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On practical ℎ-observer design for nonlinear
non-autonomous dynamical systems with disturbances

Manel ALAYA, Hanen DAMAKo , Nizar Hadj TAIEBo and Mohamed Ali HAMMAMIo

In this paper, a particular form of practical ℎ-observers for piecewise continuous Lipschitz,
one-sided piecewise continuous Lipschitz systems and quasi-one-sided piecewise continuous
Lipschitz systems is extended to nonlinear non-autonomous dynamical systems with distur-
bances. With the notion of practical ℎ-stable functions, the obtained state estimates are used for
an eventual feedback control, and the practical separation principle is tackled. An example is
given to show the applicability of the main result.
Key words: practical ℎ-observer, Lipschitz analysis, Lyapunov method, Practical ℎ-stability

1. Introduction

Several studies have attempted to solve the observer design problem for non-
linear non-autonomous dynamical systems [2,4,6,8,10,13,18]. In the literature,
the most tackled class of nonlinear system is the so-called Lipschitz class of
systems. In this regard, [17] built a sufficient condition, ensuring the stability
of the observers for Lipschitz systems. In practice, Lipschitz systems constitute
important real systems, which has motivated the increasing attention in design-
ing observers for Lipschitz systems. However, many existing results work only
for the small Lipschitz constant. Therefore, the literature of mathematics [11]
built the one-sided Lipschitz continuity for generalized Lipschitz continuity. In
the same concept [1] introduced, for the nonlinear systems the quadratic inner-
bonudedness, the resolution of drive tractable observer design conditions for
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one-sided Lipschitz. The one-sided Lipschitz property is a tool that has been
used in the mathematics literature, see [9,12,19,20]. However, only very few re-
sults for nonlinear one-sided Lipschitz time-varying systems exist in the literature,
see Pao [15]. In [16], Pinto introduced the notion of ℎ-stability to obtain results
about stability for weakly stable systems under some perturbations. This concept
was introduced for differential systems under some perturbations and extended
the study of exponential asymptotic stability to a variety of reasonable systems
called ℎ-systems. The authors in ( [3–5,7]) studied the asymptotic behavior of so-
lutions in the practical sense called practical ℎ-stability for nonlinear systems. For
instance, the authors in ( [3,5]) introduced the concept of input-to-state practical
ℎ-stability (ℎ-ISpS), integral input-to-state practical ℎ-stability (ℎ-iISpS), input-
to-state practical partial ℎ-stability (ℎ-ISppS) and integral input-to-state practical
partial ℎ-stability (ℎ-iISppS) for nonlinear time-varying systems by using a scalar
practical h-stable function on the time-derivative of the Lyapunov function.
In this paper and inspired by ( [4, 13]), a particular form of observers is studied
for piecewise continuous Lipschitz, one-sided piecewise continuous Lipschitz
systems and quasi-one-sided piecewise continuous Lipschitz systems. Then, with
the help of the practical ℎ-stable scalar functions, we give sufficient conditions
to guarantee the global uniform practical ℎ-stability of the closed-loop systems
by using an estimated feedback controller via a global uniform practical ℎ-stable
observer for piecewise continuous Lipschitz.

The rest of this article is organized as follows: In Section 2, some nota-
tions, definitions and hypotheses are summarized and the system description is
given. A practical ℎ-observer design for piecewise continuous Lipschitz non-
autonomous systems is given in Section 3. In Section 4, we present a practical
ℎ-observer design for one-sided piecewise continuous Lipschitz non-autonomous
systems. A practical ℎ-observer design for quasi-one-sided piecewise continuous
Lipschitz non-autonomous systems is given in Section 5. Consequently, a prac-
tical separation principle is established in Section 6. A numerical example is
provided to show the efficiency of the proposed approach in Section 7. Finally,
our conclusion is presented in Section 8.

2. Preliminaries

Throughout this paper, we denote by

• R+ denotes the set of all non-negative real numbers and R∗
+ =]0,∞).

• R𝑛 denotes the 𝑛-dimensional Euclidean space, with the scalar product ⟨·, ·⟩.
• PC(R+,Δ) is the space of Δ-valued piecewise continuous functions.
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• PC1(R+,Δ) is the space of Δ-valued piecewise continuous differentiable
functions.

• BC(R+,Δ) is the space of Δ-valued bounded functions endowed with the
norm ∥𝜙∥∞ = sup

𝑡∈𝐼
|𝜙(𝑡) |.

• C1(Δ,Ω) is the space of continuously differentiable functions from Δ to Ω.

