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Quality monitoring of hybrid welding processes:
A comprehensive review

Solomon Habtamu TESSEMAo and Dariusz BISMORo

Hybrid welding processes have gained significant attention due to their high efficiency
and exceptional welding properties. However, there are still significant technological challenges
in achieving consistent quality and suppressing welding defects. To overcome this challenge,
researchers have focused on the integration of visual analysis techniques, numerical simulation
techniques, and advanced technologies such as artificial intelligence/machine learning (AI/ML)
and digital twins. This comprehensive review synthesizes current knowledge on quality mon-
itoring in hybrid welding, encompassing an overview of hybrid welding processes, quality
assurance, monitoring techniques, key performance indicators, and advancements in monitor-
ing techniques. Furthermore, the review highlights the integration of sensor data with AI/ML
algorithms and digital twin technologies, enhancing the capabilities of quality monitoring sys-
tems. Notably, the review emphasizes the incorporation of artificial intelligence (AI) and digital
twin technologies into quality monitoring frameworks. Artificial intelligence/Machine learning
enables real-time analysis of welding parameters and defect detection, while digital twins offer
virtual representations of physical welding processes, facilitating predictive maintenance and
optimization. The findings underscore the crucial role of sensor technology, AI/ML, and digital
twin integration in enhancing defect detection accuracy, improving welded joint quality, and
control in hybrid welding. In addition to improving the quality of welded joints, this integration
paves the way for further developments in welding technology.
Key words: hybrid welding, defect detection, quality monitoring, artificial intelligence, digital
twins.
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1. Introduction

Hybrid welding processes has gained significant popularity in various sec-
tors of the manufacturing industry due to the increasing need for high efficiency,
environmental protection, and automation in industrial development [1–4]. Fur-
thermore, hybrid welding processes combine different welding techniques and
energy sources to achieve specific welding results [5]. These processes leverage
the unique advantages of each method to improve efficiency, quality, and control
in welding operations [5, 6]. The list of basic welding techniques includes:

• Gas Metal Arc welding (GMA),
• Tungsten Inert Gas welding (TIG),
• Electron Beam Welding (EBW),
• Resistance Spot Welding (RSW),
• Laser Welding,
• Plasma Welding.

By merging technologies like laser and gas metal arc welding(GMA), these
processes achieve deeper penetration, faster welding speeds, and superior joint
properties compared to traditional methods. However, ensuring consistent and
high-quality welds in these intricate processes presents a significant challenge.

Hybrid welding, despite its advantages, presents significant challenges in
achieving consistent, high quality welds [7–10]. The complex interaction be-
tween laser and arc parameters, the inherently dynamic nature of the welding
process itself, and limitations of the monitoring techniques all contribute to
this difficulty [7, 11]. Further complicating the issue is the lack of standardized
procedures for quality control between different manufacturers [7]. Overcoming
these hurdles requires advancements in sensor technology, data analysis with
integration of artificial intelligence (AI), digital twin technology [12], and the
standardization of quality monitoring practices in hybrid welding.

Among various welding technologies, this review focuses on hybrid welding
processes such as hybrid laser-GMA and plasma-GMA welding, which provide
high energy concentration, enable deep penetration and fast welding speeds, and
also allow for improved welded joint pool stability [1, 13]. This combination is
often used to achieve high-quality welds, especially in applications where precise
control over the welding process is crucial [14, 15]. However, hybrid welding
involves intricate physical processes, such as the keyhole effect, molten pool
flow, and droplet transfer behavior, which give rise to complex heat transport
phenomena. In particular in the automotive, new energy, power batteries, and
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other industrial industries, welding defects cause accidents and large financial
losses [14, 16].

