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Abstract. Classification is one of the main areas of pattern recognition research, and within it, support vector machine (SVM) is one of the
most popular methods outside of the field of deep learning – and a de facto reference for many machine learning approaches. Its performance is
determined by parameter selection, which is usually achieved by a time-consuming grid search cross-validation procedure (GSCV). That method,
however, relies on the availability and quality of labelled examples and thus, when those are limited, can be hindered. To address this problem,
several unsupervised heuristics exist that utilise the characteristics of the dataset to select parameters, rather than relying on class label information.
While being an order of magnitude faster, they are scarcely used under the assumption that their results are significantly worse than those of grid
search. To challenge that assumption, we have surveyed several heuristics for SVM parameter selection and tested them against GSCV on over
30 standard classification datasets. The results demonstrate their high accuracy, with performance in terms of statistical significance comparable
to GSCV, opening up an avenue for reliable label-free model defaults in resource-constrained settings, e.g., edge devices or rapid prototyping.
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1. INTRODUCTION
Classification is one of the most frequently encountered prob-
lems in the field of pattern recognition. It is utilised, among many
other fields, in computer vision [1], document analysis [2], data
science [3] and biometrics [4]. The classification itself is a broad
area that encompasses both traditional machine learning meth-
ods and, more recently, increasingly popular deep learning mod-
els. However, even with the formidable results achieved by deep
learning approaches, e.g., [5,6], the classical methods still have
a role to play. The high computational cost, large data volume re-
quired and the open-ended difficulty of finding a combination of
a suitable architecture, hyperparameters and learning algorithm
for the deep learning model are prohibitive for many current
applications of pattern recognition. This situation occurs, e.g.,
for Internet of Things devices [7], edge computing [8], medical
devices [9] or with limited training labels [10]. Additionally,
classical methods – notably support vector machines – are se-
lected for their robustness [11] or theoretical consideration [12].

Support vector machine (SVM) is a supervised classifica-
tion scheme based on ideas developed by V.N. Vapnik and
A.Ya. Chervonenkis in 1960s [13] and later expanded on in
works such as [14–16]. It is based on computing a hyperplane
that optimally separates training examples and then making
classification decisions based on the position of a point in re-
lation to that hyperplane. The SVMs have been consistently
used in various roles – as an independent classification scheme,
e.g., [17–19], part of more complex engines, e.g., [20, 21] or
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a detection engine, e.g., [22, 23]. It has also been employed in
unsupervised settings, as seen in works such as [24] and [25].
This flexibility allows SVM to be one of the most frequently
used machine learning approaches in medicine [26], remote
sensing [10], threat detection [27], criminology [28], and is of-
ten utilized in photo, text, and time sequence analysis [29]. In
numerous studies, SVM is consistently ranked as one of the
top-performing methods [11].

The popularity and versatility of SVM are to a large degree
due to its controllability by the key hyperparameters. The first is
a label error regularization coefficient 𝐶, which balances train-
ing error and margin width. It allows us to classify non-linearly
separable datasets or preserve margin width at the cost of mis-
classification of some training examples. The second is related
to extension with the ‘kernel trick’ to kernel-SVM, which is
much more effective in working with complex data distribu-
tions; it introduces a kernel function value computation as an
extension of a dot-product. Various kernel functions have been
investigated, however, overwhelming majority of applications
use Gaussian radial basis function as it provides best classifica-
tion performances on a large range of datasets [30] and assumes
only smoothness of the data, which makes it a natural choice
when knowledge about data is limited [31]. Values of these
hyperparameters are typically found through supervised search
procedures, cross-validation (CV) on the training set and grid-
search through a range of predefined parameters [32]. However,
major disadvantage of the CV is the O (𝑛2) complexity in the
number of hyperparameter values to be evaluated, each requir-
ing training of a separate model. This is a burden for performing
pattern recognition in distributed edge computing devices in
Industry 4.0 [8] or optimization of battery usage for mobile de-
vices with limited connectivity, e.g., in monitoring of ageing
people [9].
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An alternative for hyperparameter selection is to derive their
values from a statistical analysis of the data. Those approaches
range from simple ‘rule of thumb’ statistics, e.g. [33], to more
complex approaches involving, e.g., cluster assumptions and
graph distances between datapoints [34]. Through these ap-
proaches, the values of 𝐶 and 𝛾 can be estimated based on
the structure of the entire available dataset, in an unsupervised
manner – without the requirement of labels. This is especially
useful for applications that acquire a large amount of data with
limited supervision, e.g., IoT devices [7]. Additionally, this esti-
mation is a one-pass computation, which is much less intensive
than cross-validation, allowing for greater applicability, e.g., in
IoT/edge/medical supervision devices. Unsupervised estimation
avoids the issues of optimising parameters on the same set as
the one used for training, which can lead to overfitting [14]. It is
known that in some cases, e.g., where classes indeed conform to
the cluster assumption and Gaussian distribution [35], optimal or
nearly optimal parameter values can be analytically derived from
the data without knowledge of the class labels. This approach is
also helpful when training data is very limited and may poorly
reflect the true class distributions – a situation typically encoun-
tered in semi-supervised hyperspectral classification, e.g., [10].
The robustness of this approach has led unsupervised heuristics
to be a default parameter setting in SVM programming libraries,
e.g., scikit-learn [36].

In this survey, we benchmark unsupervised heuristics-based
hyperparameter estimation for an SVM classifier (UH-SVM)
against an SVM tuned via grid-search cross-validation (GSCV-
SVM).
1. We evaluate a large set of unsupervised heuristics on a com-

prehensive collection of balanced and imbalanced datasets.
While numerous works investigate individual heuristics, to
the best of the authors’ knowledge, no work collects them
together and compares them with one another.

