0

and the coordinate expression of the vector field 𝜌′( 𝑓𝐻) is

𝜌′( 𝑓𝐻) = 𝜌𝑖𝛼
𝜕𝐻

𝜕𝜂𝛼

𝜕

𝜕𝑥𝑖
−

(
𝜌𝑖𝛼
𝜕𝐻

𝜕𝑥𝑖
+ 𝜂𝛾𝐶𝛾𝛼𝛽

𝜕𝐻

𝜕𝜂𝛽

)
𝜕

𝜕𝜂𝛼

so as a main result of this work, we obtain that the critical trajectories are the
solution of the following differential equations:

¤𝑥𝑖 = 𝜌𝑖𝛼
𝜕𝐻

𝜕𝜂𝛼
,

¤𝜂𝛼 = −
(
𝜌𝑖𝛼
𝜕𝐻

𝜕𝑥𝑖
+ 𝜂𝛾𝐶𝛾𝛼𝛽

𝜕𝐻

𝜕𝜂𝛽

)
,

0 =
𝜕𝐻

𝜕𝑢𝑐
.

(6)

6. Example

Let G be a Lie group and 𝑀 be a manifold. Consider the trivial Lie groupoid
𝐺 := 𝑀 × G × 𝑀 ⇒ 𝑀. As described in [6], the Lie algebroid associated to the
trivial Lie algebroid is 𝐴𝐺 = 𝑇𝑀⊕(𝑀×g).The anchor 𝜌 : 𝑇𝑀⊕(𝑀×g) −→ 𝑇𝑀

is the projection 𝑋 ⊕𝑉 ↦−→ 𝑋 and the Lie bracket on the sections of𝑇𝑀 ⊕ (𝑀×g)
is given by [|𝑋 ⊕ 𝑉,𝑌 ⊕𝑊 |] = [𝑋,𝑌 ] ⊕ {𝑋 (𝑊) − 𝑌 (𝑉) + [𝑉,𝑊]}.

The co-adjoint Lie groupoid associated to the trivial Lie groupoid is G𝜉 :=
𝑀 ×𝑂 (𝜉′) ⇒ 𝑀, where 𝑂 (𝜉′) is the orbit of co-adjoint action of Lie group and
𝜉′ ∈ 𝑔∗ for which 𝐺𝜉′ = {𝑎 ∈ G : 𝐴𝑑∗𝑎𝜉′ = 𝜉′} is the normal Lie subgroup of G.
The Lie algebroid of the co-adjoint Lie groupoid is 𝐴G := 𝑀 × 𝑇𝜉′𝑂 (𝜉′). The
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anchor �̃� is given by

�̃� : 𝑀 × 𝑇𝜉′𝑂 (𝜉′) −→ 𝑇𝑀,

�̃�(𝑥, ad∗𝑉𝜉
′) (𝑝) = 𝑋 (𝑝), (7)

where 𝑋 ∈ Γ(𝑇𝑀) = X(𝑀) is equal to ¤𝑝(0), 𝑝(𝑡) = 𝛽(𝛾(𝑡)) ∈ 𝑀 , 𝛾(𝑡) =

(𝑝(𝑡),Ad∗𝑎𝜉′, 𝑝(𝑡)) ∈ G,
(

d
d𝑡

)
𝑡=0

(𝛾(𝑡)) = (𝑥, ad∗𝑉𝜉
′) ∈ 𝐴G and 𝑝(0) = 𝑝 ∈ 𝑀.

The Lie bracket on the space of sections of 𝐴G is

[|ad∗𝑉𝜉
′, ad∗𝑊𝜉

′|] = ad∗[𝑉,𝑊]𝜉
′,

for every 𝑉 ′ = ad∗𝑉𝜉
′,𝑊′ = ad∗𝑊𝜉

′ ∈ Γ(𝑀 × 𝑇𝜉′𝑂 (𝜉′)), where 𝑉,𝑊 ∈ g .
As we know, if we assume that 𝑉 ′, �̂�′ ∈ 𝐶∞(𝑇∗

𝜉′𝑂 (𝜉′)), then 𝑇∗
𝜉′𝑂 (𝜉′) carries

the Kirillov-Kostant bracket as follows:

{𝑉 ′, �̂�′}(𝜆) = ⟨𝜆, [|𝑉 ′,𝑊′|]⟩.