Consider the nonlinear system{
¤𝑥(𝑡) = Φ(𝑡, 𝑥(𝑡)), 𝑡  𝑡0  0,
𝑥(𝑡0) = 𝑥0,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝑡0 is the initial time, 𝑥0 is the initial condition and
Φ : R+ ×R𝑛 → R𝑛 is locally Lipschitz in state and piecewise continuous in time.

The unique solution to equation (1), passing through (𝑡0, 𝑥0) ∈ R+ × R𝑛, is
denoted by 𝜙(·, 𝑡0, 𝑥0), which satisfies 𝜙(𝑡, 𝑡0, 𝑥0) = 𝑥0. We present the following
definition, which is recently introduced in [7].

Definition 1. Let ℎ ∈ BC(R+,R★
+). System (1) is globally uniformly practically

ℎ-stable if there are 𝑆  1 and 𝜚 > 0, such that for all 𝑥0 ∈ R𝑛, all 𝑡0  0, and
all 𝑡  𝑡0 it holds that

∥𝜙(𝑡, 𝑡0, 𝑥0)∥ ¬ 𝑆∥𝑥0∥ℎ(𝑡)ℎ(𝑡0)−1 + 𝜚. (2)

Definition 2. [4] Let ℎ ∈ C1(R+,R★
+) ∩ BC(R+,R★

+). The practical ℎ-stable
function pair is defined by a 2− tuple (𝜒, 𝜉) where 𝜒, 𝜉 ∈ PC(R+,R) and there
exist 𝜁  0, 𝜅 > 0 such that

𝑡∫
𝑡0

𝜒(𝜍)d𝜍 ¬ − ln(ℎ(𝑡0)) + ln(ℎ(𝑡)) + 𝜁,

and
𝑡∫

𝑡0

Θ(𝑡, 𝜍) |𝜉 (𝜍) |d𝜍 ¬ 𝜅

hold where Θ(𝑡, 𝜍) = 𝑒

𝑡∫
𝜍

𝜒(𝑠)d 𝑠
.

Let’s denote the set of practical ℎ-stable functions by PℎSFP .

Definition 3. We define the Dini derivative or the upper right-hand generalized
derivative of a function V(𝑡, 𝑥) along solutions of (1) by:

𝐷+V(𝑡, 𝑥) = lim sup
ℏ→0+

{1
ℏ
[V(𝑡 + ℏ, 𝑥 + ℏΦ(𝑡, 𝑥)) − V(𝑡, 𝑥)]

}
, (3)
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withV(𝑡, 𝑥) satisfies the Lipschitz condition with respect the variable 𝑥 uniformly
in 𝑡, i.e.;

|V(𝑡, �̃�) − V(𝑡, �̃�) | ¬ 𝐶 |�̃� − �̃� |.

If V(𝑡, 𝑥) has a continuous partial derivative with respect to the first variable,
then along the solution of (1) we get

𝐷+V(𝑡, 𝑥) = 𝜕V
𝜕𝑥

(𝑡, 𝑥)Φ(𝑡, 𝑥) + 𝜕V
𝜕𝑡

(𝑡, 𝑥).

Lemma 1 (see [21]).
Let 𝜗, 𝜓 ∈ PC(R+,R) and 𝜛 ∈ PC1(R+,R), such that ∀𝑡  𝑡0,

𝐷+𝜛(𝑡) ¬ 𝜗(𝑡)𝜑(𝑡) + 𝜓(𝑡).

Then, ∀𝑡  𝑡0, we have

𝜛(𝑡) ¬ 𝜛(𝑡0)𝑒

𝑡∫
𝑡0

𝜗(𝜏)d𝜏
+

𝑡∫
𝑡0

𝑒

𝑡∫
𝑠

𝜗(𝜏)d𝜏
𝜓(𝑠)d𝑠.

Let’s consider the following theorem.

Theorem 1 (see [4]). Consider the decreasing function ℎ ∈ C1(R+,R★
+) and

there exist V ∈ C1(R+ ×R𝑛,R+), 𝑐1 > 0, 𝑐2  0, 𝑎  0, and 𝜒, 𝜉 ∈ PC(R+,R) ∩
PℎSFP, such that for all 𝑡  0 and all 𝑥 ∈ R𝑛,

𝑐1∥𝑥∥2 ¬ V(𝑡, 𝑥) ¬ 𝑐2∥𝑥∥2 + 𝑎,

𝐷+V(𝑡, 𝑥) ¬ 𝜒(𝑡)V(𝑡, 𝑥) + 𝜉 (𝑡),

then, system (1) is globally uniformly practically ℎ
1
2 -stable.

