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Abstract. To enhance the tracking performance of the permanent magnet synchronous motor (PMSM) drive system in the face of changing
operating conditions, such as variations in internal parameters and external load disturbances, this study proposed a new composite control strategy
that combines the super-twisting sliding mode controller (STSM) with the finite-time sliding mode observer (FTSMO). The proposed methodology
synergistically integrates the enhanced tracking precision and robust disturbance rejection properties inherent to the second-order tracking-sliding
mode (STSM) controller with an innovative finite-time sliding mode observer (FTSMO), thereby achieving significant improvements in system
state estimation accuracy. The stability of the closed-loop PMSM drive system under the STSM+FTSMO framework is thoroughly analyzed
and established using Lyapunov theory. The proposed composite control strategy effectiveness is confirmed through both simulations and
experimental outcomes. These findings illustrate that the proposed approach significantly surpasses conventional control methods, especially in
managing external disturbances within the PMSM system. Significant enhancements are evident in start-up response, robustness against load
variations, convergence speed, and steady-state performance.

Keywords: permanent magnet synchronous motor (PMSM); super-twisting sliding mode controller (STSM); finite time sliding mode observer
(FTSMO); perturbation resistance.

1. INTRODUCTION

PMSM drives are already used in many industrial applications
and possess high power density, excellent efficiency, and great
reliability. The control of closed loop of PMSM drives is exe-
cuted through the FOC strategy. The linear PI control strategy
has been conventional to use in the design of speed controllers
for PMSM drives due to its simplicity in implementation and
ease of engineering application [1–3].

When applying permanent magnet synchronous motor sys-
tems in practical applications, there are inevitable uncertainties
such as internal parameter variations and external load distur-
bances. Conventional controllers are not very efficient in the
fast rejection of these disturbances, which worsen the system
robustness and dynamic response. To overcome these limita-
tions and enhance the control performance of the PMSM drive
systems in uncertain and disturbance environments, many ad-
vanced control strategies have been proposed including adaptive
control [4, 5], finite time control [6], predictive control [7–9],
robust control [10,11] and sliding mode control (SMC) [12,13].
Among those methods, SMC has been recognized as one of the
most efficient control strategies for the PMSM drive systems
because of its high performance in tracking, robustness against
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parameter variations and sensitivity to load changes [14, 15].
However, the robustness of sliding mode controllers is usually
fulfilled by large switching gains to cover the upper bound of
the uncertainties. This makes SMC vulnerable to the so-called
‘chattering’ effect which is undesirable as it leads to control in-
accuracy and actuator wear [16]. To this end, the super-twisting
sliding mode (STSM) control strategy has been proposed to
solve this problem. This method actually smoothes the control
force by incorporating the switching term into the integration
scheme to avoid the chattering effect without compromising the
accuracy of tracking and disturbance rejection. Hence, STSM
has gained much attention and is used extensively in many ar-
eas [17]. However, the efficiency of the STSM control strategy
is function of the knowledge of system disturbances and their
compensation. Thus, if there is no precise knowledge of distur-
bance, then the full benefits of STSM cannot be achieved for
improving the control performance.

To address this drawback, it has been suggested to incor-
porate the super-twisting sliding mode (STSM) control design
together with a disturbance observer (DOB). The DOB provides
online estimation of the total system disturbances and feeds it
to the STSM controller to reject the disturbances impacting the
system performance [18]. Out of the various disturbance obser-
vation approaches, the extended state observer (ESO) has re-
ceived much consideration because it can handle the estimation
of system states and disturbances for improved control perfor-
mance [19]. However, classical ESO method guarantees that the
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estimation error converges to zero asymptotically, which is not
suitable for fast disturbance reference signals, as the estimation
accuracy deteriorates. To overcome this restriction, the notion
of finite-time control (FTC) was introduced, and the finite-time
extended state observer (FTESO) and its application were pre-
sented [20]. The main benefit of the FTESO is that it guaran-
tees the convergence of the estimation error to zero in a finite
time, which results in faster response times and better accu-
racy [21]. These properties are very useful for control systems
that have strict real-time performance demands, for instance,
high-precision speed control in PMSM drive systems. Based
on this, Qiankang Hou et al. proposed an STSM coupled with
FTESO for the control of PMSM drive systems to achieve better
disturbance rejection and tracking performance [22]. Likewise,
Wei Xu et al. proposed a composite speed control strategy based
on the finite-time sliding mode observer (FTSMO) [23]. This
method uses the FTSMO to online identify system disturbances
and counteracts them through a feedforward action to enhance
the system robustness and dynamic performance.

The research findings reveal that the integration of the finite-
time extended state observer (FTESO) with the super-twisting
sliding mode controller (STSM) significantly enhances the abil-
ity of disturbance rejection and control stability of the PMSM
system under challenging conditions, such as load torque varia-
tions and rotational inertia fluctuations. Building on these find-
ings, this paper proposes a novel composite control strategy that
combines the finite-time sliding mode observer (FTSMO) with
the super-twisting sliding mode controller (STSM). The pro-
posed strategy is rigorously validated through both simulations
and experimental studies within the PMSM drive system. The re-
sults demonstrate that the proposed control approach effectively
improves the anti-disturbance capability, tracking precision, and
robustness of the PMSM system, thereby optimizing its dynamic
response and steady-state performance.