Now, consider vector bundle 𝜏 : 𝑀 × 𝑇𝜉′𝑂 (𝜉′) −→ 𝑀, which is projection over
the first factor, and its dual 𝜏∗ : 𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′) −→ 𝑀. Let Σ′ := (𝑝,𝑉 ′) =

(𝑝, ad∗𝑉𝜉
′) ∈ 𝑀 ×𝑇𝜉′𝑂 (𝜉′) and 𝛿 = (𝑝, 𝜆) ∈ 𝑀 ×𝑇∗

𝜉′𝑂 (𝜉′), so the linear function
Σ̂′ on 𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′) will be as follows:

Σ̂′ : 𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′) −→ R,

Σ̂′(𝛿) = 𝛿(Σ′(𝜏∗(𝛿))) = ⟨𝜆,𝑉 ′⟩.

In other word we have Σ̂′ = (𝑝,𝑉 ′).
Now, we try to clear relation between 𝐶∞(𝑀 ×𝑇∗

𝜉′𝑂 (𝜉′)) and 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)).

Let 𝑉 ′ ∈ 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)) be a vector field on 𝑂 (𝜉′). We define

𝑉 ′ : 𝑇∗
𝜉′𝑂 (𝜉′) −→ R,

𝑉 ′(𝜆) = ⟨𝜆,𝑉 ′⟩ = 𝜆(𝑉 ′).

𝑉 ′ is linear function on 𝑇∗
𝜉′𝑂 (𝜉′).

Now, Kirillov-Kostant bracket on 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)) is as follows:

{., .}𝐾.𝐾 : 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)) × 𝐶∞(𝑇∗

𝜉′𝑂 (𝜉′)) −→ 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)),

(𝑉 ′, �̂�′) ↦−→ {𝑉 ′, �̂�′}𝐾.𝐾 ,

{𝑉 ′, �̂�′}𝐾.𝐾 (𝜆) = −⟨𝜆, [|𝑉 ′,𝑊′|]⟩.
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As we know 𝑇𝜉′𝑂 (𝜉′) = {ad∗𝑉𝜉
′ | 𝑉 ∈ g}, so let 𝑉 ′ = ad∗𝑉𝜉

′ ∈ 𝑇𝜉′𝑂 (𝜉′). Also by
well known fact for finite dimensional vector space

𝑇∗∗
𝜉′ 𝑂 (𝜉′) � 𝑇𝜉′𝑂 (𝜉′),

one can consider 𝑉 ′ ∈ 𝑇∗∗
𝜉′ 𝑂 (𝜉′), i.e. 𝑉 ′ : 𝑇∗

𝜉′𝑂 (𝜉′) −→ R is linear functional, in
other words,𝑉 ′ ∈ 𝐶∞(𝑇∗

𝜉′𝑂 (𝜉′)). So 𝑇𝜉′𝑂 (𝜉′) ⊂ 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)), therefore we can

take 𝑉 ′ = 𝑉 ′ and for every 𝜆 ∈ 𝑇∗
𝜉′𝑂 (𝜉′) we have

𝑉 ′(𝜆) = 𝑉 ′(𝜆) = ⟨𝜆,𝑉 ′⟩

or equivalently
⟨𝜆,𝑉 ′⟩ = (ad∗𝑉𝜉

′) (𝜆).
Now, we rewrite the bracket

{., .}𝐾.𝐾 : 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)) × 𝐶∞(𝑇∗

𝜉′𝑂 (𝜉′)) −→ 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′))

as follows: {
𝑉 ′, �̂�′

}
𝐾.𝐾

(𝜆) = −⟨𝜆, [|𝑉 ′,𝑊′|]⟩,
= −[|𝑉 ′,𝑊′|] (𝜆),
= −[|ad∗𝑉𝜉

′, ad∗𝑊𝜉
′|] (𝜆),

= −ad∗[𝑉,𝑊]𝜉
′(𝜆),

as a result we obtain

{𝑉 ′, �̂�′}𝐾.𝐾 = − ̂ad∗[𝑉,𝑊]𝜉
′ = −ad∗[𝑉,𝑊]𝜉

′.