Steen was the first to propose hybrid laser-arc welding technology [1]. The
advantages of metal active gas (MAG) welding and highly focused laser intensity
with deep penetration have led to the widespread use of laser-arc hybrid welding
technology in industrial manufacturing, including shipbuilding [1, 17], pipeline
girth welding [14], and the automotive industry. Nevertheless, the actual process
of the laser-MAG hybrid welding (LMHW) is unpredictable and involves more
than just superimposing the two heat sources. In hybrid welding, it might be
difficult to get welding status information and to quickly and accurately assess
the quality of the weld. These dynamic factors significantly impact the quality of
the welded joint [6, 17]. Thus, to guarantee the proper welded joint formation,
it is critical to assess the stability of the hybrid welding process. In industrial
manufacturing systems, process diagnosis and detection have recently been ex-
tensively researched through the use of AI / ML, digital twin, signal processing
techniques [5, 15, 18], particularly in the area of welding process monitoring.
Quality monitoring in hybrid welding involves the continuous assessment and
evaluation of the welding process to detect any potential defects or deviations
from the desired result [18–20]. It enables real-time feedback and adjustment of
welding parameters to optimize weld quality. Parameters such as welding speed,
vibration, acoustic emission (AE), voltage, current, and gas flow rate are crucial
for optimization. Welding speed affects heat input and cooling, influencing de-
fects and integrity. Voltage and current control heat, impacting fusion and bead
formation, while gas flow rate ensures proper shielding. Vibration can destabilize
the weld pool, and AE signals provide early defect detection [18, 19].

Researchers explored various mechanisms to monitor the quality of hybrid
welding processes. Gao, Xiangdong, et al. [8,10] studied LMHW and introduced
a novel method to evaluate the stability of the process and the formation of
welded joints by combining instantaneous status analysis and continuous stability
analysis using a double high-speed visual system as shown in Figure 1. Physical
phenomena of the top and bottom surfaces, such as the intensity of arc light,
metallic vapor, spatter formation, and texture features of the bottom molten
pool, were extracted to assess the instantaneous welding state. The cameras
show the visual process of the top and bottom views simultaneously during the
welding process and illustrate the formation and transition of molten droplets, the
generation of spatters, and the ejection of metallic vapor from the bottom surface
during the droplet transition. Gray level Co-occurrence Matrices(GLCM) and
Gabor wavelets were used to measure the spatial and frequency characteristics
of the bottom molten pool. By analyzing these features, the study provided
a comprehensive approach to monitoring the stability of the process and the
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evaluation of welded joint formation in LMHW [21,22], offering information on
the real-time assessment of the welding process and techniques for the diagnosis
and detection of critical flaws in welded joint quality assurance.

Figure 1: Hybrid welding process monitoring system

Feature extraction is crucial for LMHW process monitoring. High-speed cam-
eras capture visual features like droplet transition and keyhole bottom. The Otsu
thresholding algorithm isolates image noise, while morphological operations
extract arc light or metallic vapor. Fast Fourier Transform transforms images
to remove high-frequency noise, enabling process status quantification. During
the hybrid welding process, in order to track and detect welded joint faults re-
searchers proposed different approach. Lü, Xueqin, et al. [23] studied the least
square method based on the slope analysis method is used to detect the features of
the image to obtain the information about the features of the groove of the welded
joint groove. The results validate the accuracy of the feature extraction method
and the significant improvement in operation time. In He, Yinshui, et al. [24] a
visual attention model for detecting welded joint seam profiles is proposed. The
paper presents a scheme for extracting feature points of the welded joint seam
profile to implement automatic multipass route planning and guidance of the
initial welding position in each layer during MAG arc welding. Xiao, Runquan,
et al. [25, 26] proposed adaptive and improved snake model feature extraction
algorithm based on a laser vision sensor. The algorithm demonstrates good adapt-
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ability for multiple typical welding seams and maintains a satisfactory robustness
and precision even under complex working conditions [27,28]. Collectively, these
studies underscore the importance of real-time monitoring and analysis to ensure
the quality and stability of the LMHW process.

A series of studies have explored the use of optical coherence tomography
(OCT) for welded joint classification and quality assessment in copper laser
welding. Will, Thomas, et al. [29]demonstrated the feasibility of using the FRESH
algorithm for feature extraction from OCT data, enabling categorization of the
results of the welded joints. This was further explored by the same authors [30],
who investigated the influence of different pure copper materials and process
gas on welded joint seam surface features, finding negligible effects on surface
topographical characteristics. Brežan, Tine, et al. [31]the integrated photo-diode
and OCT to diagnose in laser weldments, achieving a high classification accuracy.
Since Will [29] has developed and tested seven different algorithms for measuring
the depth of the welded joint in copper laser welding, identifying the intensity
accumulation approach as the most accurate. In general this studies highlight the
potential of OCT and advanced algorithms for welded joint classification and
quality assessment in laser welding of copper.