This paper is structured in the following way: Section 2
shows the mathematical modelling of the PMSM system and
presents the traditional composite control approach that utilizes
the ESO. Section 3 outlines the suggested composite control
strategy based on super-twisting sliding mode, which includes
the finite-time extended state observer, and presents a thorough
stability analysis. Section 4 demonstrates the effectiveness of the
proposed control approach via experimental research and offers
an in-depth analysis of the findings. In conclusion, Section 5
wraps up the study by highlighting the main discoveries and
provides a brief discussion on possible future research avenues.

2. PERMANENT MAGNET SYNCHRONOUS MOTOR
SYSTEM MODELLING

2.1. Basic model of permanent magnet motor

Considering the dynamic equations of a permanent magnet syn-
chronous motor (PMSM), the overall mechanical equations of
motion can be formulated as follows:

¤𝜔 =
3
2
𝑛𝑝𝜓 𝑓

𝐽
𝑖𝑞 −

𝐵

𝐽
𝜔− 𝑇𝐿

𝐽
. (1)

In this expression, 𝜔 denotes the mechanical rotor speed, ¤𝜔 rep-
resents the angular acceleration, 𝑛𝑝 is the number of pole pairs,
𝜓 𝑓 is the permanent magnet flux linkage, 𝐽 is the rotational iner-
tia, 𝑖𝑞 is the q-axis current, 𝐵 is the viscous friction coefficient,
and 𝑇𝐿 is the load torque. By replacing unknown disturbances
(e.g., those from load torque and friction) with the lumped dis-
turbance term 𝑑 (𝑡), the system dynamics are reformulated as
follows:

¤𝜔 = 𝐹𝑡 𝑖𝑞 + 𝑑 (𝑡), (2)

where 𝐹𝑡 =
3𝑛𝑝𝜓 𝑓

2𝐽 and 𝑑 (𝑡) = − 𝐵
𝐽
𝜔− 𝑛𝑝

𝐽
𝑇𝐿 . In the actual con-

trol system, − 𝐵
𝐽
𝜔 and − 𝑛𝑝

𝐽
𝑇𝐿 represent unknown disturbances

or uncertainties in the system, which may be caused by load
variations, parameter changes, or environmental influences.

To guarantee the reliability of the motion control system, it
is essential to estimate and adjust for these disturbances in real
time. This paper aims to create a composite control law that
guarantees rapid convergence of the velocity tracking error.

2.2. The structure of the STSM controller

The super-twisting sliding mode (STSM) control algorithm,
recognized for its robust anti-disturbance capabilities, is imple-
mented in this study. Initially introduced by A. Levant in [24], the
STSM algorithm constitutes an advanced sliding mode control
methodology distinguished by its straightforward architecture
and superior disturbance rejection performance. A key advan-
tage of the STSM algorithm lies in its ability to smooth discon-
tinuous signals, thereby improving the continuity of the control
process compared to traditional first-order sliding mode con-
trollers. the super-twisting sliding mode control law is designed
as follows:

𝑖∗𝑞 = − 1
𝐹𝑡

(
𝜆1 |𝐸 |

1
2 sign(𝐸) +𝜆2

∫
sign(𝐸) d𝑡

)
. (3)

The system 𝑞-axis current reference is denoted by 𝑖∗𝑞 . The con-
trol gains, represented by 𝜆1 and 𝜆2, determine the convergence
speed of the system. The reference speed intended for the system
is represented by 𝜔𝑟 . To guarantee that the speed error 𝐸 dimin-
ishes to zero within a finite time, the design of 𝑖∗𝑞 is structured to
allow the rotor speed 𝜔 to effectively follow the reference speed
𝜔𝑟 . The stability properties and finite-time convergence char-
acteristics of the second-order tracking-sliding mode (STSM)
controller were rigorously proven through comprehensive the-
oretical analysis and experimental validation, as demonstrated
in [25]. The controller system block diagram is shown in Fig. 1.

Fig. 1. STSM controller
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2.3. The composite controller is based on STSM

As demonstrated in the actual control system, as expressed in
equation (2), the existence of the lumped disturbance term con-
siderably affects the overall performance of the system. As a
result, it is necessary to include disturbance compensation. Ac-
cordingly, the composite control law is formulated as follows:

𝑖∗𝑞 = − 1
𝐹𝑡

(
𝜆1 |𝐸 |

1
2 sign(𝐸) +𝜆2

∫
sign(𝐸) d𝑡 + 𝑑 (𝑡)