We consider the following non-autonomous control system with disturbances:{
¤𝑥(𝑡) = B(𝑡)𝑢(𝑡) + A(𝑡)𝑥(𝑡) + D(𝑡)𝑑 (𝑡) + Ξ(𝑡, 𝑥(𝑡), 𝑢(𝑡)),
𝑦(𝑡) = C(𝑡)𝑥(𝑡), (4)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚, 𝑦(𝑡) ∈ R𝑞 and 𝑑 (𝑡) ∈ R𝑝 represent the state, the
input, the output and the measurable and locally essentially bounded disturbance
for the above system. A(𝑡) ∈ PC(R+,R𝑛×𝑛), B(𝑡) ∈ PC(R+,R𝑛×𝑚), C(𝑡) ∈
PC(R+,R𝑞×𝑛), D(𝑡) ∈ PC(R+,R𝑚×𝑝) and the function Ξ : R+ × R𝑛 × R𝑚 → R𝑛

is locally Lipschitz in state and piecewise continuous in time with Ξ(𝑡, 0, 𝑢) = 0
for all 𝑡  0.
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3. Practical ℎ-observer design for piecewise continuous Lipschitz
non-autonomous systems

We shall suppose the following hypothesis.
(C1) There is a function 𝜇 ∈ PC(R+,R+) such that for all 𝑥1, 𝑥2 ∈ R𝑛 and all
𝑢 ∈ R𝑚,

∥Ξ(𝑡, 𝑥1, 𝑢) − Ξ(𝑡, 𝑥2, 𝑢)∥ ¬ 𝜇(𝑡)∥𝑥1 − 𝑥2∥. (5)

(C2) There are L(𝑡) ∈ PC(R+,R𝑚×𝑛) ∩ BC(R+,R𝑚×𝑛), P(𝑡) = P𝑇 (𝑡) ∈
C1(R+,R𝑛×𝑛), two constants 𝑝2 > 𝑝1 > 0 and 𝜈 ∈ PC(R+,R), such that for
all 𝑡 ∈ R+, we have

¤P(𝑡) + P(𝑡)AL (𝑡) + A𝑇
L (𝑡)P(𝑡) ¬ 𝜈(𝑡)P(𝑡), (6)

𝑝1𝐼 ¬ P(𝑡) ¬ 𝑝2𝐼,

where 𝐴L (𝑡) = L(𝑡)C(𝑡) + A(𝑡), A𝑇
L the transpose of the matrix 𝐴𝑇

L and I is
the identity matrix.

Consider the system (4) having some state variables not available for di-
rect measurement. Under assumption (C2), one proposes the following observer,
which estimates the state.

¤̂𝑥(𝑡) = B(𝑡)𝑢(𝑡) + A(𝑡)𝑥(𝑡) + Ξ(𝑡, 𝑥(𝑡), 𝑢(𝑡))
−L(𝑡) ( �̂�(𝑡) − 𝑦(𝑡)), 𝑡  𝑡0,

�̂�(𝑡) = C(𝑡)𝑥(𝑡).
(7)

Now, we present the following theorem that ensures the practical ℎ-stability of
the proposed observer with the Lipschitz condition (5).

Theorem 2. Consider the decreasing function ℎ ∈ C1(R+,R★
+) and there exist

V ∈ C1(R+×R𝑛,R+). Under conditions (C1) and (C2), the system (7) is a global

uniform ℎ
1
2 -stable observer for the system (1) if

(
𝜈(𝑡)

2
+ 𝑝2

𝑝1
𝜇(𝑡), ∥𝐷 (𝑡)∥

)
∈

PℎSFP .

Proof. Let’s consider the error equation represented by 𝜖 = 𝑥 − 𝑥,

¤𝜖 (𝑡) = (L(𝑡)C(𝑡) + A(𝑡))𝜖 (𝑡) + ΔΞ + D(𝑡)𝑑 (𝑡), (8)

where ΔΞ = Ξ(𝑡, 𝑥, 𝑢) − Ξ(𝑡, 𝑥, 𝑢). Choose

V(𝑡, 𝜖) = ⟨P(𝑡)𝜖, 𝜖⟩.
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The derivative of V along the trajectories of system (8) is given by:
¤V(𝑡, 𝜖) = ⟨P(𝑡) ¤𝜖, 𝜖⟩ + ⟨P(𝑡)𝜖, ¤𝜖⟩ + ⟨ ¤P(𝑡)𝜖, 𝜖⟩

= ⟨ ¤P(𝑡)𝜖, 𝜖⟩ + ⟨P(𝑡) (AL (𝑡)𝜖 + ΔΞ + D(𝑡)𝑑), 𝜖⟩
+ ⟨P(𝑡)𝜖, (AL (𝑡)𝜖 + ΔΞ + D(𝑡)𝑑)⟩.