Despite these studies, challenges remain in ensuring the stability and quality
of hybrid welded joints. Factors such as the complex physical phenomena involved
in the welding process, including the keyhole effect and molten pool flow, can
lead to defects that compromise the integrity of welded joints. The key factors
affecting the quality of LMHW and plasma arc welding processes as shown in
Figure 2 include the arrangement of heat sources, such as the lead mode and
the distance between the laser spot and the welding wire tip [11, 32, 33]. The
coupling effect between heat sources and welding characteristics, such as the
morphology of the welded joint, the stability of the process and the transfer of
droplets, are significantly influenced by these factors [34]. The lead mode has a
more significant impact on welded joint formation than the distance between the
laser spot and the welding wire tip [35]. In terms of welding process stability, the
arc-lead mode is better than the laser-lead mode. Additionally, the laser power
and defocusing amount, as well as the welding speed and current, also affect the
coupled arc profile and welding process stability. The quality of the welded joint
seam can be influenced by factors such as edge quality, gaps, and misalignment
of edges.

The use of Monitoring techniques have a significant impact on the efficiency
and effectiveness of laser arc MAG and plasma hybrid welding processes. These
techniques allow for real-time monitoring of various parameters during the weld-
ing process, such as voltage, current, welding speed, welded joint pool geometry,
defects, microstructure, residual stresses, and temperatures. By using suitable



838 S.H. TESSEMA, D. BISMOR

Figure 2: Schematic diagram of plasma arc welding

sensors and data acquisition systems, variations in voltage and current can be
recorded and analyzed, providing valuable information about the quality of the
final welded joint product [9, 31, 36, 37]. Multi-sensor data fusion networks and
convolutional neural networks (CNNs) enable highly accurate, real-time detection
of in-process defects [38]. Additionally, the Extended Kalman Filter (EKF) and
particle filters improve state estimation in nonlinear systems by linearizing mod-
els around current estimates, facilitating precise sensor data integration [31, 38].
Furthermore, numerical simulation technology plays a crucial role in predicting
welded joint forming and quality, as well as clarifying the underlying mechanisms
of laser welding processes [39]. Overall, monitoring techniques enhance the con-
trol and optimization of laser arc MAG and plasma welding processes, leading
to improved efficiency and effectiveness in achieving high-quality welds [13,40].
One study developed a real-time laser welding data acquisition system to col-
lect plasma density, laser intensity, and molten pool temperature data during the
welding process. They also established a neural network based on a combina-
tion of Long-Short Term Memory (LSTM) and CNN models to detect welding
defects with an average accuracy rate of 96% [41]. Another study proposed a
hybrid model combining CNN and LSTM to deeply mine acoustic features for
penetration monitoring in laser welding. Their approach achieved a remarkable
classification performance with a test accuracy of 99.8% [42]. Additionally, a
specific methodology using Computer-Aided Inspection (CAI) and cloud manu-
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facturing was reviewed as a candidate technology for a digital twin in laser-welded
blanks [43]. These advancements in sensor technology and artificial intelligence
have significantly improved the monitoring of hybrid welding processes.

2. Sensing Technology in Weld Quality Monitoring

This section provides a comprehensive overview of both conventional sensors
and advanced monitoring techniques employed in welded joint quality monitor-
ing. Additionally, it delves into the prevalent approach of multiple sensor signal
fusion technology, offering insights into the collection process of adequate signals
for enhanced comprehension.

Sensing technology plays a crucial role in welded joint quality monitoring,
ensuring reliable and defect-free joints [44]. Lv, Na, et al. [45] introduced an
automated control system for pulse gas tungsten arc welding, using audio sensing
technology and back propagation ANN for penetration state identification. This
system enables precise adjustment of welding current, based on variations in
the arc sound signal, ensuring effective online monitoring and control of auto-
mated robotic gas tungsten arc welding processes. Wu, Di, et al. [46] proposed
combined visual and acoustic signals for variable polarity plasma arc weld-
ing(VPPAW)penetration monitoring, using t-stochastic neighbor embedding and
a deep belief network for effective identification. The paper focuses on monitoring
weld penetration status using visual and acoustic signals.