So, according to the subsection 3.3 in [1], one can easily check that the first
property of the linear Poisson structure of functions

{., .}𝐴∗G : 𝐶∞(𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′)) × 𝐶∞(𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′)) −→ 𝐶∞(𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′))

will be as follows:

{Σ̂′
1, Σ̂

′
2}𝐴∗G (𝛿) = {𝑉 ′, �̂�′}𝐾.𝐾 (𝜆).

where Σ̂′
1 = (𝑝,𝑉 ′), Σ̂′

2 = (𝑝, �̂�′) and 𝛿 = (𝑝, 𝜆) ∈ 𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′). So, we have a

well known Poisson structure on 𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′).

Also, according to the subsection 3.3 in [1] and equation (7), the second
property of the linear Poisson structure on 𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′) is

{ 𝑓 ◦ 𝜏∗, Σ̂′}𝐴∗G (𝛿) = ( �̃�(Σ′) ( 𝑓 )) ◦ 𝜏∗(𝛿) = 𝑋 ( 𝑓 (𝑝)),

where Σ′ = ad∗Σ𝜉
′ ∈ Γ(𝐴G) and Σ = 𝑋 ⊕ 𝑉 ∈ 𝐴𝐺.
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Moreover, as we mentioned in the subsection 3.3 in [1], the third feature
of linear Poisson structure on 𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′) easily deduced based on the linear
Poisson structure on 𝐴∗𝐺, i.e.

{ 𝑓 ◦ 𝜏∗, 𝑔 ◦ 𝜏∗}𝐴∗G = 0.

Now, suppose that 𝐻 : 𝑀 ×𝑇∗
𝜉′𝑂 (𝜉′) −→ R be function which we define it as

𝐻 = (𝑝, ℎ) where ℎ : 𝑇∗
𝜉′𝑂 (𝜉′) −→ R is a Hamiltonian function. In the following,

we will show that 𝐻 is a Hamiltonian function on 𝑀 ×𝑇∗
𝜉′𝑂 (𝜉′). In order to reach

this result, we need to express some fundamental information which are related
to Hamiltonian mechanics on cotangent bundles and Lie algebroids.

Consider𝑂 (𝜉′) as a smooth manifold and let𝑇∗𝑂 (𝜉′) be its cotangent bundle.
Suppose that 𝛿 = (𝑝, 𝜆) ∈ 𝑇∗𝑂 (𝜉′) and 𝑋𝛿 ∈ 𝑇𝛿 (𝑇∗𝑂 (𝜉′)). As we know, the
Liouville form on 𝑇∗𝑂 (𝜉′) is the 1-form 𝜃 such that

𝜃 (𝑋𝛿) = 𝜆
(
𝑇𝜋𝑂 (𝜉′) (𝑋𝛿)

)
.

where 𝜋𝑂 (𝜉′) : 𝑇∗𝑂 (𝜉′) −→ 𝑂 (𝜉′); (𝑝, 𝜆) ↦−→ 𝑝 is canonical projection. More-
over, the 2-form

𝜔 = 𝑑𝜃 (8)

is canonical symplectic form on 𝑇∗𝑂 (𝜉′).
Furthermore, a vector field X, where X ∈ Γ(𝑇 (𝑇∗𝑂 (𝜉′))), is called Hamil-

tonian vector field if there is a ℎ ∈ 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)) such that 𝑖X𝜔 = 𝑑ℎ. Let

ℎ : 𝑇∗
𝜉′𝑂 (𝜉′) −→ R be a Hamiltonian function and Xℎ be Hamiltonian vector

field associated to Hamiltonian function ℎ. Moreover,

Xℎ ( 𝑓 ) = Π(𝑑𝑓 , 𝑑ℎ) = { 𝑓 , ℎ}𝐾.𝐾 ,

where Π is Poisson 2-vector on 𝑇∗𝑂 (𝜉′), 𝑓 ∈ 𝐶∞(𝑇∗𝑂 (𝜉′)) and { 𝑓 , ℎ}𝐾.𝐾 is the
Kirillov-Kostant bracket on 𝐶∞(𝑇∗

𝜉′𝑂 (𝜉′))(see [1] for more details).
In local coordinates {𝜂𝛼} for 𝑇∗𝑂 (𝜉′), the Poisson 2-vector Π is

Π = −1
2
𝐶
𝛾

𝛼𝛽
𝜂𝛾

𝜕

𝜕𝜂𝛼
∧ 𝜕

𝜕𝜂𝛽

and Hamiltonian vector field Xℎ associated to Hamiltonian function ℎ is

Xℎ = −𝐶𝛾
𝛼𝛽
𝜂𝛾
𝜕ℎ

𝜕𝜂𝛽

𝜕

𝜕𝜂𝛼
.