)
, (4)

where 𝑑 (𝑡) is an estimate of the actual perturbation 𝑑 (𝑡), if the
observer can provide an accurate estimate, no scaling factor is
required.
𝜆1 is responsible for quickly pulling the system back when the

state deviates from the sliding mode surface. It typically needs to
be sufficiently large to ensure fast convergence speed and robust-
ness, but being too large can amplify the impact of measurement
noise, so it must be adjusted based on the system desired dy-
namic response speed. 𝜆2 is responsible for real-time estimation
and compensation of various internal and external uncertainties
in the system, enabling the system to move smoothly and con-
tinuously along the sliding surface once it reaches it, thereby
avoiding the chattering caused by high-frequency switching in
traditional sliding mode control. However, if 𝜆2 is too small,
it cannot effectively suppress strong disturbances, leading to
performance degradation or even instability. If it is too large, al-
though robustness is enhanced, it may result in excessive control
actions and increased sensitivity to noise. This paper primarily
uses theoretical guidance to first determine 𝜆1 through multi-
ple experiments, then adjust 𝜆2 while ensuring good response,
enabling it to quickly recover to steady state under conditions
such as load changes and maintain minimal overshoot through-
out the process. The combination of the two ensures that the
STSM controller exhibits strong robustness against changes in
motor parameters (such as resistance and inductance), changes
in rotational inertia, and load torque disturbances, while main-
taining excellent dynamic response performance. Under certain
conditions, the STSM ensures that the system state converges
precisely to the sliding mode surface within a finite time and
remains on it.

In this paper, a comparative analysis is conducted between
the conventional ESO-STSM composite controller and the pro-
posed FTSMO-STSM composite strategy. Specifically, the tra-
ditional ESO estimates the lumped disturbance 𝑑 (𝑡) and feeds
it forward into the STSM control law (equation (3)) to form an
ESO-based composite controller. This integration aims to syn-
ergize ESO disturbance estimation with STSM robustness. The
STSM-ESO method, detailed in [22], serves as the benchmark
for experimental validation. However, the ESO guarantees only
asymptotic convergence of estimation errors (i.e., 𝑑 (𝑡) → 𝑑 (𝑡)
as 𝑡→∞), leading to slower convergence and limited accuracy
under rapid disturbances. Given PMSM susceptibility to param-
eter uncertainties, load variations, and nonlinearities, this delay
compromises tracking precision and robustness.

To address this, we propose replacing ESO with a finite-
time sliding mode observer (FTSMO). The FTSMO leverages
a generalized super-twisting structure (equation (5)) to ensure

estimation errors converge to zero in finite time, significantly ac-
celerating convergence and improving accuracy. This enhance-
ment directly boosts the dynamic response and robustness of the
composite STSM-FTSMO controller.

3. COMPOSITE CONTROL STRATEGIES PROPOSED

The core advantage of the STSM controller lies in its strong
anti-interference capability, ability to converge within a limited
time, and simple parameters that are easy to adjust. FTSMO
can accurately estimate unknown disturbances within a limited
timeframe and promptly compensate for system disturbances,
thereby significantly enhancing the system interference resis-
tance. Theoretically, the composite control framework based
on STSM and FTSMO has the ability to improve dynamic re-
sponse, utilize FTSMO feedforward compensation to reduce
overshoot, and maintain excellent interference resistance after
system disturbances, making it particularly suitable for scenar-
ios with stringent control performance requirements.

3.1. The FTSMO observer

The real-time estimation of unknown disturbances, including
load perturbations and parameter perturbations, is performed
using a FTSMO as follows:

¤̂𝜔 =
3
2
𝑛𝑝

𝐽
𝜓 𝑓 𝑖𝑞 −

𝐵

𝐽
𝜔̂+ 𝑙𝑜

𝑙𝑜 = −𝑚𝑜𝑘
1/3 |𝜔̂−𝜔 |2/3 · sign(𝜔̂−𝜔) + 𝑑 (𝑡)

¤̂
𝑑 (𝑡) = −𝑚1𝑘

1/2 |𝑑 (𝑡) − 𝑙𝑜 |2/3 · sign(𝑑 (𝑡) − 𝑙𝑜) + 𝑙1

¤𝑙1 = −𝑚2𝑘 · sign(𝑙1 − ¤̂
𝑑 (𝑡)),

(5)

where 𝜔̂ is the rotor speed estimation, ¤̂𝜔 is the derivative of the
estimated speed. 𝑙𝑜 is the disturbance estimation intermediate
variable, 𝑑 (𝑡) is the system estimation disturbance, ¤̂

𝑑 (𝑡) is the
derivative of the estimated disturbance. 𝑚𝑜 and 𝑘 are observa-
tion gains whose values are adjusted according to the system
operating effects. It can be shown that the configuration of the
multilayer perturbation estimation guarantees the convergence
of the perturbation estimation within a finite time frame. In this
structure, 𝑚1 and 𝑚2 represent the control gains of the observer,
and 𝑙1 is a higher-order variable that enhances the finite-time
convergence property.