Recent advancements in sensor technologies for detecting defects in welded
joints have introduced innovative approaches to non-destructive testing (NDT),
aiming for higher sensitivity, accuracy, and efficiency. Sensor signal fusion, mi-
crovision sensing, and molten pool sensing are some of the approaches employed
in the serious task of welded joint quality monitoring. Quality prediction and
defect detection are combined using machine learning (ML) methods. The iRVi-
sion system, which uses ANNs for automated quality control and visual inspec-
tion [47–49],welding creates an incredibly bright light due to the arc and molten
metal. Standard cameras would struggle to capture clear images without being
overwhelmed by the light, making it difficult to see the weld pool and surround-
ing area in practical application [50, 51], detects imperfection using acoustic
emission sensors [52], multiple sensors to record physical characteristic changes
during laser welding, and other advances in sensing technologies. Subsequent
advancements in this area could include refining the model to look for defects of
a smaller size and enhancing artificial intelligence within advanced signal pro-
cessing capacity to detect defects in a variety of welding activities and materials.
Table 1 presents an overview of the sensors and their application to welding
process monitoring, with references to related publications.
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3. Weld Quality Monitoring via Artificial Intelligence or Machine Learning

Artificial Intelligence/Machine Learning (AI/ML) is the field of study focused
on enabling machines to learn real-time problems autonomously, using input data
(data-driven approach). By leveraging ML, machines can achieve high accuracy,
even in high-frequency repetitive tasks, where human involvement may introduce
computational errors. ML has become a prevalent trend in various sectors, in-
cluding manufacturing, welding, and research disciplines [66–70]. AI and ML
are transforming welded joint quality control.

The process workflow of AI/ML-supported welded joint quality monitoring
is depicted in Figure 3. By analyzing data from sensors, and electrical signal
processing during welding, ML models can identify defects in real-time, predict
potential problems, and even trigger alerts for corrective actions [71–73]. This
non-destructive approach leads to more consistent welded joint quality, with
reduced costs through fewer defects, and improved overall production efficiency
[4, 44, 74].

Figure 3: Block Diagram: Welded Joint Quality Monitoring with AI/ML

During the welding process, various parameters, including voltage, current,
welded joint pool geometry, welding speed, vibration, acoustic emissions, and
temperature are captured by sensors. This raw sensor data undergoes prepro-
cessing to eliminate noise, anomalies, and superfluous information through tech-
niques like filtering, normalization, and feature extraction, which extract perti-
nent features such as spatter generation, welded joint pool characteristics and arc
stability. Subsequently, the preprocessed data, along with corresponding labels
indicating good welded joint quality or defects, are utilized to train machine
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learning models employing various algorithms like, Support Vector Machines
(SVM), Decision Trees, CNNs, Recurrent Neural Networks (RNNs), and deep
learning. Following model training, evaluation is conducted using separate vali-
dation datasets to assess performance metrics like accuracy, recall, F1-score, and
precision [4, 44, 75–77]. Once the model is successfully trained and evaluated, it
is deployed for real-time welding process monitoring. During welding operations,
sensor data is continuously fed into the deployed model, enabling real-time pre-
diction of welded joint quality or defect detection. Immediate corrective actions
can be initiated based on feedback generated by the model in case of deviations
from desired welded joint quality or defect identification.

A survey of AI in welding by [74,78] highlights its potential to revolutionize
the industry, with applications in process control, robot control, and welded joint
quality assurance. Another researcher utilized wavelet packet transform and a
back-propagation neural network to intelligently identify resistance spot welding
defects [79]. Chaki, Sudipto et al. [76] introduced a proposal for neural network
models aimed at predicting and optimizing process parameters in hybrid laser
beam welding. The study utilized backpropagation neural networks (BPNN) com-
bined with Bayesian regularization as a means to forecast welding strength and
penetration depth. Nomura, Kazufumi, et al. [77, 80] developed a CNN model
to predict welding quality in MAG welding by analyzing molten pool images
obtained during the process as shown in Figure 4. They addressed the challenge
of predicting excessive penetration and burn-through by treating it as a regression
problem rather than a classification problem. The penetration depth estimation