By applying the equation (6) and using Cauchy-Schwartz, we obtain
¤V(𝑡, 𝜖) ¬ 𝜈(𝑡)V(𝑡, 𝜖) + 2∥P(𝑡)∥∥ΔΞ∥∥𝜖 ∥ + 2∥P(𝑡)∥∥D(𝑡)∥∥𝑑∥∞∥𝜖 ∥

¬ (𝜈(𝑡) + 2𝑝2

𝑝1
𝜇(𝑡))V(𝑡, 𝜖) + 2

𝑝2√
𝑝1

∥D(𝑡)∥∥𝑑∥∞V(𝑡, 𝜖) 1
2 .

Set ℓ(𝑡) = V(𝑡, 𝜖) 1
2 . The Dini derivative of ℓ verifies

𝐷+ℓ(𝑡) ¬
[
𝜈(𝑡)

2
+ 𝑝2

𝑝1
𝜇(𝑡)

]
ℓ(𝑡) + 𝑝2√

𝑝1
∥∥D(𝑡)∥∥𝑑∥∞.

Thus, by using Theorem 1, the system (8) is globally uniformly practically ℎ
1
2 -

stable if
(
𝜈(𝑡)

2
+ 𝑝2

𝑝1
𝜇(𝑡), ∥𝐷 (𝑡)∥

)
∈ PℎSFP . Hence, the system (7) is a global

uniform practical ℎ
1
2 -stable observer for the system (4). 2

Remark 1. If 𝜇(𝑡) = 𝑐, (constant), then it is easy to verify that the sys-
tem (7) is a global uniform practical ℎ

1
2 -stable observer for the system (4) if(

𝜈(𝑡)
2

+ 𝑝2

𝑝1
𝑐, ∥D(𝑡)∥

)
∈ PℎSFP .

4. Practical ℎ-observer design for one-sided piecewise continuous
Lipschitz non-autonomous systems

The goal is to design a practical ℎ-observer for one-sided piecewise continuous
Lipschitz non-autonomous systems. The advantage gained through this approach
is that the broad family on nonlinear systems includes the piecewise continuous
Lipschitz systems as a special case.

First, consider the one-sided piecewise continuous Lipschitz class of systems
[15] by the following assumption:
(C3) The function Ξ(𝑡, 𝑥, 𝑢) is one-sided Lipshitz in R𝑛 with a Lipschiz function
𝛾 ∈ PC(R+,R), that is

⟨P(𝑡)Ξ(𝑡, 𝑥, 𝑢) − P(𝑡)Ξ(𝑡, 𝑥, 𝑢), 𝑥 − 𝑥⟩ ¬ 𝛾(𝑡)∥𝑥 − 𝑥∥2,

∀𝑥, 𝑥 ∈ R𝑛, ∀𝑢 ∈ R𝑚,
(9)

where P(𝑡) ∈ C1(R+,R𝑛×𝑛) is the known matrix given by (C2).
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Remark 2. If Ξ is Lipshitz continuous in 𝑥 which satisfies hypothesis (C1), then
(5) is satisfied since

⟨P(𝑡)Ξ(𝑡, 𝑥, 𝑢)−P(𝑡)Ξ(𝑡, 𝑥, 𝑢), 𝑥−𝑥⟩ ¬ ∥P(𝑡)∥∥Ξ(𝑡, 𝑥, 𝑢) − Ξ(𝑡, 𝑥, 𝑢)∥∥𝑥 − 𝑥∥
¬ 𝑝2𝛾(𝑡)∥𝑥 − 𝑥∥2,

where 𝑝2 is a positive constant given in (C2). In this case 𝑝2𝛾(𝑡) must be non-
negative on R+.

Note that, unlike the piecewise continuous Lipschitz function which must be
positive, the one-sided Lipschitz function 𝛾(𝑡) may be positive or even negative.

We shall now illustrate an example that satisfies one-sided piecewise contin-
uous Lipschitz but not piecewise-continuous Lipschitz systems.

Example 1. A simple example of a one-sided piecewise continuous Lips-
chitz function which indeed is not piecewise continuous Lipschitz is Ξ(𝑡, 𝑥) =

−sgn(𝑥)𝛾(𝑡)
√︁
|𝑥 |, where 𝛾 ∈ PC(R+,R), 𝑥 ∈ R and ‘sgn’ denote the sign func-

tion.

Theorem 3. Consider the decreasing function ℎ ∈ C1(R+,R★
+). Under conditions

(C1) and (C3), the system (7) is a global uniform ℎ
1
2 -stable observer for the

system (1) if
(
𝜈(𝑡)

2
+ |𝛾(𝑡) |

𝑝1
, ∥𝐷 (𝑡)∥

)
∈ PℎSFP.