2. We show that, without specific prior knowledge of a dataset,
there is a significantly higher chance of a number of
UH-SVM approaches having similar or better accuracy
than GSCV-SVM–in terms of statistical significance of the
results–than having a worse accuracy. Considering the sub-
stantially lower computational cost of UH-SVM with respect
to GSCV-SVM, this, in our opinion, validates the conclusion
of UH-SVM parameter estimation being in many application
cases on par with the grid search.

3. We observe that𝐶-selection heuristics tend to underestimate
the value of that parameter, which leads to lower accuracy in
classification. To illustrate this, we evaluate an extension of
Chapelle’s very effective heuristic that increases the 𝐶 and
obtains results practically equivalent (in terms of statistical
significance, see Section 3.3) to GSCV.

2. METHODS
In the following section, we will recall both the ideas behind
the support vector machines classifier and the heuristics that
we include in our experiments. In some cases our unified pre-
sentation of them allows us to derive natural generalizations,
e.g., a scaling of [34] in high dimensional datasets or correction
for [37].

2.1. Kernel SVM

A kernel SVM [14] is a classifier based on the principle of map-
ping the examples from the input space into a high-dimensional
feature space and then constructing a hyperplane in this feature
space, with the maximum margin of separation between classes.
Let X ⊂ R𝑛 be a set of data and let x𝑖 ∈ X , 𝑖 = 1, . . . ,𝑚 be the
set of labelled examples. Let also Y = {−1,1} be a set of labels.
We define a training set as a set of examples with labels assigned
to them,

L = {(x𝑖 , 𝑦𝑖), 𝑖 = 1, . . . ,𝑚} , x𝑖 ∈ X , 𝑦𝑖 ∈ Y . (1)

The SVM assigns an example x ∈ X ⊂ R𝑛 into one of two
classes using a decision function

𝑓 (x) = sgn

(
𝑚∑︁
𝑖=1

𝑦𝑖𝛼𝑖𝐾 (x,x𝑖) + 𝑏
)
. (2)

Here, 𝛼𝑖 ≥ 0 and 𝑏 are coefficients computed through La-
grangian optimization – maximization of margin, or distance
from hyperplane to class datapoints on the training set. Training
examples x𝑖 where the corresponding values of 𝛼𝑖 ≠ 0 are called
support vectors (SV). Since SVM is inherently a binary classi-
fier, for multi-class problems several classifiers are combined,
e.g., using one-against-one method [38].

2.1.1. Kernel function

The function 𝐾 : X ×X → R is called the kernel function
and it is used to compute the similarity between the classified
example x and each training instance x𝑖 . It is a generalization
of a dot product operation used in the original linear SVM
derivation, i.e.,𝐾 (x,x𝑖) = ⟨x,x𝑖⟩, taking advantage of the ‘kernel
trick’ [14] – a non-linear mapping 𝜙 : X → H to a feature
space H where the dot product is computed by evaluating
the value 𝐾 (x,x𝑖) = ⟨𝜙(x), 𝜙(x𝑖)⟩. The kernel trick allows the
SVM to be effectively applied in the case where classes are not
linearly separable in the data space. A number of positive definite
symmetric functions can be used as kernels, such as polynomial
𝐾 (x,x𝑖) = (⟨x,x𝑖⟩ + 𝑐)𝑘 , 𝑐 ≥ 0, 𝑘 = 1,2, . . . ; Laplace 𝐾 (x,x𝑖) =
exp

(
−| |x−x𝑖 | |

𝜎

)
or Gaussian radial basis function (RBF)

𝐾 (x,x𝑖) = exp
(
− ∥x−x𝑖 ∥2

2𝜎2

)
, (3)

where 𝜎2 represents the variance of the data and ∥ · ∥ is an
Euclidean distance in X ⊂ R𝑛. This kernel has been found to
be versatile and effective for many different kinds of data [39]
and it will be the focus of our research. By substituting 𝛾 = 1

2𝜎2 ,
it can be written

𝐾 (x,x𝑖) = exp
(
−𝛾∥x−x𝑖 ∥2

)
, (4)

where 𝛾 can be viewed as scaling factor, which is one of the
parameters of the SVM classifier.

The parameter 𝛾 controls the impact of individual SV as the
kernel distance between two examples decreases with higher
values of 𝛾. Therefore, small values of 𝛾 will result in many SV
influencing the point under test x, producing smooth separating
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hyperplanes and simpler models. Very small values will lead
to all SV having a comparable influence, making the classifier
behave like a linear SVM. Large values of 𝛾 result in more
complex separating hyperplanes, better fitting the training data.
However, a too high value of 𝛾 may lead to overfitting (see
Fig. 1).

(a) Good parameter values (b) Lower 𝐶, larger margin

(c) Lower 𝐶 and 𝛾, larger margin,
decision boundary ‘pushed away’

from the more compact class

(d) Very low 𝛾, decision boundary
approaching linear SVM

(e) High 𝛾, decision boundary
approaching overfitting

(f) Very high 𝛾, degenerate
decision boundary

Fig. 1. Example SVM behaviour on first two features from the ‘Breast
Cancer Wisconsin Dataset’ (wdbc). Red crosses and blue circles mark
the position of data points from two classes. Solid line presents the
decision boundary, dashed lines denote margin ranges. Presented cases
show the example influence of values of 𝐶 and 𝛾 parameters, both for

good and bad values

2.1.2. Soft margin

In practice, even using a kernel trick, a hyperplane that sepa-
rates classes may not exist. Therefore, SVM is usually defined
as a soft margin classifier by introducing slack variables to re-
lax constraints of Lagrangian optimisation, which allows some
examples to be misclassified. It introduces the soft margin pa-
rameter𝐶 > 0 where 0 < 𝛼𝑖 <𝐶 a constraint on𝛼𝑖 controlling the
penalty on misclassified examples and determining the trade-off
between margin maximization and training error minimization.
Large values of the parameter 𝐶 will result in small number of

support vectors while lowering this parameter results in larger
number of support vectors and wider margins (see Fig. 1).