As evidenced by (5), the parameter selection of 𝑘 ,𝑚0,𝑚1, and
𝑚2 constitutes a critical factor in determining the system perfor-
mance when implementing a finite-time sliding mode observer
(FTSMO). Parameter 𝑚0 dominates speed error convergence
(affecting response speed), parameter 𝑚1 smoothes disturbance
estimation (suppressing noise), and 𝑚2 compensates for distur-
bance derivatives (resistance to sudden changes). This paper
adopts an engineering experimental method, first fixing 𝑘 to a
constant value, adjusting𝑚0 so that the system can quickly reach
the response, and then adjusting 𝑚1 and 𝑚2 on this basis to first
obtain parameters that allow the system to operate normally,
and then fine-tuning them to achieve better dynamic response

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. e155896, 2026 3



J. Nie, Y. Li, and G. Li

and disturbance recovery performance. Through systematic op-
timization of the switching gain, the system convergence time
can be significantly reduced. Nevertheless, an excessively high
FTSMO gain may lead to pronounced overshooting in the veloc-
ity response, consequently compromising the steady-state accu-
racy of the system. Therefore, precise estimation of the total dis-
turbance during the compensation process emerges as a crucial
requirement for maintaining system robustness. In conclusion,
the strategic parameter configuration represents a fundamental
aspect for achieving enhanced control performance and robust
system operation.

3.2. Stability analysis of the FTSMO

This study offers a thorough theoretical examination of the finite-
time convergence properties for the suggested finite-time slid-
ing mode observer (FTSMO) utilized in permanent magnet syn-
chronous motor (PMSM) drive systems. The stability analysis is
established through a hierarchical composite Lyapunov function
methodology, building upon the theoretical frameworks devel-
oped in [26, 27]. The observer architecture integrates advanced
finite-time differentiation techniques derived from sliding mode
differentiators [28]. By conducting theoretical analysis and se-
lecting appropriate gains, it has been mathematically established
that the dynamics of observer error can converge to zero asymp-
totically within a finite timeframe [29], demonstrating the effec-
tiveness of the proposed approach.

The system dynamics are characterized by defining 𝜔 as the
actual angular velocity, with 𝜔̂ and 𝑑 (𝑡) representing the ob-
server’s estimates of the angular velocity and lumped distur-
bance term 𝑑 (𝑡), respectively. The estimation error dynamics
are formally defined through the following state variables:

𝑒1 = 𝜔̂−𝜔, 𝑒2 = 𝑑 (𝑡) − 𝑑 (𝑡), 𝑒3 =
¤̂
𝑑 (𝑡) − ¤𝑑 (𝑡). (6)

The theoretical development of the proposed methodology is
based on the following fundamental assumptions:

Assumption 1 (Regularity of the system states). The system
states (e.g.,𝜔 and the current 𝑖𝑞) are continuously differentiable,
and their derivatives are Lipschitz continuous with Lipschitz
constant 𝑁 > 0 [30].

Assumption 2 (Bounded disturbance). The lumped disturbance
𝑑 (𝑡) and its derivative ¤𝑑 (𝑡) are both limited; specifically, there
is a constant 𝑁 > 0 such that:

| ¤𝑑 (𝑡) | ≤ 𝑁, ∀ 𝑡 ≥ 0.

Based on the observer design [23] and the finite-time differ-
entiator techniques introduced in [28], the dynamics of the error
can be represented as:

¤𝑒1 = −𝐵
𝐽
𝑒1 −𝑚0 𝑘

1
3 |𝑒1 |

2
3 sgn(𝑒1) + 𝑒2, (7)

¤𝑒2 = −𝑚1 𝑘
1
2
��𝑒2 − ¤𝑒1

�� 1
2 sgn(𝑒2 − ¤𝑒1) + 𝑒3, (8)

¤𝑒3 ∈ −𝑚2 𝑘 sgn
(
𝑒3 −

(
𝑒2 − ¤𝑒1

) )
+ 𝑑, |𝑑 | ≤ 𝑁. (9)

To simplify notation, define:

𝛿2 = 𝑒2 − ¤𝑒1, 𝛿3 = 𝑒3 − 𝛿2 .

The proof of stability is established by creating the subsequent
candidate Lyapunov function:

𝑉1 =
1
2
𝑒2

1, 𝑉2 =
1
2
𝛿2

2, 𝑉3 =
1
2
𝛿2

3 ,

and the overall composite Lyapunov function as:

𝑉 =𝑉1 +𝑉2 +𝑉3 .

Step 1: ¤𝑉1

From the dynamics:

¤𝑒1 = −𝐵
𝐽
𝑒1 −𝑚0𝑘

1/3 |𝑒1 |2/3sgn(𝑒1) + 𝑒2 . (10)

Then

¤𝑉1 = 𝑒1 ¤𝑒1 (11)

= −𝐵
𝐽
𝑒2

1 −𝑚0𝑘
1/3 |𝑒1 |5/3 + 𝑒1𝑒2 . (12)

Apply Young’s inequality:

|𝑒1𝑒2 | ≤
𝑚0𝑘

1/3

2
|𝑒1 |5/3 +

1
2𝑚0𝑘1/3 |𝑒2 |5, (13)

so:

¤𝑉1 ≤ −𝑐1 |𝑒1 |5/3 +𝐶1 |𝑒2 |5. (14)