Proof. Consider
V(𝑡, 𝜖) = ⟨P(𝑡)𝜖, 𝜖⟩,

then,
¤V(𝑡, 𝜖) = ⟨P(𝑡) ¤𝜖, 𝜖⟩ + ⟨P(𝑡)𝜖, ¤𝜖⟩ + ⟨ ¤P(𝑡)𝜖, 𝜖⟩

= ⟨ ¤P(𝑡)𝜖, 𝜖⟩ + ⟨P(𝑡) (AL (𝑡)𝜖 + ΔΞ + D(𝑡)𝑑), 𝜖⟩
+ ⟨P(𝑡)𝜖, (AL (𝑡)𝜖 + ΔΞ + D(𝑡)𝑑)⟩.

Using (9), we have
¤V(𝑡, 𝜖) ¬ 𝜈(𝑡)V(𝑡, 𝜖) + 2𝛾(𝑡)∥𝜖 ∥2 + 2∥P(𝑡)∥D(𝑡)∥∥𝑑∥∞∥𝜖 ∥

¬ (𝜈(𝑡) + 2|𝛾(𝑡) |
𝑝1

)V(𝑡, 𝜖) + 2
𝑝2√
𝑝1

∥D(𝑡)∥∥𝑑∥∞V(𝑡, 𝜖) 1
2 .

Let 𝜌(𝑡) =
√︁
V(𝑡, 𝑒). The Dini derivative of 𝜌 satisfies

𝐷+𝜌(𝑡) ¬
[
𝜈(𝑡)

2
+ |𝛾(𝑡) |

𝑝1

]
𝜌(𝑡) + 𝑝2√

𝑝1
∥∥D(𝑡)∥∥𝑑∥∞.



888 M. ALAYA, H. DAMAK, N.H. TAIEB, M.A. HAMMAMI

Thus, by using Theorem 1, the system (8) is globally uniformly practically ℎ
1
2 -

stable if
(
𝜈(𝑡)

2
+ |𝛾(𝑡) |

𝑝1
, ∥D(𝑡)∥

)
∈ PℎSFP . Consequently, the system (7) is a

global uniform practical ℎ
1
2 -stable observer for the system (4). 2

5. Practical ℎ-observer design for quasi-one-sided piecewise continuous
Lipschitz non-autonomous systems

A quasi-one-sided piecewise continuous Lipschitz condition is introduced
instead of the piecewise continuous Lipschitz condition (5) and the one-sided
piecewise continuous Lipschitz condition (9).
(C4) Ξ(𝑡, 𝑥, 𝑢) is quasi-one-sided piecewise continuous Lipschitz in R𝑛 with a
one-sided Lipschitz constant matrix and function 𝛿 ∈ PC(R+,R), that is

⟨P(𝑡)Ξ(𝑡, 𝑥, 𝑢) − P(𝑡)Ξ(𝑡, 𝑥, 𝑢), 𝑥 − 𝑥⟩ ¬ 𝛿(𝑡) (𝑥 − 𝑥)𝑇𝑀 (𝑥 − 𝑥),
∀𝑥, 𝑥 ∈ R𝑛, ∀𝑢 ∈ R𝑚,

(10)

where P(𝑡) ∈ C1(R+,R𝑛×𝑛) is the known matrix given by (C2) and 𝑀 is a real
symmetric matrix.

Theorem 4. Consider the decreasing function ℎ ∈ C1(R+,R★
+). Under conditions

(C1) and (C4), the system (7) is a global uniform ℎ
1
2 -stable observer for the

system (1) if
(
𝜈(𝑡)

2
+ 𝜆max(𝑀) |𝛿(𝑡) |

𝑝1
, ∥D(𝑡)∥

)
∈ PℎSFP .

Proof. Let 𝜖 (𝑡) = 𝑥(𝑡) − 𝑥(𝑡),V(𝑡, 𝜖) = ⟨P(𝑡)𝜖, 𝜖⟩ and similarly to the proof of
theorem 3, we find

¤V(𝑡, 𝜖) ¬ 𝜈(𝑡)V(𝑡, 𝜖) + 2⟨P(𝑡)ΔΞ, 𝜖⟩ + 2𝑝2∥D(𝑡)∥∥𝑑∥∞.
Then using (10), we have

¤V(𝑡, 𝜖) ¬ [𝜈(𝑡) + 2𝜆max(𝑀) |𝛿(𝑡) |
𝑝1

]V(𝑡, 𝜖) + 2
𝑝2√
𝑝1

∥D(𝑡)∥∥𝑑∥∞
√︁
V(𝑡, 𝜖).