2.2. Setting the SVM parameters

One of the early discussions about SVM parameters was pro-
vided in [14]. In chapter 7.8, the authors mentioned the grid
search CV (GSCV) as a common method of SVM parameter se-
lection. As an alternative, in order to avoid the CV, the authors
suggested a number of general approaches including scaling
kernel parameters such as the denominator of the RBF kernel
so that the kernel values are in the same range. They also sug-
gested that the value of the parameters 𝐶 can be estimated as
𝐶 ∝ 1/𝑅2 where 𝑅 is some measure of data variability such
as standard deviation of the examples from their mean, or the
maximum/average distance between examples. Model selection
by searching the kernel parameter space was later discussed
in [40], where authors proposed two simple heuristics based on
leave-one-out CV.

Unsupervised heuristics are relatively less discussed than
their supervised counterparts. A simple heuristic that estimates
𝛾 as an inverse of some aggregate (e.g., a median) of distances
between data points has been proposed in a blog post [33]. In
fact, when searching the Internet for a method to choose ker-
nel parameters in an unsupervised way, this post – which refers
to the idea from a thesis of B. Schölkopf – is a common find.
This heuristics is similar to the ‘sigest’1 method [42]. However,
even in surveys comparing heuristics for SVM parameter selec-
tion [43] when sigest is considered it is applied to the training
set and complimented with cross-validation for the value of the
𝐶 parameter.

Sometimes, unsupervised heuristics supplement more com-
plex methods, e.g. in [34] authors propose a method for parame-
ter selection inspired by the cluster assumption, based on graph
distances between examples in the feature space; a heuristic for
unsupervised initialisation of SVM parameters is provided as a
starting point of a grid search. Another example are initialisa-
tion methods used in well-known ML libraries, e.g. scikit-learn2

employs its own implementation of heuristic for the 𝛾 parame-
ter [36]. Shark3 uses the heuristic from [44] which can also be
used in an unsupervised way [37].

2.2.1. Grid search cross validation

As a baseline method for model selection in this article, grid
search cross validation (GSCV) [45] is used. This method is
based on dividing the dataset into 𝑘 parts {𝑝1, . . . , 𝑝𝑘} and then
repeat the experiment using parts {𝑝1, . . . , 𝑝𝑘}\{𝑝𝑖} for training
and {𝑝𝑖} for testing and averaging the results. This method
allows us to mitigate the variance resulting for random train/test
set selection.

In case of this research, the additional layer is used for model
selection – called an internal layer. It is designed to detect the
best set of parameters (𝐶,𝛾) from given grid G ⊂ R2. Similarly

1Implemented e.g. in R, see [41]
2https://scikit-learn.org
3http://www.shark-ml.org/
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to external layer, each training set T𝑖 = {𝑝1, . . . , 𝑝𝑘} \ {𝑝𝑖} is di-
vided into 𝑡 subparts {𝑝1

𝑖
, . . . , 𝑝𝑡

𝑖
}, with {𝑝1

𝑖
, . . . , 𝑝𝑡

𝑖
} \ {𝑝 𝑗

𝑖
} used

for training with given parameters from grid G and {𝑝 𝑗

𝑖
} used

for testing (hence grid search cross validation). The parameters
for {𝑝𝑖} are determined by the results of this second level of
cross validation.

2.3. Unsupervised heuristics for 𝛾
Unsupervised heuristics usually assume that 𝛾 should be relative
to ‘average’ distance (measured by ∥ · ∥2) between the examples
from X , so that the two extreme situations – no SV influence or
comparable influence of all SV – are avoided. For example, 𝛾 can
be assigned the inverse of the data variance, which corresponds,
e.g., with heuristics described in [36] or [33]). Intuitively then
kernel value between two points is a function of how large is
the distance between two given points compared to the average
distance among the data. Differences between heuristics can be
thus reduced to different interpretations of what that average
distance is.

2.3.1. 𝛾 heuristics for Gaussian-distributed data
Considering a pair of examples (x𝑖 ,x 𝑗 ) ∈ X ×X ⊂ R𝑛 ×R𝑛

from Gaussian-distributed data, it has been noted in [35], that the
squared Euclidean distance ∥x𝑖−x 𝑗 ∥2 is Chi-squared distributed
with a mean of 2𝑛𝜎2, assuming that every data feature has
variance 𝜎 and mean 0. This observation could be used as a
heuristic to estimate the value of 𝛾 as

𝛾 =
1

2𝑛𝜎2 . (5)

If we further assume that 𝜎2 = 1 , this simplifies to 𝛾 = 1
2𝑛 , as

noticed by authors of [46].
This approach relies on an underlying assumption that data

covariance matrix is in the form Cov(𝑿) = 𝑰𝜎2, which, in turn,
means that in a matrix of examples 𝑿 ∈ R𝑚×𝑛, every feature
has an equal variance. In practice, data standardisation is used,
which divides each feature by its standard deviation. However,
the standard deviations are estimated on the training set, and
on the test set will produce slightly varying values that are
only approximately equal 𝜎1 ≈ 𝜎2 ≈ · · · ≈ 𝜎𝑛. To take that into
account, we use another formula for estimation of the value
of 𝛾 as

𝛾 =
1

2Tr (Cov(𝑿)) , (6)

where Tr(·) denotes a trace of a matrix. This heuristic is denoted
in the experiments as covtrace.