Figure 4: Structure of defect recognition using machine learning
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model achieved high accuracy, with over 95% of estimations having a 1 mm
error or less. The study also found that the estimation accuracy varied locally
based on the quality of the training data. Additionally, the researchers observed
that the image size used in the model did not significantly affect the estimation
accuracy. The model demonstrated short calculation times, making it suitable
for real-time monitoring applications. Kumaresan, Samuel, et al. [77] proposed
an object detector-based method for detecting casting defects in aluminum com-
ponents used in automobiles. The method involved modifying key elements of
existing detectors and utilizing a defect classifier. The process included apply-
ing sliding windows on images of different scales, extracting regions of interest
(ROIs), and employing non-maxima suppression. The approach utilized welding
seam radiography as input and involved predicting defect labels. However, the
method may not achieve the performance of deep learning-based detectors due to
potential slowdown in real-time detection and the inability to perform end-to-end
training [81–83].

As shown in Table 2 and Table 3, the performance of machine learning (ML)
algorithms for welded joint defect detection reveals a diverse landscape of ap-
proaches with varying strengths and limitations. Convolutional Neural Networks
(CNNs), Deep Belief Networks (DBNs), Support Vector Regression (SVR), hy-
brid ML approaches, Support Vector Machines (SVMs), and other deep learning
methods collectively revolutionize inspection, monitoring, and optimization pro-
cesses across various welding methodologies. CNNs specialize in image-based
defect detection and classification [77, 103–106], while DBNs excel in mod-
eling intricate relationships within high-dimensional welding data, facilitating
real-time anomaly detection [94, 106–108]. SVR models leverage historical data
to predict critical welded joint quality parameters with robust generalization,
thereby enhancing process optimization. The hybrid ML approach synergisti-
cally integrates multiple techniques to address diverse challenges [90], enabling
adaptive control strategies and real-time adjustments. SVMs efficiently classify
welding defects, ensuring stringent quality control across different welding pro-
cesses [109–111]. Deep Learning methods, encompassing various neural network
architectures, contribute significantly to feature learning, anomaly detection, and
predictive modeling, further augmenting the capabilities of ML in welded joint
quality analysis [75, 112–114].

Figure 5 illustrates the accuracy of classification and defect detection across
various machine learning (ML) algorithms applied to welding processes. The
legend identifies different welding processes. Insights from the plot reveal that
Hybrid CNN-ELM achieves the highest accuracy among all algorithms, followed
by DBN and Deep Learning. Such observations facilitate the comparison of ML
algorithms’ performance across various welding processes, aiding stakeholders
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Figure 5: Machine learning algorithms for welding defect detection display varying accuracies

in selecting suitable algorithms for classification and defect detection tasks. It’s
important to note that the accuracy values presented may vary based on dataset
characteristics and other factors, highlighting the need for comprehensive evalu-
ation using additional performance metrics.

4. Application of Digital Twin Technology in Welded Joint Quality Monitoring

A digital twin is a virtual model of a system or item that follows its life
cycle, is updated based on real-time data, and aids in decision-making through
reasoning, simulation, and machine learning. Digital twin technology is used in
many different industries, such as aerospace, automotive, healthcare, and manu-
facturing [12,115]. A significant portion of the military and aerospace industries
use the digital twin concept, which was first proposed by Grieves [116]. Due to
its properties of full-factor data drive, virtual-real integration and real-time inter-
action, and iterative operation and optimization, digital twin technology gained
a lot of attention and practical application. Digital twins are virtual models of
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physical entities that are constructed digitally to mimic their behavior in the actual
world using data, according to Tao et al. [117]. This allows for more intelligent,
efficient, and real-time services that are focused on the full life cycle of a product.

Digital twin technology offers several potential benefits for welded joint qual-
ity monitoring. Firstly, it enables the monitoring of the welding process in real-
time, allowing for immediate detection of defects and the optimization of manu-
facturing and product design [118]. Additionally, digital twins can reduce product
development costs and improve the functionality of products by speeding up the
achievement of appropriate product quality [119]. However, there are also chal-
lenges associated with digital twin technology for welded joint quality inspection.
These challenges include the need for accurate data acquisition and processing
systems, as well as the development of effective models and identification meth-
ods [120].