Let 𝜁 (𝑡) =
√︁
V(𝑡, 𝜖). Thus,

𝐷+𝜁 (𝑡) ¬
[
𝜈(𝑡)

2
+ 𝜆max(𝑀) |𝛿(𝑡) |

𝑝1

]
𝜁 (𝑡) + 𝑝2√

𝑝1
∥D(𝑡)∥∥𝑑∥∞.

Applying Theorem 1, we obtain that the system (8) is globally uniformly prac-

tically ℎ
1
2 -stable if

(
𝜈(𝑡)

2
+ 𝜆max(𝑀) |𝛿(𝑡) |

𝑝1
, ∥D(𝑡)∥

)
∈ PℎSFP. Therefore, the

system (7) is a global uniform practical ℎ
1
2 -stable observer for the system (4). 2
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6. Practical separation Principle

Here, we investigate the separation principle problem for a class of nonlinear
non-autonomous systems of the form (4). First, assume that (4) satisfies the
following condition required for stabilization purposes.
(C5) There exist K(𝑡) ∈ PC(R+,R𝑚×𝑛) ∩ BC(R+,R𝑚×𝑛),

P̃ (𝑡) = P̃𝑇 (𝑡) ∈ C1(R+,R𝑛×𝑛), 𝑝2 > 𝑝1 > 0 and 𝜔 ∈ PC(R+,R),
such that ∀𝑡 ∈ R+, we have

¤̃P(𝑡) + A𝑇
K (𝑡)P̃ (𝑡) + P̃ (𝑡)AK (𝑡) ¬ 𝜔(𝑡)P̃ (𝑡), (11)

𝑝1𝐼 ¬ P̃ (𝑡) ¬ 𝑝2𝐼,

where AK (𝑡) = B(𝑡)K(𝑡) + A(𝑡).
Based on these conditions, we show the following lemma.

Lemma 2. Consider the decreasing function ℎ ∈ C1(R+,R★
+). Under conditions

(C1) and (C5), the system (4) in closed-loop with the linear feedback 𝑢(𝑡, 𝑥) =

K(𝑡)𝑥 is globally uniformly practically ℎ
1
2 -stable if

(
𝜔(𝑡)

2
+ 𝑃2

𝑃1
𝜇(𝑡), ∥𝐷 (𝑡)∥

)
∈

PℎSFP .

Proof. Let
W(𝑡, 𝑥) = ⟨P̃ (𝑡)𝑥, 𝑥⟩.

The derivative of W along the trajectories of system (4) is given by

¤W(𝑡, 𝑥) = ⟨ ¤̃P(𝑡)𝑥, 𝑥⟩+⟨P̃ (𝑡) ¤𝑥, 𝑥⟩+⟨P̃ (𝑡)𝑥, ¤𝑥⟩

= ⟨ ¤̃P(𝑡)𝑥, 𝑥⟩+⟨P̃ (𝑡)AK (𝑡)𝑥+Ξ(𝑡, 𝑥, 𝑢), 𝑥⟩+⟨P̃ (𝑡)𝑥,AK (𝑡)𝑥+Ξ(𝑡, 𝑥, 𝑢)⟩
¬ 𝜔(𝑡)W(𝑡, 𝑥) + 2∥P̃ (𝑡)∥𝜇(𝑡)∥𝑥∥2 + 2P̃2∥D(𝑡)∥∥𝑑∥∞∥𝑥∥

¬ (𝜔(𝑡) + 2P̃2

P̃1
𝜇(𝑡))W(𝑡, 𝑥) + 2P̃2√︁

P̃1

∥D(𝑡)∥∥𝑑∥∞W(𝑡, 𝑥) 1
2 .

Let 𝜋(𝑡) = W(𝑡, 𝑥) 1
2 . Then,

𝐷+𝜋(𝑡) ¬
(
𝜔(𝑡)

2
+ 𝑃2

𝑃1
𝜇(𝑡)

)
𝜋(𝑡) + 𝑃2√︁

𝑃1

∥𝐷 (𝑡)∥∥𝑑∥∞.

Thus, by using Theorem 1, the system (4) in closed-loop with the
feedback 𝑢(𝑡, 𝑥) = K(𝑡)𝑥 is globally uniformly practically ℎ

1
2 -stable if(

𝜔(𝑡)
2

+ 𝑃2

𝑃1
𝜇(𝑡), ∥𝐷 (𝑡)∥

)
∈ PℎSFP . 2
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Now, consider system (4) controlled by the feedback law 𝑢(𝑡, 𝑥) = K(𝑡)𝑥
estimated by the observer (7). Then, we provide the following theorem.