2.3.2. Smola’s heuristics
A well-known heuristic for computing the initial value of a
parameter 𝛾 was provided by A.J. Smola in an article on his
website [33]. Given examples (𝒙𝑖 ,𝒙 𝑗 ) ∈ R𝑛×R𝑛, he considered
a kernel function in the form

𝐾 (𝒙𝑖 ,𝒙 𝑗 ) = 𝜅(𝜆∥𝒙𝑖 − 𝒙 𝑗 ∥), (7)

where a scaling factor 𝜆 of this kernel is to be estimated and
𝜅 : R → R+. The Smola’s kernel form is consistent with the

RBF kernel given by (4) – it as special case of (7), with 𝜅(𝑥) =
exp (−𝑥2), where 𝑥 ∈ R and 𝜆 = √

𝛾.
He proposes to select a subset of (e.g., 𝑚 = 1000) available

pairs (𝒙𝑖 ,𝒙 𝑗 ) and to compute their distances. Then, the value
of 𝜆 can be estimated as the inverse of 𝑞 quantile (percentile)
of distances where one of three candidates 𝑞 ∈ {0.1,0.5,0.9} is
selected through cross-validation. The reasoning behind those
values extends the concept of ‘average’ distance: the value of 𝑞 =
0.9 corresponds to the high value of a scaling factor which results
in decision boundary that is ‘close’ to SV, 𝑞 = 0.1 corresponds
to ‘far’ decision boundary, 𝑞 = 0.5 aims to balance its distance
as ‘average’ decision boundary. The author argues that one of
these values in likely to be correct, i.e., result in an accurate
classifier. Those three 𝑞 values are included in the experiments
as Smola_10, Smola_50 and Smola_90.

2.3.3. Chapelle & Zien 𝛾 heuristic
A heuristic for choosing SVM parameters can be found in [34].
Interestingly, to the best of our knowledge it is the only method
that estimates both 𝐶 and 𝛾 in an unsupervised setting (see
2.4.1). The heuristics take into account the density of exam-
ples in the data space. Authors introduce a generalization of a
‘connectivity’ kernel, parametrized by 𝜌 > 0, which in the case
of 𝜌→ 0 defaults to the Gaussian kernel. This kernel proposi-
tion is based on minimal 𝜌-path distance 𝐷𝜌

𝑖 𝑗
which, for 𝜌→ 0

becomes Euclidean distance, i.e., 𝐷𝜌→0
𝑖 𝑗

= ∥𝒙𝑖 − 𝒙 𝑗 ∥2.
Authors use the cluster assumption, by assuming that data

points should be considered far from each other when they
are positioned in different clusters. In [34] authors consider
three classifiers: Graph-based, TSVM and LDS. As this ap-
proach introduces additional parameters, which would make
cross-validated estimation difficult, authors propose to estimate
parameters through heuristics. The value of 𝜎 (equation (3)) is
computed as 1

𝑛𝑐
-th quantile of D = {𝐷𝜌

𝑖 𝑗
: 𝑿 × 𝑿 ∈ R𝑛 ×R𝑛}

where 𝑛𝑐 is the number of classes. For Gaussian RBF kernel
this results in

𝛾 =
1

2 quantile 1
𝑛𝑐

(D) . (8)

Note that we consider only the case 𝜌→ 0, as only under this
condition heuristics proposed in [34] are comparable with other
heuristics presented in this Section and compatible with our ex-
periment. However, the authors’ original formulation allows for
other values of 𝜌. This heuristic, along with the complimen-
tary for the 𝐶 parameter (see Section 2.4.1) is denoted in the
experiments as Chapelle.

2.3.4. Jaakkola’s and Soares’ heuristics
While the original Jaakkola’s heuristics, described in [44] and
[47], was supervised, in this article we will focus on its unsu-
pervised version proposed in [37].

The original heuristics based on median inter-class distance
and is computed as follows: for all training examples x ∈X ⊂R𝑛

we define 𝑑𝑙min (x) as a distance to its closest neighbour from a
different class. Then a set of all nearest neighbour distances is
computed as

D 𝑙 =
{
𝑑𝑙min (x) : x ∈ X

}
, (9)

and the value of 𝜎 = median(D 𝑙).
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This approach, however, has been interpreted differently in
[37], which resulted in an unsupervised heuristic based on what
was proposed in [44]. The approach to estimate 𝜎 is similar,
however, it is calculated without any knowledge about labels
of examples, which means that not inter-class but inter-vector
distances are used. Considering an unlabelled distance 𝑑min (x)
of an example x to its closest neighbour, the set of all neighbour
distances is computed as

D = {𝑑min (x) : x ∈ X } , (10)

and the value of 𝜎 = mean(D). This heuristic is denoted as
Soares.

The use of mean instead of median in an approach proposed
in [37] results in larger values of 𝛾 in the case of outliers in the
data space. Therefore, following the reasoning in the original
manuscript [44], we propose to compute𝜎 =median(D), which
in case of the Gaussian RBF kernel results in

𝛾 =
1

2 median(D) . (11)

This heuristic is denoted as Soares_med.

2.3.5. Gelbart’s heuristic

The heuristic used to estimate the initial value of 𝛾 in a well-
known Python library scikit-learn, was proposed by Michael
Gelbart in [36]4. The scaling factor of Gaussian RBF kernel is
computed as

𝛾 =
1

𝑛Var(X ) , , (12)

where X ⊂ R𝑛 and Var(X ) is a variance of all elements in
the data set X . It is easy to see that this heuristic is similar
to the one discussed in Section 2.3.1, based on [35]: provided
that every data feature has variance 𝜎 and mean 0 the value
of Gelbart’s heuristics is equal to the one described by equa-
tion (5). The advantage of this heuristics is its computational
performance, and it has the potential to perform well when the
variance of elements in the data array reflect the variance of the
actual data vectors. This heuristic is denoted in our results as
Gelbart.