Aminzadeh, Ahmad, et al. [43] provided an extensive assessment on pro-
cess monitoring using computer-aided inspection in light metal blanks that have
been laser-welded. The study provided a real-time monitoring and a novel dig-
ital model based on computer-aided inspection (CAI) and cloud manufactur-
ing is proposed to improve welding efficiency and guarantee product quality.
Wang et al. [18] proposed to improve real-time quality assurance during weld-
ing processes and provided a deep learning-powered digital twin framework for
visualized welded joint joint growth monitoring and penetration control. The
digital twin uses CNNs and traditional image processing to estimate welding
parameters, with CNN model excelling in 2-channel composite images. It de-
velops decision-making strategies for welding penetration and quality, with a
GUI for user control. Franciosa, Pasquale, et al. [121]demonstrated the possibil-
ity for ongoing manufacturing process optimization with the presentation of a
deep learning augmented digital twin centered on Closed-Loop In-Process qual-
ity improvement. The digital twin framework combines sensors, deep learning,
and Computer-Aided Engineering(CAE) simulations to improve assembly system
quality, achieving over 96% right-first-time rate in testing. Similarly, the Closed-
Loop In-Process (CLIP) approach, utilizing stochastic process capability space,
integrates in-process data and physics-driven simulation to diagnose and prevent
defects, also achieving a 96% right-first-time rate in a production pilot study. The
approaches streamline parameter selection, automate adjustments, and reduce
the need for physical experiments. Ji, Tao, and Norzalilah Mohamad Nor [122]
offered a Deep Learning-Enabled Digital Twin that uses acoustic signals for weld-
ing quality inspection, demonstrating the potential of deep learning methods for
fault identification. The paper presents a digital twin system for welding robots
that uses acoustic signals to examine welded joint defects. It uses wavelet filtering
to remove machine noise and uses an SeCNN-LSTM model for recognition. The
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model achieved a verification accuracy of 91% and was compared with other
models. The paper also discusses wavelet thresholding for removing noise sig-
nals, comparing different threshold functions and demonstrating its efficacy in
noise reduction. It proposes a modified threshold value to improve signal recov-
ery. Dong, Jianwei, Jianming Hu, and Zhen Luo [119] researched resistance spot
welding quality monitoring using a digital twin technique, providing insights
into process optimization and welded joint quality improvement. Additionally,
focus on employing digital twin technology for monitoring the resistance spot
welding process of aluminum plates, specifically 2219/5A06 aluminum plates
with varying thicknesses. They introduce a data acquisition system for resistance
spot welding and real-time data processing techniques utilizing wavelet thresh-
old analysis for noise reduction. Contact resistance calculation during welding
incorporates factors like contact surface pressure, rheological stress, and material
resistances. The digital twin model is utilized to simulate the welding tempera-
ture field and analyze nugget formation and size evolution. Comparative analysis
with experimental measurements demonstrates the practicality of digital twin
technology for real-time monitoring of resistance spot welds.

Digital Twin technology, coupled with machine learning, as shown in Fig-
ure 6, offers a comprehensive workflow for monitoring welded joint quality in
hybrid welding [119, 121, 123]. The process begins with data acquisition and
preprocessing. A network of sensors captures real-time data of various param-
eters [124]. This raw data is then cleaned and formatted to ensure quality and
consistency. The digital twin model which combines physics-based simulations
of heat transfer and material behavior with machine learning algorithms is de-
veloped and trained on historical welding data. The ML algorithms, like CNNs,

Figure 6: Workflow: Welded Joint Quality Monitoring with a Digital Twin
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learn to identify relationships between process variables and welded joint quality.
As the welding process unfolds, real-time sensor data continuously feeds into the
digital twin model. The model then analyzes this data using the physics simu-
lations and different ML algorithms to provide real-time process visualization,
defect detection, and predictive maintenance capabilities [125, 126] as shown
in Figure fig:digital. The digital twin’s analysis can be used to make real-time
adjustments to welding parameters (laser power, travel speed, etc.) to maintain
optimal welded joint quality. Additionally, the "what-if" scenario capability of
the digital twin allows simulating different welding parameters within the virtual
model [119,127]. This helps determine the optimal settings for achieving desired
welded joint quality before actual welding begins [128, 129]. Finally, the work-
flow incorporates continuous improvement. Data from both the welding process
and the resulting welded joint quality are collected and fed back into the digital
twin model. This ongoing feedback loop refines the model’s accuracy and ensures
it remains an accurate reflection of the real-world welding operation.