So Hamiltonian equations are

¤𝜂𝛼 = −𝐶𝛾
𝛼𝛽
𝜂𝛾
𝜕ℎ

𝜕𝜂𝛽
. (9)
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Now, consider the prolongation T 𝐴∗G
T 𝐴∗G =

{
(𝛿, 𝑎, 𝜗𝛿) ∈ 𝑀 × 𝑇∗𝑂 (𝜉′) × 𝑇𝑂 (𝜉′) × 𝑇𝛿 (𝑇∗𝑂 (𝜉′))

��,
�̃�(𝑎) = 𝑇𝜏∗(𝜗𝛿), 𝜗𝛿 ∈ 𝑇𝛿𝐴∗G, 𝜏∗(𝛿) = 𝜏(𝑎)

}
,

where 𝛿 = (𝑝, 𝜆) ∈ 𝑀 × 𝑇∗𝑂 (𝜉′) and 𝑎 = (𝑝,𝑉 ′) ∈ 𝑀 × 𝑇𝑂 (𝜉′).
The vector bundle 𝜏′ : T 𝐴∗G −→ 𝐴∗G has Lie algebroid structure (𝜌′, [| , |]′)

such that
1. The anchor 𝜌′ : T 𝐴∗G −→ 𝑇𝐴∗G is projection onto the third factor,

𝜌′(𝛿, 𝑎, 𝜗𝛿) = 𝜗𝛿 .

2. A section Σ̃ ∈ Γ(𝜏′) is projectable if there exists a section Σ of 𝜏 : 𝐴G −→
𝑀 and a vector field X ∈ X(𝐴∗G) which is 𝜏-projectable to the vector field
�̃�(Σ) on 𝑀, such that Σ̃(𝛿) = (𝛿, Σ(𝑝),X(𝛿)) for all 𝛿 ∈ 𝐴∗G. We use the
notation Σ̃ ≡ (Σ,X). Then the bracket of two projectable sections Σ̃1 and
Σ̃2 is given by

[|Σ̃1, Σ̃2 |] (𝛿) = (𝛿, [|Σ1, Σ2 |] (𝜏(𝛿)), [X1,X2] (𝛿)) .

In [1] it is shown that for every Liouville 1-form 𝜃 on 𝑇∗𝑂 (𝜉′) there exists a
Liouville section Θ ∈ Γ((T 𝐴∗G)∗) such that:

Θ = (𝑝, 𝜃). (10)

Furthermore, according to equations (8) and (10), the canonical symplectic
section Ω will be defined as follows:

Ω = −𝑑Θ = (𝑝, 𝜔),
where 𝜔 is canonical symplectic 2-form on 𝑇∗𝑂 (𝜉′).

Let 𝐻 : 𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′) −→ R be a Hamiltonian function, Ω be symplectic

section and 𝑑𝐻 ∈ Γ((T 𝐴∗G)∗). Then, by definition, there exists the unique
Hamiltonian section 𝜇𝐻 ∈ Γ(T 𝐴∗G) satisfying

𝑖𝜇𝐻Ω = 𝑑𝐻.

In the following lemma, we will show the correspondence between Hamil-
tonian sections associated to Lie algebroid 𝑀 × 𝑇𝜉′𝑂 (𝜉′) and tangent space
𝑇𝜉′𝑂 (𝜉′).
Lemma 2. Consider Hamiltonian function 𝐻 = (𝑝, ℎ) : 𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′) −→ R
where ℎ : 𝑇∗

𝜉′𝑂 (𝜉′) −→ R is Hamiltonian function defined on 𝑇∗
𝜉′𝑂 (𝜉′). Let Xℎ

be Hamiltonian vector field of ℎ. Then the Hamiltonian section of H will be as
follows:

𝜇𝐻 = (𝑝,Xℎ) .
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Proof. Let 𝑌 ′ = (𝑝,𝑌 ) be a vector field on 𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′), Then

𝑑𝐻 (𝑌 ′) = (𝑝, 𝑑ℎ) (𝑝,𝑌 )
= 𝑖Xℎ

𝜔(𝑌 )
= 𝜔(Xℎ, 𝑌 )
= (𝑝, 𝜔)

(
(𝑝,Xℎ) (𝑝,𝑌 )

)
= Ω

(
(𝑝,Xℎ), 𝑌 ′)

= 𝑖(𝑝,Xℎ)Ω(𝑌 ′).