2.4. Unsupervised heuristics for 𝐶

Unsupervised heuristics for the𝐶 parameter are much less com-
mon than for 𝛾; in [14], there is a suggestion that parameter
𝐶 ∝ 1/𝑅2, where 𝑅 is a measure for a range of the data in fea-
ture space and proposes examples of such 𝑅 as the standard
deviation of the distance between points and their mean or ra-
dius of the smallest sphere containing the data. However, to the
best of our knowledge, the only actual derivation of this idea
was presented in [34], which we discuss below.

4https://github.com/scikit-learn/scikit-learn/issues/12741

2.4.1. Chapelle & Zien 𝐶 heuristic
Given a 𝛾 value (originally computed as described in Sec-
tion 2.3.3), [34] calculate the empirical variance

𝑠2 =
1
𝑚

𝑚∑︁
𝑖=1
𝐾 (x𝑖 ,x𝑖) −

1
𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝐾 (x𝑖 ,x 𝑗 ), (13)

which, with 𝐾 (𝒙𝑖 ,𝒙𝑖) being the value of RBF kernel (4), under
the same 𝜌→ 0 assumption as Section 2.3.3, evaluates to

𝑠2 = 1− 𝑎, 𝑎 =
1
𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝐾 (x𝑖 ,x 𝑗 ). (14)

The 𝐶 parameter value is then estimated as

𝐶 =
1
𝑠2
. (15)

This heuristic is denoted in our experiments as: Chapelle when
used in combination with authors’ 𝛾 heuristic (see Section 2.3.3)
and +C when used with covtrace heuristic.

2.4.2. Mitigating 𝐶 underestimation: an improvement
to the Chapelle & Zien heuristic

Our observations suggest that values of parameter𝐶, when deal-
ing with high-dimensional data such as hyperspectral images,
should be higher than estimated with the heuristic proposed in
Section 2.4.1. To counter this we decided to additionally test a
modified Chapelle & Zien heuristics with modified formula (14).
Since in formula (14) the factor 𝑎 < 1, higher values of 𝐶 can
be achieved by substituting 𝑠2 = 1− 𝑎′ with 𝑎 ≤ 𝑎′ < 1.

The value of 𝑎 in equation (14) is an average of kernel values
for all data points, which, for the RBF kernel, is a function of the
average distances between the data points. By selecting a subset
of the data points based on values of their distances, we can
arbitrarily raise or lower the value of 𝑎. We start by considering
a set of distances between the data points

A =
{
∥x𝑖 −x 𝑗 ∥ : 𝑖, 𝑗 ≤ 𝑚; x𝑖 ,x 𝑗 ∈ X

}
. (16)

Then we define a subset of distances A ′ as 1
𝑛

quantile of A and
we select a relevant set of data points pairs

B =
{
(𝑖, 𝑗) : ∥x𝑖 −x 𝑗 ∥ ∈ A ′} . (17)

This leads to a modified version of the heuristic

𝑠2 = 1− 𝑎′, 𝑎′ =
1
𝑡

∑︁
(𝑖, 𝑗 ) ∈B

𝐾 (x𝑖 ,x 𝑗 ), (18)

with 𝑡 = |B |. The rationale of using 1
𝑛

quantile is that with in-
creased dimension 𝑛, the proposed condition will restrict the set
of pairs B to the distances between close points. This modi-
fied Chapelle’s heuristic is denoted as +MC, when used with
covtrace heuristic for 𝛾.

Compared with the original Chapelle & Zien heuristic, this
adjustment consistently selected larger 𝐶 values and, across
our evaluated datasets, yielded accuracy that was practically
equivalent (by definition of [48]) to GSCV (see Section 3.3).
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Table 1
Datasets used in the experiment. Balance is the ratio between the size of the smallest and largest class. OA(0R) denotes the accuracy of a zero-rule,

naive classifier that predicts the label of the most frequent class

Namea Examples Features Classes Balance OA(0R) Notes or full name

appendicitis 106 7 2 0.25 80.2
balance 625 4 3 0.17 46.1 Balance Scale DS
banana 5300 2 2 0.81 55.2 Balance Shape DS
bands 365 19 2 0.59 63.0 Cylinder Bands
cleveland 297 13 5 0.08 53.9 Heart Disease (Cleveland), multi-class
glass 214 9 6 0.12 35.5 Glass Identification
haberman 306 3 2 0.36 73.5 Haberman’s Survival
hayes-roth 160 4 3 0.48 40.6 Hayes-Roth
heart 270 13 2 0.80 55.6 Statlog (Heart)
hepatitis 80 19 2 0.19 83.8
ionosphere 351 33 2 0.56 64.1
iris 150 4 3 1.00 33.3 Iris plants
led7digit 500 7 10 0.65 11.4 LED Display Domain
mammographic 830 5 2 0.94 51.4 Mammographic Mass
marketing 6876 13 9 0.40 18.3
monk-2 432 6 2 0.89 52.8 MONK’s Problem 2
movement-libras 360 90 15 1.00 6.7 Libras Movement
newthyroid 215 5 3 0.20 69.8 Thyroid Disease (New Thyroid)
page-blocks 5472 10 5 0.01 89.8 Page Blocks Classification
phoneme 5404 5 2 0.42 70.7
pima 768 8 2 0.54 65.1 Pima Indians Diabetes
segment 2310 19 7 1.00 14.3
sonar 208 60 2 0.87 53.4 Sonar, Mines vs. Rocks
spectfheart 267 44 2 0.26 79.4 SPECTF Heart
tae 151 5 3 0.94 34.4 Teaching Assistant Evaluation
vehicle 846 18 4 0.91 25.8 Vehicle Silhouettes
vowel 990 13 11 1.00 9.1 Connectionist Bench
wdbc 569 30 2 0.59 62.7 Breast Cancer Wisconsin (Diagnostic)
wine 178 13 3 0.68 39.9
wisconsin 683 9 2 0.54 65.0 Breast Cancer Wisconsin (Original)
yeast 1484 8 10 0.01 31.2

a As the dataset is named in KEEL repository https://sci2s.ugr.es/keel/datasets.php

3. EXPERIMENTS
In this section we will present our method for experimental
verification of unsupervised heuristics: the datasets that we use
for tests, experimental procedure and finally our approach to
statistical testing of obtained results.