Theorem 5. Consider the decreasing function ℎ ∈ C1(R+,R★
+) such that the

function ℎ(𝑡) = ℎ̂(𝑡)𝑒𝜂𝑡 ∈ BC(R+,R★
+) with 𝜂 > 0 and the function ∥D(·)∥ ℎ̂−1 ∈

𝐿𝑞 ( [0,∞)) with 𝑞 > 1. Under conditions (C1), (C2) and (C4), the system
¤̂𝑥(𝑡) = B(𝑡)𝑢(𝑡, 𝑥) + A(𝑡)𝑥(𝑡) + Ξ(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) + L(𝑡)C(𝑡)𝜖 (𝑡),
¤𝜖 (𝑡) =

(
L(𝑡)C(𝑡) + A(𝑡)

)
𝜖 (𝑡) + Ξ(𝑡, 𝑥(𝑡), 𝑢(𝑡, 𝑥))

−Ξ(𝑡, 𝑥(𝑡) − 𝜖, 𝑢(𝑡, 𝑥)) + D(𝑡)𝑑 (𝑡)
(12)

is globally uniformly practically ℎ
1
2 -stable if

(
1
2
(𝜑(𝑡) + 𝜆𝜇(𝑡)), ∥𝐷 (·)∥

)
∈

PℎSFP, where 𝜑(𝑡) = max(𝑤(𝑡), 𝑣(𝑡)), 𝜆 = max

(
2𝑝2

𝑝1
,

2P̃2

P̃1

)
, with 𝑢(𝑡, 𝑥) =

K(𝑡)𝑥.
Proof. Set

Z(𝑡, 𝑥, 𝜖) = W(𝑡, 𝜖) + V(𝑡, 𝜖),
whereW(𝑡, 𝑥) = ⟨P̃ (𝑡)𝑥, 𝑥⟩ andV(𝑡, 𝜖) = ⟨P(𝑡)𝜖, 𝜖⟩. The derivative ofZ along
the trajectories of system (12) satisfies

¤Z(𝑡, 𝑥, 𝜖) ¬ (𝜔(𝑡) + 2P̃2

P̃1
𝜇(𝑡))W(𝑡, 𝑥) +

(
𝜈(𝑡) + 2𝑝2

𝑝1
𝜇(𝑡)

)
∥V(𝑡, 𝜖)

+ 2
𝑝2√
𝑝1

∥D(𝑡)∥∥𝑑∥∞
√︁
V(𝑡, 𝜖) + 2∥P̃ (𝑡)∥∥L(𝑡)C(𝑡)𝜖 (𝑡)∥∥𝑥(𝑡)∥.

For any 𝜁 ∈ R★
+, by applying Young’s inequality

∥𝜖 (𝑡)∥∥𝑥(𝑡)∥ ¬ 1
2𝜖

∥𝜖 (𝑡)∥2 + 𝜖

2
∥𝑥(𝑡)∥2.

Considering that for all 𝜆1, 𝜆2 ∈ R+,
√
𝜆1 +

√
𝜆2 ¬ 2

√
𝜆1 + 𝜆2, we state

¤Z(𝑡, 𝑥, 𝜖) ¬ (𝜑(𝑡) + 𝜆𝜇(𝑡) + 𝜍)Z(𝑡, 𝑥, 𝜖) + 2𝜚∥D(𝑡)∥
√︁
𝑍 (𝑡, 𝑥, 𝜖),

where 𝜍 = max

(
𝑃2∥𝐿𝐶∥∞

𝜁𝑃1
,
𝑃2𝜁 ∥𝐿𝐶∥∞

𝑃1

)
and 𝜚 =

(
𝑝2√
𝑝1

∥𝑑∥∞
)
.

Let
𝜛(𝑡) =

√︁
Z(𝑡, 𝑥, 𝜖).

Then,
𝐷+𝜛(𝑡) ¬ �̄�(𝑡)𝜛(𝑡) + 𝜉 (𝑡),
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where �̃�(𝑡) = 1
2 (𝜑(𝑡) + 𝜆𝜇(𝑡) + 𝜍) and 𝜉 (𝑡) = 𝜚∥D(𝑡)∥. Since,

1
2
(𝜑(𝑡) +

𝜆𝜇(𝑡)), ∥D(𝑡)∥ ∈ PℎSFP, then there exists 𝑘 > 0, such that

𝑡∫
𝑡0

�̃�(𝜏)d𝜏 ¬
𝑡∫

𝑡0

ℎ̂′(𝜏) ℎ̂−1(𝜏)d𝜏 + 𝜍

2
(𝑡 − 𝑡0) + 𝑘

¬ ln( ℎ̂(𝑡)) − ln( ℎ̂(𝑡0)) + ln
(
𝑒

𝜍
2 𝑡
)
− ln

(
𝑒

𝜍
2 𝑡0

)
+ 𝑘

¬ − ln
(
ℎ̂(𝑡0)𝑒

𝜍
2 𝑡0

)
+ ln

(
ℎ̂(𝑡)𝑒

𝜍
2 𝑡
)
+ 𝑘

¬ − ln(ℎ(𝑡0)) ln(ℎ(𝑡)) + 𝑘.