So, if Xℎ is the Hamiltonian vector field associated to Hamiltonian function ℎ,
then, according to what was presented above, and since the Hamiltonian vector
field associated to Hamiltonian function ℎ and Hamiltonian section associated to
Hamiltonian function are unique, we conclude that the 𝜇𝐻 = (𝑝,Xℎ) is Hamilto-
nian section associated to Hamiltonian function 𝐻, and vice versa.

Furthermore, �̃�(𝜇𝐻) is Hamiltonian vector field of𝐻 with respect to the linear
Poisson structure Π𝑀×𝑇∗

𝜉 ′𝑂 (𝜉′) on 𝑀 ×𝑇∗
𝜉′𝑂 (𝜉′). So, according to definition of the

anchor �̃�, we have that

�̃�(𝜇𝐻) = X𝐻 ∈ X(𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′)).

We denote by X
Π𝑀×𝑇∗

𝜉 ′𝑂 ( 𝜉 ′ )

𝐻
the Hamiltonian vector field of 𝐻 with respect to the

linear Poisson structure Π𝑀×𝑇∗
𝜉 ′𝑂 (𝜉′) on 𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′).
Note that by using the equations (5) and (9), we have actually proved that:

X
Π𝑀×𝑇∗

𝜉 ′𝑂 ( 𝜉 ′ )

𝐻
(𝐹) = Xℎ ( 𝑓 ),

where 𝐹 = (𝑝, 𝑓 ) ∈ 𝐶∞(𝑀 ×𝑇∗
𝜉′𝑂 (𝜉′)) and 𝑓 ∈ 𝐶∞(𝑇∗

𝜉′𝑂 (𝜉′)) (see [1] for more
details).

Let (𝑥𝑖) be local coordinates on open subset 𝑈 of 𝑀, {𝑒𝛼} is local basis of
sections for 𝐴, we have that

Π𝐴∗ = 𝜌
𝑖
𝛼

𝜕

𝜕𝑥𝑖
∧ 𝜕

𝜕𝑦𝛼
− 1

2
𝐶
𝛾

𝛼𝛽
𝑦𝛾

𝜕

𝜕𝑦𝛼
∧ 𝜕

𝜕𝑦𝛽
, (11)

where (𝑥𝑖, 𝑦𝛼) are the corresponding local coordinates on 𝐴∗ and 𝜌𝑖𝛼, 𝐶
𝛾

𝛼𝛽
are the

local structure functions of 𝐴 with respect to the coordinates (𝑥𝑖) and basis {𝑒𝛼}.
For Hamiltonian function 𝐻 : 𝐴∗ −→ R, the Hamiltonian vector field associ-

ated to Π𝐴∗ is as follows:

XΠ𝐴∗
𝐻

(𝐹) = Π𝐴∗ (𝑑𝐹, 𝑑𝐻) = {𝐹, 𝐻}𝐴∗G , (12)
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where 𝐹 ∈ 𝐶∞(𝐴∗). From equations (11) and (12) it follows that the local
expression of XΠ𝐴∗

𝐻
is:

XΠ𝐴∗
𝐻

=
𝜕𝐻

𝜕𝑦𝛼
𝜌𝑖𝛼

𝜕

𝜕𝑥𝑖
−

(
𝜕𝐻

𝜕𝑥𝑖
𝜌𝑖𝛼 +

𝜕𝐻

𝜕𝑦𝛽
𝐶
𝛾

𝛼𝛽
𝑦𝛾

)
𝜕

𝜕𝑦𝛼
. (13)

So, the Hamiltonian equations are

d𝑥𝑖

d𝑡
=
𝜕𝐻

𝜕𝑦𝛼
𝜌𝑖𝛼,

d𝑦𝛼
d𝑡

= −
(
𝜕𝐻

𝜕𝑥𝑖
𝜌𝑖𝛼 +

𝜕𝐻

𝜕𝑦𝛽
𝐶
𝛾

𝛼𝛽
𝑦𝛾

)
. (14)

Now we come back to our main example, the co-adjoint Lie groupoid G ⇒ 𝑀

of the trivial Lie groupoid 𝐺 = 𝑀 × G × 𝑀 ⇒ 𝑀 . We discussed in full detail
in [1] that for co-adjoint Lie algebroid (𝐴G, �̃�, [| , |]′), its dual bundle, 𝐴∗G has
linear Poisson structure.