3.1. Datasets
Experiments were performed using 31 standard classifica-
tion datasets obtained from Keel-dataset repository5, described
in [49]. Instances with missing values and features with
zero-variance were removed, therefore the number of exam-
ples/features can differ from their version in the UCI [50] repos-
itory. The datasets were chosen to be diverse in regards to the

5https://sci2s.ugr.es/keel/category.php?cat=clas

number of features and classes and to include imbalanced cases.
In addition, following [51], the chosen set includes both com-
plex cases where advanced ML models achieve an advantage
over simple methods as well as datasets where most models
perform similarly. Reference classification results can be found
in [52] or through OpenML project [53]. The summary of the
datasets used in experiments can be found in Table 1, along with
the overall accuracy (OA) results of naive classifier (or zero-rule
classifier, 0R) that classifies every point as the member of most
frequent class.

Before the experiment, every dataset was preprocessed by
centering the data and scaling it to the unit variance. This oper-
ation was performed using mean and variance values estimated
from the training part of the dataset.
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3.2. Choosing SVM parameters for a given dataset

The experiments used either one or two stages of cross-
validation – ‘external’ and ‘internal’ or ‘external’ only – de-
pending on whether the grid search or heuristics were used.
Let the heuristics ℎ ∈ H from the set of tested heuristics H
be a function that generates SVM parameters {𝐶,𝛾} based on
a supplied training set T i.e. ℎ : T → R2. We denote by ℎ0
a heuristic which always returns a pair {𝐶,𝛾} = {1,1}, which
are commonly assumed defaults, and thus a reference values
which are not data-dependent. The ℎ0 heuristic is denoted in
our experiments as default.

For every training set T𝑖 corresponding with a given 𝑖−fold
of the external CV, and for every heuristics ℎ ∈ H parameters
of the SVM were selected in three ways:
1. By performing a grid-search around the initial parameters
ℎ0 and selecting the best model in the internal CV on T𝑖 .

2. By applying the heuristics ℎ(T𝑖).
3. By performing a grid-search around the initial parameters
ℎ(T𝑖) and selecting the best model in the internal CV on T𝑖 .

The range of parameters for GSCV to test is not always easy
to determine as different studies propose different ranges –
in [54] the range {0,0.1,0.3,0.5,0.7} is taken into consider-
ation for 𝐶, while for 𝛾 its {2−4,2−3, . . .24}. Authors of [55]
propose 𝐶 ∈ {𝑥10𝑦 : 𝑥 ∈ {1,2, . . . ,10}, 𝑦 ∈ {−2,−1, . . . ,2}}, 𝛾 ∈
{𝑥10𝑦 : 𝑥 ∈ 1,2, . . . ,10, 𝑦 ∈ {−4,−3, . . . ,1}} while in research
conducted in [56] the selected range was {2−17,2−16, . . .23} for
𝛾 and {2−3,2−2, . . .217} for 𝐶. In [57], the authors decided to
use the grid of 10−6, . . . ,106 for both 𝐶 and 𝛾.

In this research, similar approach was selected, with range
of parameters set as R = ⟨10−5,10−4, ..,100, ..,105⟩, and the
parameter grid Gℎ for the heuristics ℎ generated as

Gℎ =
{
𝑟𝑖𝛾 : 𝑟 ∈ R

}
× {𝑟𝑖𝐶 : 𝑟 ∈ R} , (19)

where ℎ(T ) = (𝑖𝛾 , 𝑖𝐶 ). For the external CV, the number of folds
𝑘external = 5, for the internal CV the number of folds 𝑘 internal = 3;
both were stratified CVs, by which we mean the approach often
used towards unbalanced sets which selects training and test sets
maintaining similar percentage of datapoints from each class6.

For assessing classification performance, the balanced accu-
racy measure [58] (BA) was employed. BA can be expressed as
the mean of classification accuracies in classes i.e. the mean be-
tween a ratio of correctly classified examples to the total number
of examples in every class. Compared to the overall accuracy
(OA), which is the ratio between a number of correctly classi-
fied examples to the total number of examples in dataset, it less
sensitive to unbalance in class size.

The final performance of the classifier in an experiment is
the mean BA between external folds. Every experiment was
repeated 10 times and the final values of BA were obtained by
averaging the performance values of individual runs.

6we used implementation provided by https://scikit-learn.org/

3.3. Statistical verification of results

A typical approach to verify statistical significance of results is
to use null hypothesis significance testing (NHST). While com-
mon, the NHST has several disadvantages explained in detail
in [48]. Two particular ones are: the fact that point-wise null hy-
potheses are usually false, provided that sufficiently large num-
ber of data points is available, as in practice no two classifiers
have perfectly similar accuracy; NHST does not allow to reach
conclusion when the null hypothesis is rejected, which limits
its usefulness. As an alternative, authors of [48] propose a new
methodology based on Bayesian analysis that was adapted for
analysing our results. This methodology compares classifiers by
estimating and querying the posterior distribution of their mean
difference. The methodology introduces the region of practical
equivalence (rope) which refers to the value of mean difference
that implies that classifiers are practically equivalent, e.g., when
their accuracies differ by less than 1%. This allows us to infer the
probability 𝑃(classifier𝐴 < classifier𝐵) of the mean difference
between classifiers being practically negative which implies that
classifier𝐵 is more accurate, as well as the probability of the op-
posite inequality and the probability 𝑃(classifier𝐴 = classifier𝐵)
that both classifiers are practically equivalent with regard to the
rope value. In addition the methodology allows for drawing con-
clusions through the simultaneous analysis of multiple data sets
and it has a dedicated, clear visualisation of test results.