Figure 7: Structure of digital twin for welding process

At the heart of a digital twin system for welded joint quality monitoring lies the
concept of data-driven decision making as shown in Figure 7. Monitoring welded
joint quality relies on real-time sensor data captured during the welding process,
feeding it into a virtual model alongside pre-defined parameters and historical
data [18, 119, 130]. Machine learning algorithms analyze this information to de-
tect patterns and predict defects, triggering alerts for deviations. Insights from
the analysis inform quality control measures, facilitating adjustments to welding
parameters and predictive maintenance scheduling [122, 127, 131]. A user inter-
face enables real-time monitoring, data visualization, and limited process control,
ultimately optimizing weld quality and process efficiency through comprehensive
data analysis and insights.
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5. Conclusions

In conclusion, hybrid welding processes have gained considerable traction
in the manufacturing industry due to their ability to enhance process efficiency,
control, and weld quality. By combining various welding techniques and energy
sources, such as plasma arc or laser with MAG welding, hybrid welding offers
significant advantages in welded joint integrity and processing speed. However,
challenges persist in ensuring the stability and consistency of hybrid welds,
particularly due to the complex interactions of physical phenomena and the need
for real-time monitoring and analysis.

Significant advancements have been made in the development of monitor-
ing techniques for hybrid welding, especially with the integration of sensing
technologies, artificial intelligence (AI),and machine learning (ML). These ad-
vancements enable real-time monitoring and analysis of welding parameters,
facilitating prompt defect detection and optimization of key factors such as weld-
ing speed, voltage, and current. These optimizations enhance weld quality by
reducing defects and ensuring consistent fusion, with critical quality measures
including penetration depth, heat-affected zone size, weld bead geometry, and
porosity.

Digital twin technology has emerged as a promising approach for welded joint
quality monitoring, offering virtual models of physical entities that mimic their
behavior in the real world. By integrating real-time data and simulation models,
digital twins enable proactive identification of potential issues and optimization
of manufacturing processes.

Future advancements in digital twin technology for welded joint quality moni-
toring include the application of data-driven models, improved detection methods,
and integration of virtual and real data. These advancements have the potential
to enhance the efficiency and accuracy of welded joint quality monitoring, ul-
timately leading to improved welded joint quality and production outcomes in
the manufacturing industry. In addition to the advancements in monitoring tech-
niques and digital twin technology, researchers have also explored innovative
approaches to defect detection and process optimization in hybrid welding. ML
algorithms, such as CNNs, DBNs, and SVMs, have been employed to analyze
welding signals and predict welded joint quality in real-time. These algorithms
have shown promising results in accurately detecting defects and optimizing
welding parameters to ensure high-quality welds.

The integration of advanced sensing technologies, such as voltage and cur-
rent sensor, acoustic sensors, vision systems, and vibration sensors, has enabled
comprehensive monitoring of the welding process. These sensors capture a wide
range of welding signals, including sound waves, visual information of the welded
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joint pool, and vibration patterns, which are then analyzed using signal process-
ing techniques and machine learning algorithms to assess welded joint quality
and detect defects. Furthermore, the development of hybrid models that combine
different ML algorithms has demonstrated improved accuracy and robustness in
welded joint quality monitoring.

Overall, the combination of advanced sensing technologies, ML algorithms,
and digital twin technology holds great promise for revolutionizing welded joint
quality monitoring in the manufacturing industry. By leveraging these technolo-
gies, manufacturers can achieve higher efficiency, greater automation, and im-
proved welded joint quality.

Nomenclature

ANN Artificial Neural Network
BPNN Backpropagation Neural Network
CNN Convolutional Neural Network
DBN Deep Belief Network
EMD-PNN Empirical Mode Decomposition Probabilistic Neural Network
ELM Extreme Learning Machine
GMAW Gas Metal Arc Welding
MLP Multi-Layer Perceptron
LMHW Laser Metal Active Gas Hybrid Welding
LSTM Long-Short Term Memory
RNN Recurrent Neural Network
SVM Support Vector Machine
SVR Support Vector Regression
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