Step 2: ¤𝑉2

¤𝑒2 = −𝑚1𝑘
1/2 |𝛿2 |2/3sgn(𝛿2) + 𝑒3 , (15)

¤𝛿2 = ¤𝑒2 − ¥𝑒1 . (16)

Then

¤𝑉2 = 𝛿2 ¤𝛿2 ≤ −𝑐2 |𝛿2 |3/2 +𝐶2 |𝑒3 |𝑟 . (17)

Step 3: ¤𝑉3

From the dynamics:

¤𝑒3 = −𝑚2𝑘 sgn(𝛿3) + 𝑑 (𝑡), (18)
¤𝑉3 = 𝛿3 ¤𝑒3 ≤ −(𝑚2𝑘 −𝑁) |𝛿3 |, if 𝑚2𝑘 > 𝑁. (19)

The primary objective of this analysis is to demonstrate the
existence of positive constants 𝑐 > 0 and 𝛼 ∈ (0,1) satisfying
the following condition:

¤𝑉 ≤ −𝑐𝑉 𝛼 .

According to finite-time stability theory [26,29], this implies
that 𝑉 (𝑡) will reach zero in finite time:

𝑇 ≤ 𝑉 (0)1−𝛼

𝑐(1−𝛼) , (20)
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which leads to the conclusion that the errors 𝑒1, 𝑒2, and 𝑒3 will
converge to zero within a finite time period.

Lemma 1. Consider the error dynamic (7). If the gain 𝑚0
and constant 𝑘 are chosen sufficiently large such that the term
−𝑚0 𝑘

1
3 |𝑒1 |

5
3 dominates the cross-term 𝑒1 𝑒2, then the time

derivative of 𝑉1 satisfies:

¤𝑉1 ≤ −𝑐1 |𝑒1 |
5
3 +𝐶1 |𝑒2 |𝑞 ,

for some constants 𝑐1 > 0, 𝐶1 > 0, and exponent 𝑞 > 0.

Differentiating 𝑉1 along (7) yields:

¤𝑉1 = 𝑒1 ¤𝑒1 = −𝐵
𝐽
𝑒2

1 −𝑚0 𝑘
1
3 |𝑒1 |

5
3 + 𝑒1 𝑒2 .

Applying Young’s inequality to the cross-term 𝑒1 𝑒2, one obtains
an estimate of the form:

|𝑒1𝑒2 | ≤
𝑚0𝑘

1/3

2
|𝑒1 |5/3 +

1
2𝑚0𝑘1/3 |𝑒2 |5, (21)

which leads to the stated bound.

Lemma 2. For the error dynamic (8) with 𝛿2 = 𝑒2− ¤𝑒1, if the gain
𝑚1 and constant 𝑘 are appropriately selected, then the derivative
of 𝑉2 satisfies:

¤𝑉2 ≤ −𝑐2 |𝛿2 |3/2 +𝐶2 |𝑒3 |𝑟 ,

with constants 𝑐2 > 0, 𝐶2 > 0, and 𝑟 > 0.

Differentiate 𝛿2 to obtain

¤𝛿2 = ¤𝑒2 − ¥𝑒1.

The term −𝑚1 𝑘
1
2 |𝛿2 |

1
2 sgn(𝛿2) provides sufficient damping. By

bounding the coupling terms (including ¥𝑒1 and 𝑒3) via Young’s
inequality, the stated inequality follows [27].

Lemma 3. For the error dynamic (9) with 𝛿3 = 𝑒3 − 𝛿2, if the
gain 𝑚2 and constant 𝑘 satisfy

𝑚2 𝑘 > 𝑁,

then the derivative of 𝑉3 satisfies

¤𝑉3 ≤ −(𝑚2 𝑘 −𝑁) |𝛿3 |.

From (9),we have:

¤𝑒3 ∈ −𝑚2 𝑘 sgn(𝛿3) + 𝑑, |𝑑 | ≤ 𝑁. (22)

Multiplying by 𝛿3 gives:

𝛿3 ¤𝑒3 ≤ −𝑚2𝑘 |𝛿3 | +𝑁 |𝛿3 | = −(𝑚2𝑘 −𝑁) |𝛿3 | (23)

which implies the stated bound.

Theorem 1. Consider the observer error dynamics given in (7)–
(9) and assume that Assumptions 1 and 2 hold. If the observer
gains 𝑚0, 𝑚1, 𝑚2 and the constant 𝑘 are chosen such that:

• 𝑚0 𝑘
1
3 is sufficiently large to dominate the cross-term in ¤𝑉1,

• 𝑚1 and 𝑘 are chosen to ensure ¤𝑉2 ≤ −𝑐2 |𝛿2 |
3
2 +𝐶2 |𝑒3 |𝑟 ,

• 𝑚2 𝑘 > 𝑁

then there exist constants 𝑐 > 0 and 𝛼 ∈ (0,1) such that the
composite Lyapunov function satisfies

¤𝑉 ≤ −𝑐𝑉 𝛼 . (24)

As a result, the observer errors 𝑒1, 𝑒2, and 𝑒3 diminish to zero
within a finite period of time [26, 29].