Let (𝜂𝛼) be local coordinates on 𝑇∗𝑂 (𝜉′) and (𝑥𝑖) be local coordinates on
𝑀. So using the Hamiltonian equations (14), and similar to what was stated in
equation (13), and according to that 𝜌𝑖𝛼 = 1 for the Lie algebroid 𝐴𝐺 and as well
for 𝐴G, the Hamiltonian vector field X𝐻 ∈ X(𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′)) for Hamiltonian
𝐻 : 𝑀 × 𝑇∗

𝜉′𝑂 (𝜉′) −→ R is as follows:

XΠ𝐴∗G
𝐻

=
𝜕𝐻

𝜕𝜂𝛼
𝜕

𝜕𝑥𝑖
−

(
𝜕𝐻

𝜕𝑥𝑖
+ 𝐶𝛾

𝛼𝛽
𝜂𝛾
𝜕𝐻

𝜕𝜂𝛼

)
𝜕

𝜕𝜂𝛼
.

Thus, the corresponding Hamiltonian equations are as follows:

d𝑥𝑖

d𝑡
=
𝜕𝐻

𝜕𝜂𝛼
,

d𝜂𝛼
d𝑡

= −
(
𝜕𝐻

𝜕𝑥𝑖
+ 𝐶𝛾

𝛼𝛽
𝜂𝛾
𝜕𝐻

𝜕𝜂𝛼

)
. (15)

Moreover, if (𝑥𝑖) are local coordinates on 𝑀, {𝑒′𝛼} is the local basis of Γ(𝐴G)
and (𝑥𝑖, 𝜂𝛼) are corresponding coordinates on 𝐴∗G = 𝑀×𝑇∗

𝜉′𝑂 (𝜉′) then the local
expression of Π𝐴∗G will be as follows:

Π𝐴∗G =
1
2
𝜕

𝜕𝑥𝑖
∧ 𝜕

𝜕𝑥𝑖
− 1

2
𝐶
𝛾

𝛼𝛽
𝜂𝛾

𝜕

𝜕𝜂𝛼
∧ 𝜕

𝜕𝜂𝛽
.

On the other hand, let ℎ : 𝑇∗
𝜉′𝑂 (𝜉′) −→ R be the Hamiltonian function on

𝑇∗
𝜉′𝑂 (𝜉′). So, its Hamiltonian equations according to equation (9) are as follows:

d𝜂𝛼
d𝑡

= −𝐶𝛾
𝛼𝛽
𝜂𝛾
𝜕ℎ

𝜕𝜂𝛽
. (16)

Suppose { , }𝐾.𝐾 is the symbol of Kirillov-Kostant bracket on 𝐶∞(𝑇∗
𝜉′𝑂 (𝜉′)). By

(9) we have
Xℎ ( 𝑓 ) = Π(𝑑𝑓 , 𝑑ℎ) = { 𝑓 , ℎ}𝐾.𝐾 . (17)
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Furthermore, as we proved in [1], for Hamiltonian𝐻 = (𝑝, ℎ) : 𝑀×𝑇∗
𝜉′𝑂 (𝜉′) −→

R, we have
{𝐹, 𝐻}𝐴∗G = { 𝑓 , ℎ}𝐾.𝐾 , (18)

where 𝐹 = (𝑝, 𝑓 ) ∈ 𝐶∞(𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′)), 𝑓 ∈ 𝐶∞(𝑇∗

𝜉′𝑂 (𝜉′)) and 𝑝 ∈ 𝑀. There-
fore, according to equations (12), (17) and (18), we conclude that

XΠ𝐴∗G
𝐻

(𝐹) = Xℎ ( 𝑓 ), (19)

where XΠ𝐴∗G
𝐻

is Hamiltonian vector field associated to Hamiltonian 𝐻 : 𝑀 ×
𝑇∗
𝜉′𝑂 (𝜉′) −→ R.