Since we perform experiments using multiple datasets, the
approach employing hierarchical models, described in Sec-
tion 4.3.1 of [48] was employed. Following the suggestion
in [48], the value of rope was set to 1%.

3.4. Implementation

SVM implementation was from the scikit-learn library v1.0.2.
Bayesian comparison of classifiers [48] and its visualisation
was performed using baycomp library v. 1.0.27. Matplotlib and
seaborn libraries were used for data visualisation.

4. RESULTS AND DISCUSSION

Our experiments compared the accuracy of the previously dis-
cussed UH-SVM approaches, to the GSCV-SVM, on the 31
Keel datasets. For each approach, the individual scores were
aggregated into an estimated probability of practical advan-
tage/disadvantage/equivalence of the heuristics and GSCV with
regard to classifier accuracy. The summary of results for the
balanced accuracy (BA) measure8 is presented in Table 2. Since
most of the heuristics only estimate the 𝛾 parameter, and only
two of them estimate the 𝐶 (Chapelle, MC), we present results
as a combination of every 𝛾 and 𝐶 heuristic including the ‘de-
fault’ value of 𝛾 = 1, 𝐶 = 1. The advantage or any disadvantage
of any one method corresponds to a sufficiently large difference
between means of accuracies over all datasets, as described in

7https://github.com/janezd/baycomp
8For the reference, results of experiments for OA measure are presented in

Appendix 4.
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Table 2
Results of experiments – performance of different UH-SVM approaches
with respect to GSCV-SVM. The numbers correspond to probabilities
computed with the Bayesian analysis with methodology from [48].
Three right columns present probabilities of cross-validation being on
average more/ equivalent to / less accurate than heuristics. Results were
obtained for the balanced accuracy measure and rope value of 1%. Note
that, with MC heuristic, several of 𝛾 heuristics achieve results close

to GSCV

C heuristics 𝛾 heuristics P(CV > H) P(CV = H) P(CV < H)

default 1.00 0.00 0.00
Gelbart 0.85 0.13 0.02
Smola_10 0.97 0.02 0.01
Smola_50 0.86 0.11 0.03

default Smola_90 0.99 0.00 0.01
Soares 1.00 0.00 0.00
Soares_med 1.00 0.00 0.00
Chapelle 0.98 0.01 0.01
covtrace 0.93 0.06 0.01
default 1.00 0.00 0.00
Gelbart 0.60 0.36 0.04
Smola_10 0.96 0.03 0.01
Smola_50 0.68 0.24 0.08

Chapelle Smola_90 0.84 0.12 0.04
Soares 0.99 0.00 0.01
Soares_med 0.99 0.00 0.01
Chapelle 0.83 0.14 0.03
covtrace 0.55 0.41 0.05
default 1.00 0.00 0.00
Gelbart 0.19 0.76 0.05
Smola_10 0.68 0.28 0.04
Smola_50 0.17 0.81 0.02

MC Smola_90 0.34 0.60 0.07
Soares 0.98 0.00 0.02
Soares_med 0.99 0.00 0.01
Chapelle 0.21 0.76 0.02
covtrace 0.12 0.84 0.03

Section 3.3; their practical equivalence corresponds to suffi-
ciently small difference, with regards to rope value of 1%.

When no heuristics or only 𝛾 heuristics are used, parame-
ters obtained by GSCV result in significantly higher accuracy.
There is only a marginal improvement when Chapelle heusitics
is used for selecting a 𝐶 parameter value. However, when using
the extension that improves𝐶 estimation, the MC heuristics, five
of the 𝛾 heuristics tested obtained the accuracy very close, or
practically equivalent to CV. The combination of Covtrace+MC
resulted in the highest estimated value of this probability which
indicates that on average this heuristics results in classification
accuracy no worse than GSCV. Visualisation of results for ex-
ample heuristics is presented in Fig. 3. The improvement in
accuracy arising from the use of the two heuristics (three, if

including the default) for the 𝐶 parameter is clearly evident in
plots (a–c). Notably, the more effective the heuristic, the more
equivalent are the scores of UH-SVM and GSCV-SVM. Plot (d)
presents similar results for an overall accuracy (OA) measure
compared to the BA in plot (c). The use of OA measure usually
results in slightly higher probabilities of practical equivalence
between heuristics and GSCV. This suggests the class imbalance
negatively affects GSCV performance.

The practical equivalence in the accuracy of classifiers whose
parameters were chosen by GSCV and heuristic, is also visible
during the inspection of the parameter values obtained from
heuristics plotted on the graph showing the relationship be-
tween the classifier effectiveness and its parameters (estimated
through a dense grid of parameters). In the selected representa-
tive examples in Fig. 2, it can be seen that most of these points,
especially for the best heuristics, are usually located in areas of
high accuracy.

Interestingly, out of Smola heuristics, the result of Smola50
+ MC resulted in the BA value most equivalent to GSCV. This
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Fig. 2. The impact of SVM parameters on its accuracy. Parameter
values are presented in logspace. Accuracy values were obtained from
experiments with 5-fold CV by sampling each pair of parameters from
the 50× 50 parameter grid. The highest value of accuracy is denoted
as ‘best’. Marked points denote results of unsupervised heuristics from
this paper, with the five heuristics scoring highest marked with colour
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(a) Covtrace, BA (b) Covtrace+Chapelle, BA

(c) Covtrace+MC, BA (d) Covtrace+MC, OA

Fig. 3. Visualisation of Bayesian analysis of results with methodol-
ogy from [48] for selected cases from Table 2: covtrace+default, cov-
trace+Chapelle, covtrace+MC. Vertices of the simplex represent de-
cisions with certainty in favour of: CV (lower left), example heuristics
(lower right) and rope (top); the latter corresponds to practical equiv-
alence of CV and heuristics accuracy. Points represent Monte Carlo
sampling of posterior probabilities in barycentric coordinates. BA de-
notes balanced accuracy, OA denotes overall accuracy. Note the impact
of the 𝐶 heuristics on the equivalence of UH-SVM and GSCV-SVM

indicates that the median distance between examples in the data
space is of particular importance when choosing the 𝛾 para-
meter.