3.3. Composite control strategy of STSM and FTSMO

In order to enhance the system capacity to withstand anti-
disturbances, this paper proposes a composite control strategy
that integrates super-twisting sliding mode control (STSM) and
finite time sliding mode observer (FTSMO). Within this con-
trol framework, accurate estimation of the lumped disturbance
is crucial for the effective compensation of the disturbance. The
implementation of the feedforward compensation method can
additionally lessen the impact of disturbances and enhance both
the dynamic response and steady-state performance of the sys-
tem. The architectural structure of the suggested FTSMO-based
STSM composite control strategy is depicted in Fig. 2. To enable
the analysis that follows, the dynamics of the error are defined
as such:

𝐸1 = 𝜔̂−𝜔,
𝐸2 = 𝑑 (𝑡) − 𝑙𝑜,

𝐸3 = 𝑙1 − ¤̂
𝑑 (𝑡),

where 𝐸1, 𝐸2, and 𝐸3 represent the state estimation errors for
angular velocity, disturbance observation, and auxiliary state
variable, respectively. The proposed STSM+FTSMO compos-
ite controller is an outer-loop controller and the primary control
loop. It handles speed error (the difference between the reference
speed 𝜔∗ and the actual measured speed 𝜔) and generates the
q-axis current reference value (𝑖∗𝑞). FTSMO plays a crucial role
here, with its input being the actual q-axis current iq and the ac-
tual measured speed𝜔, and its output being the estimated distur-
bance. It can perform real-time, finite-time precise estimation of
superimposed disturbances, including external load torque and
internal parameter changes. The estimated disturbances are then
fed into the STSM controller for active compensation, thereby
enhancing robustness and dynamic response. The STSM con-
troller and FTSMO observer work together to achieve excellent
control performance and effective disturbance suppression.The
proposed STSM+FTSMO composite controller is an outer-loop
controller and the primary control loop. It handles speed error
(the difference between the reference speed 𝜔∗ and the actual
measured speed 𝜔) and generates the q-axis current reference
value 𝑖∗𝑞 . The FTSMO plays a crucial role here, with its inputs be-
ing the actual q-axis current iq and the actual measured speed𝜔,
and its output being the estimated disturbance. It can perform
real-time, finite-time precise estimation of superimposed distur-
bances, including external load torque and internal parameter
changes. The estimated disturbances are then fed into the STSM
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controller for active compensation, thereby enhancing robust-
ness and dynamic response. The STSM controller and FTSMO
observer work together to achieve excellent control performance
and effective disturbance suppression. The structure outside the
composite controller aligns with the traditional PI internal cur-
rent loop and external speed loop control strategy, the rated
current of the motor is 6 A, and the instantaneous current limit
value 𝑖∗𝑞 is 3.5 times the rated value. as detailed in Fig. 2.

Fig. 2. Composite control strategy of STSM and FTSMO

4. SIMULATION VERIFICATION

To verify that the algorithm proposed in this paper still exhibits
disturbance suppression performance after changing system pa-
rameters, three algorithms STSM+FTSMO, STSM+ESO, and
PI were used as the outer loop to construct a PMSM control
system in MATLAB simulation software. The three algorithms
were tested under three different rotational inertia conditions:
J = J0 = 0.2×10−2kg ·m2, J = 2J0, and J = 3J0, with all other
module parameters kept consistent. Start-up and loading exper-
iments were conducted under these conditions. The resulting
speed curves are shown in Fig. 3. The solid line represents the
curve for a rotational inertia of J = J0, the dashed line represents
the curve for a rotational inertia of J = 2J0, and the dashed-solid
line represents the curve for a rotational inertia of J = 3J0. From
the solid-line velocity curves (J = J0) of the three algorithms,
it can be seen that the STSM+FTSMO and STSM+ESO algo-
rithms outperform the traditional PI algorithm in terms of the
time to reach steady state after startup and reducing overshoot.
Additionally, the STSM+FTSMO algorithm reaches steady state

Fig. 3. Simulation of speed performance under changing rotational
inertia

faster than the STSM+ESMO algorithm after startup and main-
tains a smoother velocity once steady state is achieved. When
the same load is applied after 0.15 seconds of simulation time,
STSM+FTSMO performs better than STSM+ESO in terms of
speed drop and recovery time, and significantly outperforms
traditional PI, consistent with the results obtained from ex-
periments on a motor test bench. Under the same simulation
conditions, the rotational inertia was increased by 2J0 and 3J0,
respectively. As shown in the simulation diagram, increasing the
rotational inertia by three times caused the PI to exhibit greater
overshoot and a longer time to reach steady state. After loading,
due to changes in rotational inertia, the speed curve changed
significantly. However, the STSM+FTSMO and STSM+ESO
algorithms, which employ feedforward observers to compen-
sate for changes in system parameters, also suppress overshoot.
Despite the rotational inertia increasing by a factor of two dur-
ing startup and loading, the overall speed curve changes are
not prominent. Through this simulation, it can be seen that the
STSM+FTSMO algorithm also performs very well under con-
ditions of a threefold change in rotational inertia, indicating
that the STSM+FTSMO composite controller has a suppressing
effect on disturbances caused by changes in rotational inertia.