Now, let’s

Θ(𝑡, 𝜏) = 𝑒

𝑡∫
𝜏

�̃�(𝑠)d 𝑠
.

We have,

𝑡∫
𝑡0

Θ(𝑡, 𝜏) |𝜉 (𝜏) |d𝜏 = 𝑒𝑘

𝑡∫
𝑡0

𝜚ℎ̃(𝑡)𝑒
𝜍
2 𝑡 ℎ̂−1(𝜏)𝑒−

𝜍
2 𝜏∥D(𝜏)∥d𝜏.

It follows that

𝑡∫
𝑡0

Θ(𝑡, 𝜏) |𝜉 (𝜏) |d𝜏 ¬ 𝑒𝑘 ∥ℎ∥∞
𝑡∫

𝑡0

𝜚ℎ̂−1(𝜏)𝑒−
𝜍
2 𝜏∥D(𝜏)∥d𝜏,

Hence, by applying the fact that ℎ̂−1∥D(·)∥ ∈ 𝐿𝑞 ( [0,∞)) one obtains

𝑡∫
𝑡0

Θ(𝑡, 𝜏) |𝜉 (𝜏)d𝜏 ¬
2𝜚𝑒𝑘 (𝑞 − 1)∥ℎ∥∞

𝜍𝑞
∥D(·)∥ ℎ̃−1∥𝑞 .

Thus, ( �̄�, 𝜉) ∈∈ PℎSFP. Consequently, the cascaded system (12) is globally
uniformly practically ℎ

1
2 -stable. 2
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7. Example

Consider a class of control systems in the form (4) with

A(𝑡) =
©«
− 2 + 𝑡

2(1 + 𝑡) 0

0 − 2 + 𝑡

2(1 + 𝑡) +
1

2(1 + 𝑡2)

ª®®®¬ , B(𝑡) = ©«
1

2(1 + 𝑡2)
0

ª®¬ ,
D(𝑡) =

(
𝑒−𝑡

0

)
, 𝑑 (𝑡) = arctan(𝑡),

C(𝑡) =
(
1 0

)
, Ξ(𝑡, 𝑥, 𝑢) =

(
𝑒−𝑡 cos(𝑢) sin(𝑥2)

sin(𝑥1)

)
.

Condition (C5) is satisfied with

K(𝑡) =
(
1 0

)
, P̃ (𝑡) = 𝐼

and

𝜔(𝑡) = 1
1 + 𝑡2

− 2 + 𝑡

1 + 𝑡
.

Moreover, condition (C1) is verified with 𝜇(𝑡) = 𝑒−𝑡 .
On the other hand, it is easy to verify that condition (C2) is satisfied with

L(𝑡) = ©«
1

1 + 𝑡2

0

ª®¬ , P(𝑡) = 𝐼

and

𝜈(𝑡) = 2
1 + 𝑡2

− 2 + 𝑡

1 + 𝑡
.

It is easy to see that
(
|𝜔(𝑡) |

2
+ 𝜆𝜇(𝑡) + |𝜈(𝑡) |

2
, ∥𝐷 (𝑡)∥

)
∈ P ℎ̂S F P with

ℎ̂(𝑡) = 𝑒−𝑡

1 + 𝑡
. Then, by applying Theorem 5, the cascaded system (12) is globally

uniformly practically ℎ
1
2 -stable with ℎ(𝑡) = 1

1 + 𝑡
.

By using the initial conditions (𝑥1(0), 𝑥2(0)) = (1, 1) and (𝑥1(0), 𝑥2(0)) =

(1, 1). Simulation results for the estimated and actual states are shown in Figures 1
and 2.
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Figure 1: 𝑥1 and its estimated �̂�1

Figure 2: 𝑥2 and its estimated �̂�2

8. Conclusions

In this paper, a new way to design the observers for nonlinear non-autonomous
dynamical systems with disturbances is presented. It concerns the cases of non-
linearity that either meets a piecewise continuous Lipschitz condition, one-sided
piecewise continuous Lipschitz or simply quasi-one-sided piecewise continuous
Lipschitz. Some results are obtained, and the observer can therefore be designed
under some sufficient conditions with the help of the notion of practical ℎ-stable
functions. Furthermore, an illustrative example is given.
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