Comparison of execution time for heuristics and GSCV is
presented in Table 3. The values express a ratio of mean com-
putation time of an experiment with GSCV parameter selection
to experiment with parameters selected with heuristics. The av-
erage time was calculated over ten iterations of the experiment
across all datasets. The use of heuristics allows, on average, to
speed up calculations 100–200 times. Differences in times result
not only from calculating the parameter values, but also from
the impact of these values on the classifier – increasing the value
of the 𝛾 and 𝐶 parameter extends the calculation time.

To summarise, estimation of both parameters, in particu-
lar with Covtrace+MC heuristics, leads to accuracy practically
equivalent (by definition of [48]) to GSCV (see Fig. 3c) with
parameters obtained in only ∼0.006 of its working time (see
Table 3).

The higher results of Covtrace+MC approach mean that there
is a potential space for improvement in 𝐶 value estimation, as
the conventional and widely used Chapelle& Zien, modified
to estimate higher values of 𝐶, not only consistently improves
the results on tested datasets, but also makes them practically
equivalent (as defined in [48]) to GSCV with respect to accu-
racy. Unsupervised heuristics for SVM parameters are likely
effective because the test datasets conform to the clustering as-
sumption, where data space forms structures/clusters useful to

Table 3
Performance of heuristics as ratio of CV/heuristics execution time, i.e.,
how many times heuristics is faster than CV. Times were estimated
from 10 experiments and averaged over all datasets. Note that in almost

all cases the speedup is 100–200 times

𝛾 heuristics
C heuristics

Default Chapelle MC

default 136.88 106.52 97.91
Gelbart 248.72 182.27 149.33
Smola_10 153.92 136.47 121.71
Smola_50 169.13 149.29 131.29
Smola_90 158.75 149.64 131.19
Soares 132.01 105.50 94.59
Soares_med 125.46 101.45 92.51
Chapelle 163.59 148.40 132.23
covtrace 237.38 188.61 154.86

the classification problem, and data point distributions reflect
class divisions. However, the same assumption is the basis of
training set selection with GSCV. As datasets deviate from the
clustering assumption, the effectiveness of both approaches de-
creases, especially when the training data is limited. GSCV is by
no means inferior to the heuristics, especially if supplied with a
proper number of labelled datapoints. In practice, however, the
differences are often very small. Moreover, while it is natural
to use GSCV when the standard approach is preferable (i.e., a
small number of examples, training time is not an issue), in many
scenarios (e.g., processing on edge IoT devices), the proposed
heuristics offer practically equivalent accuracy in a fraction of
the time.

5. CONCLUSIONS

In this study, we evaluated unsupervised heuristics for SVM
parameter selection on over thirty benchmark datasets, compar-
ing their performance with GSCV. We have also proposed a
modification to Chapelle & Zien’s heuristic for the 𝐶 param-
eter, as optimisation of both parameters is vital for accurate
classifiers. We compared results using methodology based on
Bayesian analysis, described in [48]. Our results indicate that
heuristics are usually practically equivalent to GSCV in terms
of achieved accuracy of the classifier, i.e., obtained accuracies
differ by less than 1% (see Fig. 3c and probabilities of equiv-
alence in Table 2). Moreover, these heuristics offer a reduction
in computation time, achieving a 100–200 times speedup (see
Table 3). This makes an unsupervised, heuristic approach to pa-
rameter selection a compelling alternative for GSCV for rapid
SVM calibration.

Additionally, our results presented in Table 4 (Chapelle and
covtrace heuristics) show that estimating 𝐶 sharply increases
the accuracy of the produced classifier. Choosing larger values
of 𝐶 shifts the probabilities of the UH approach to practical
equivalence (as defined by [48]) of GSCV.
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Table 4
Results of experiments – performance of different UH-SVM approaches
with respect to GSCV-SVM, for overall accuracy (a supplement to Ta-
ble 2). The numbers correspond to probabilities computed with the
Bayesian analysis with methodology from [48]. Three right columns
present probabilities of cross-validation being on average more / equiv-
alently / less accurate than heuristics. Results were obtained for the
rope value of 1%. Note that, with MC heuristic, several of 𝛾 heuristics

achieve results close to GSCV

C heuristics 𝛾 heuristics P(CV > H) P(CV = H) P(CV < H)

default 1.00 0.00 0.00
Gelbart 0.70 0.25 0.05
Smola_10 0.94 0.05 0.01
Smola_50 0.61 0.35 0.04

Default Smola_90 0.95 0.03 0.02
Soares 0.99 0.00 0.00
Soares_med 1.00 0.00 0.00
Chapelle 0.94 0.04 0.02
covtrace 0.74 0.23 0.04
default 1.00 0.00 0.00
Gelbart 0.56 0.40 0.04
Smola_10 0.92 0.07 0.01
Smola_50 0.66 0.27 0.07

Chapelle Smola_90 0.85 0.10 0.05
Soares 1.00 0.00 0.00
Soares_med 1.00 0.00 0.00
Chapelle 0.74 0.21 0.04
covtrace 0.68 0.24 0.08
default 1.00 0.00 0.00
Gelbart 0.10 0.90 0.01
Smola_10 0.54 0.44 0.01
Smola_50 0.13 0.86 0.00

MC Smola_90 0.41 0.58 0.02
Soares 0.99 0.00 0.00
Soares_med 1.00 0.00 0.00
Chapelle 0.19 0.80 0.01
covtrace 0.10 0.89 0.01
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