5. EXPERIMENTAL VERIFICATION

In order to confirm the theoretical framework and assess the
practical effectiveness of the proposed control approach, com-
prehensive real-time experimental studies were conducted. The
experimental configuration, schematically illustrated in Fig. 4,
incorporates a dual-motor test bench equipped with two 1.8 kW
permanent magnet synchronous motors (PMSMs). The system
is governed by a high-performance control platform based on
the TMS320F28379D digital signal processor (DSP), which fa-
cilitates precise real-time implementation of advanced control
algorithms. In this architecture, the primary motor operates as
the controlled plant, while the secondary motor serves as the
load emulator to replicate dynamic operational conditions. In
this configuration, the primary motor implements the proposed

Fig. 4. Experimental bench
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control algorithm, while the secondary motor serves as a dy-
namically controlled load unit, enabling precise emulation of
various load torque conditions. This experimental arrangement
facilitates rigorous evaluation of the control strategy dynamic
characteristics and disturbance rejection capabilities under real-
istic operating conditions. The comprehensive technical details
of the experimental PMSM drives can be found in Table 1.

Table 1
Experimental motor parameters

Parameters Symbol Value

Rated power 𝑝 1.8 kW
Stator resistance 𝑅𝑠 0.81 Ω

Mutual inductance 𝐿𝑠 2.59 mH
Inertia 𝐽 0.76×10−3 kg·m2

Flux linkage Ψ 𝑓 0.117 Wb

To comprehensively assess the efficacy of the control
strategies, three algorithms were experimentally validated un-
der various operating conditions: conventional proportional-
integral (PI) control, super-twisting mode (STSM) control com-
bined with an extended state observer (ESO) (denoted as
STSM+ESO), and super-twisting sliding mode (STSM) control
combined with a finite time sliding mode observer (FTSMO)
(denoted as STSM+FTSMO). The key variables associated with
each control strategy were compared and analyzed. The exper-
imental results indicate the variations in performance among
the control methods under various operating conditions, and
their steady-state accuracy along with dynamic response were
thoroughly assessed. The parameters employed in the three al-
gorithms are listed in Table 2. To guarantee an equitable compar-
ison, the STSM controller utilized in the composite controllers
applied the same parameters, where 𝜁1 and 𝜁2 are the gains of
the ESO.

Table 2
Motor algorithm control parameters

Parameters of controllers Values and units

Sampling frequency 10 kHz
PI gains KP = 0.09, KI = 0.3

The gains of STSM+ESO 𝜆1 = 300, 𝜆2 = 1200,
𝜁1 = 1600, 𝜁2 = 80

The gains of STSM+FTSMO
𝜆1 = 300, 𝜆2 = 1200,
𝑚0 = 600, 𝑚1 = 300,
𝑚2 = 12, 𝐾 = 120

5.1. Start-up transient and steady-state performance
analysis under no-load conditions

The transient response characteristics of the conventional PI
controller, the second-order tracking-sliding mode (STSM) con-
troller integrated with an extended state observer (ESO), and
the STSM controller augmented with a fast terminal sliding

mode observer (FTSMO) are comparatively analyzed in Fig. 5
and Fig. 6. These evaluations were conducted under unloaded
operational conditions with reference speeds set to 800 rpm
and 1500 rpm, respectively, to examine the controllers initial
dynamic performance during speed step transitions. From the
experimental results, it can be observed that the traditional PI

Fig. 5. Comparison of variables at startup of the three algorithms when
the set value is 800 rpm
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controller has a fast start-up response without output constraints,
but there is a significant overshoot phenomenon and it takes
a long time to reach the steady state control. In contrast, the
STSM+ESO and STSM+FTSMO exhibit considerable differ-
ences in both steady-state response and dynamic performance
due to the same controller architecture, the same parameter set-
tings, and only the difference in observer design.

Fig. 6. Comparison of variables at startup of the three algorithms when
the set value is 1500rpm

As shown in Fig. 5, which compares the three algorithms,
the STSM+FTSMO and STSM+ESO algorithms exhibit virtu-
ally no overshoot at an 800 rpm setpoint. This is attributed to
the effective suppression of overshoot achieved by combining
the STSM controller with the feedforward observer. The time
taken for the STSM+FTSMO, STSM+ESO, and PI algorithms
to reach steady-state speed is 79 ms, 229 ms, and 300 ms, respec-
tively. This demonstrates that the combination of the FTSMO
observer and STSM controller achieves a faster response speed
than STSM+ESO, with a steady-state time that is 3.5 times faster
than traditional PI control. In Fig. 6, when the speed setpoint
is 1500 rpm, the performance of the three algorithms is similar
to that in Fig. 5, with steady-state times of 101 ms, 320 ms,
and 495 ms. Moreover, under this condition, there is no notable
difference between the q-axis current and the a-phase current,
indicating that this control strategy can maintain more stable
current characteristics during the start-up phase.