If we consider the Hamiltonian function 𝐻 : 𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′) −→ R, 𝐻 =

(𝑝, ℎ), and 𝛿 = (𝑝, 𝜆) ∈ 𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′), we have that 𝐻 (𝑝, 𝜆) = ℎ(𝜆), where

ℎ : 𝑇∗
𝜉′𝑂 (𝜉′) −→ R is Hamiltonian function on 𝑇∗

𝜉′𝑂 (𝜉′).
Now let we have a control system 𝜎 : 𝐶 → 𝐴G = 𝑀 × 𝑇𝜉′𝑂 (𝜉′), 𝜎(𝑐) =

(𝑝, 𝜎1(𝑐)) for all 𝑐 ∈ 𝐶, where 𝜋 : 𝐶 → 𝑀 is control space and 𝜎1 : 𝐶 →
𝑇𝜉′𝑂 (𝜉′). Let us consider the Hamiltonian 𝐻 ∈ 𝐶∞ (𝐴∗G ×𝑀 𝐶) as follows:

𝐻 (𝜂, 𝑐) = ⟨𝜂, 𝜎(𝑐)⟩ − 𝐿 (𝑐),
where 𝐿 : 𝐶 → R is the cost function. For every 𝜂 = (𝑝, 𝜂1) ∈ 𝐴∗G = 𝑀 ×
𝑇∗
𝜉′𝑂 (𝜉′), where 𝜂1 ∈ 𝑇∗

𝜉′𝑂 (𝜉′), we have 𝐻 (𝜂, 𝑐) = ⟨𝜂1, 𝜎1(𝑐)⟩ − 𝐿 (𝑐). So 𝐻 =

(𝑝, ℎ), where ℎ ∈ 𝐶∞ (
𝑇𝜉′𝑂 (𝜉′) × 𝐶

)
and ℎ(𝜂1, 𝑐) = ⟨𝜂1, 𝜎1(𝑐)⟩ − 𝐿 (𝑐).

As seen above, equations (15), the Hamiltonian equations for 𝐻 is as follows:

d𝑥𝑖

d𝑡
=
𝜕𝐻

𝜕𝜂𝛼
,

d𝜂𝛼
d𝑡

= −
(
𝜕𝐻

𝜕𝑥𝑖
+ 𝐶𝛾

𝛼𝛽
𝜂𝛾
𝜕𝐻

𝜕𝜂𝛽

)
.

So by using the equation (6) we obtain the equations for the critical trajectories as

0 =
𝜕𝐻

𝜕𝜂𝛼
,

¤𝜂𝛼 = −
(
𝜕𝐻

𝜕𝑥𝑖
+ 𝜂𝛾𝐶𝛾𝛼𝛽

𝜕𝐻

𝜕𝜂𝛽

)
,

0 =
𝜕𝐻

𝜕𝑢𝑐
.

(20)

For a Hamiltonian function 𝐻 = (𝑝, ℎ) on 𝑀 × 𝑇∗
𝜉′𝑂 (𝜉′), according to the

equations (15), (16) and (19), the equations for critical trajectories will be

¤𝜂𝛼 = −𝜂𝛾𝐶𝛾𝛼𝛽
𝜕ℎ

𝜕𝜂𝛽
,

0 =
𝜕ℎ

𝜕𝑢𝑐
.

(21)
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7. Conclusions

The results of this work can be significant in the control theory because our
reduction in the new Lie groupoids as well in Lie algebroids, i.e. co-adjoint Lie
algebroid significantly simplify the Hamiltonian equations associated with the
control system. As we see in the illustrated example, by using the reduction in
the co-adjoint Lie algebroid, one can easily reach the optimal solutions of the
system. In other words, in the case of trivial groupoid, instead of finding the
solutions of the more complicated Hamiltonian system (20) one can consider the
solutions of the simple Hamiltonian system (21). To do so, we consider the trivial
Lie groupoid and an optimal control problem on its co-adjoint Lie algebroid and
show that the optimal control problem can be reduced to the optimal control
problem on the co-tangent bundle of the orbits of the co-adjoint representation of
the Lie group. Also, we show that the extermal solutions of the optimal control
problem on the co-adjoint Lie algebroid of the trivial Lie groupoid are obtained
from the solutions of the corresponding Hamiltonian system on the co-tangent
bundle of the co-adjoint orbits of the Lie group.
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