This experimental result verifies the advantages of the
STSM+FTSMO control algorithm in motor start-up response
time optimisation and overshoot suppression. By comparing the
speed waveforms of the three control strategies, it is evident that
the STSM+FTSMO achieves steady state more quickly and with
almost no overshoot in contrast to the PI controller. Meanwhile,
compared to STSM+ESO, it has a faster response speed and a
shorter rise time, which allows the system to reach the set speed
value faster, thereby demonstrating dominance in both transient
and steady-state performance.

5.2. Anti-disturbance performance analysis of the drive
system

Figures 7 and 8 illustrate the changes in speed response, q-
axis current, and a-phase current for the three different control
strategies: PI control, STSM+ESO, and STSM+FTSMO, when
a load of 1.8 N.m is applied at reference speeds of 800 rpm
and 1500 rpm, respectively. The experimental results indicate
that all three control strategies exhibit a certain degree of speed
fluctuation following the application of the load at 2.9 s.

However, compared to the PI controller, STSM+ESO and
STSM+FTSMO demonstrate superior resistance to load distur-
bances. In Figs. 7, when the set speed is 800 rpm, the instan-
taneous speed drops of the STSM+FTSMO, STSM+ESO, and
PI algorithms during load application are 43 rpm, 75 rpm, and
103 rpm, respectively, while the steady-state recovery times are
59 ms, 121 ms, and 252 ms, respectively. In Figs. 8, when the set
speed is 1500 rpm, due to the high speed and large system inertia,
the speed drops are not significantly different, at 45 rpm, 65 rpm,
and 65 rpm, respectively, with steady-state recovery times of
72 ms, 151 ms, and 412 ms. From the experimental results, it
can be seen that, thanks to the combination of an excellent con-
troller and a feedforward observer, the STSM+FTSMO system
demonstrates superior performance in terms of dynamic recov-
ery capability after system disturbances. Notably, under identical
controller structures and parameters, the STSM+FTSMO sys-
tem is more effective than the STSM+ESO system in mitigating
the impact of load disturbances, and there are no significant
differences in the q-axis current and a-phase current. Overall,
STSM+FTSMO outperforms the other two control strategies
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Fig. 7. Performance of three algorithms under a load of 1.8 N at a speed
of 800 rpm
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Fig. 8. Performance of three algorithms under a load of 1.8 N at a speed
of 1500 rpm

in terms of disturbance suppression and steady-state recovery
time, thereby confirming its control advantages in complex load
environments.
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5.3. Reversing performance over the entire speed range
To verify the performance of STSM+FTSMO across the entire
speed range, speed reversal experiments were conducted at low
speeds of 300 rpm, 600 rpm, and 1000 rpm, and at medium-high
speeds of 1500 rpm, 2000 rpm, 2500 rpm, and 3000 rpm. The
experiments captured three forward and reverse cycles totaling
9 seconds. As shown in Fig. 9, the q-axis current corresponding
to different speeds is displayed below the speed reversal exper-
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Fig. 9. Reversing performance over the entire speed range

iment graph, with the color of a specific speed curve matching
that of the corresponding current curve. From the low-speed
reversal speed graph, it can be seen that under no-load condi-
tions, the transition from −1000 rpm to 1000 rpm and reaching
steady-state takes only 116 ms, with virtually no overshoot. For
the 300 rpm and 600 rpm reverse experiments, the figure shows
that the time to reach steady state is even shorter. The corre-
sponding low-speed reverse current curve reaches its maximum
value at the moment of startup and quickly stabilizes. Similarly,
in the medium-high speed reverse speed diagram, the speed
reaches steady state from −3000 rpm to 3000 rpm in approxi-
mately 210 ms. Other medium-high speed reversals reach steady
state in less than 210 ms. The corresponding instantaneous cur-
rent values at startup are close to the set limit values, enabling
the motor to quickly enter steady state and rapidly decrease to
the system stable operating platform value, with minimal over-
shoot. Throughout the experiment, it can be observed that the
STSM+FTSMO algorithm demonstrates excellent performance
across the entire speed range, resulting in motors that not only
exhibit minimal overshoot but also achieve steady-state quickly
and operate smoothly.

6. CONCLUSIONS
This paper introduces a high-performance composite controller
that synergistically combines a super-twisting sliding mode
controller (STSM) with a finite-time sliding mode observer
(FTSMO) to advance the control of PMSM drives. The proposed
strategy leverages the FTSMO for rapid, finite-time disturbance
estimation, enabling precise feedforward compensation that sig-
nificantly enhances the system dynamic response and suppresses
overshoot, particularly under load variations and parameter un-
certainties. Through extensive experimental and simulation-
based validation, this work confirms that the STSM+FTSMO
controller demonstrably outperforms conventional methods, ex-
hibiting superior performance in start-up speed, disturbance re-
jection, and steady-state accuracy.
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