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Abstract. The standard approach to mechanical design is based on strength hypotheses. However, the structural optimization methods do
not take into account this important condition determining the correctness of the engineering solution. The situation is different in the case
of biological systems, where reference to material strength is a basic condition for the formation of functional mechanically loaded systems.
The team developed an optimization system modeled on the phenomenon of bone remodeling, based on rigorous theoretical studies in the field
of material continuum optimization, where the condition for achieving the optimal solution is the equalization of strain energy density on the
structural surface. The new idea presented in this paper is to link this condition with the strength properties of the material. Furthermore the
strength hypotheses are expressed in terms of strain energy. The aim of the research presented in this paper is to precisely estimate the relationship
between the condition of a constant value of the strain energy density on the structural surface and the material strength, according to yield
criteria. The given numerical examples contain a reference to the analytical results and indicate a unique feature of the presented method. The use
of the notion of insensitivity zone concept for building the biomimetic structural optimization system allows regularization without focusing on
the existence of the Lagrange multiplier correspondence to the volume constraint. The approach presented in the paper can be used by engineers
as a method for structural optimization no longer bound to the phenomenon of trabecular bone remodeling. Also discussed is the problem of
numerical implementation and the necessary modification of the position and size of the insensitivity zone to ensure that the result is achieved by
numerical means. These results require the development of appropriate heuristics but allow us to achieve similar results regardless of the initial
configuration. However, the discussion of the use of observations of Nature in mechanical design remains open.

Keywords: mechanical design; free boundary problem; biomimetic structural optimization; shape optimization; optimality conditions; trabecular
bone remodeling.

1. INTRODUCTION

1.1. A free boundary problem

The shape and topology optimizations in structural mechanics
are a relatively new domain within scientific computing. Such
problems are nonconvex and ill-posed in general.

In mathematical setting, the nonexistence of optimal shapes
usually requires the appropriate regularization technique [1].
The convergence of numerical methods for solution of gradient
flow dynamical systems is still under construction, we refer the
reader to [1] for a review of available results. In our case, the

In the paper a numerical method is proposed and tested for a
free boundary problem in elasticity. We denote by Q an elastic
body. A part of its boundary I" C dQ is unknown along with a
constant A and should be determined together with the displace-
ment vector field u, deformation tensor field £(u) and the stress
tensor field o-(u). Let n stand for the unitary exterior normal
field on 9Q and the traction vector field P := o - n be defined on
the boundary of elastic body. Free boundary problem is defined
by imposing two conditions on unknown free boundary I"

results are presented under assumption that an optimal shape
does exist. The necessary optimality condition for the compli-
ance optimization leads to a nonlinear boundary condition on
the moving boundary. Thus, the shape and topology optimiza-
tion problem could be considered as a free boundary problem
for elasticity. To our best knowledge such a free boundary value
problem has not been considered yet in the literature. The con-
vergence of the gradient flow dynamical system for scalar prob-
lems is shown at the continuous level in the forthcoming book
by Plotnikov and Sokolowski.
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P=0(u)-n=0,0u):e(u) =21,

where A € R is unknown constant and it should be determined
along with the free boundary and the solution of the elasticity
system. In other words the free boundary is traction-free and
the elastic energy is constant on the free boundary. Such a free
boundary problem arises in shape and topology optimization
for compliance with the volume constraints. Using the neces-
sary optimality conditions for the compliance minimization, the
constant A can be considered as a Lagrangian multiplier for the
volume constraints. In the paper we present a new method of its
a priori evaluation, which considerably simplifies the numerical
method. The piece of the boundary I is assumed to be traction-
free. In order to solve the free boundary problem the functional
shape is minimized with respect to traction free I'. The main
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difficulty to use the method is the necessity to find the multi-
plier 4. We propose the method of its determination by careful
examination of material properties, which seems to be original
contribution of the paper. In addition, our method allows for
direct manufacturing of obtained shape by using the additive
manufacturing techniques with 3D printers [2—4]. This means
that an optimum design obtained by our method is not singular
from the point of view of practical applications in structural
optimization.

From mathematical point of view there are few questions
addressed for the nonconvex shape and topology optimization
problem under consideration. The first is if the problem is well
posed from mathematical point of view, i.e., there is an optimal
solution which continuously depends on the data. The answer
is usually negative and an appropriate regularization technique
is required. The geometric regularization is appropriate and it
could also lead to the convergence of the gradient flow dynamic
system to an optimal shape, we refer to the first result in this
direction [1]. Let us also recall that the variable insensitive zone
in our numerical method is conceptually related to the shifted
penalty function, see, e.g., [5, 6].

1.2. Optimum design in elasticity

The standard approach to mechanical design is based on strength
hypotheses. During the design of a mechanical structure, it is
necessary to shape it in such a way that the material subjected
to multidirectional loads will not be damaged. To determine
whether such damage will occur, damage criteria are used, usu-
ally related to the stresses present in the structure. Already in
the 17th century Hook began studying the concepts of elasticity
theory. However, it was not until the 19th century, with the emer-
gence of continuum mechanics that the concept of the failure
criterion could be considered. Many concepts and theories have
been developed based on the mechanics of continuous media,
and different assumptions and experimental results have led to
the development of different failure criteria [7-9]. Currently,
the most commonly used criterion (especially in commercial
computational systems using the finite element method) is the
Huber-Mises-Hencky criterion. According to the Huber-Mises-
Hencky theory, the evaluation of the allowable stress of a struc-
ture can be performed by determining the maximum distortion
strain energy (deviatoric strain energy). This theory allows for
the calculation of the so-called von Mises stress, which is not
a true stress, but a theoretical value that allows the comparison
of any spatial stress state with the uniaxial yield stress. Accord-
ing to the maximum distortion energy theory, yielding occurs
when the distortion energy reaches this critical value. The criti-
cal value of distortion energy, which is material-specific, can be
obtained experimentally through a simple tension test. In this
way, universal design guidelines can be obtained for a specific
material, regardless of the loading state of the entire analyzed
structure. Therefore, when performing structural optimization
assuming the use of a specific material, the optimal solution
differs depending on the material. Therefore, the idea naturally
arises to experimentally investigate the critical value for a spe-
cific material and take it as the starting point of the optimization
procedure. The team developed an optimization system modeled

on the phenomenon of bone remodeling, based on rigorous the-
oretical studies in the field of material continuum optimization,
where the condition for achieving the optimal solution is the
equalization of strain energy density on the structural surface.
Furthermore the strength hypotheses are expressed in terms of
strain energy. The aim of the research presented in this paper is
to precisely estimate the relationship between the condition of a
constant value of the strain energy density on the structural sur-
face and the material strength, according to yield criteria. Such
a discussion can be conducted for various criteria. This paper
focuses on two such criteria that are commonly used in mechan-
ical design. The Huber-Mises-Hencky criterion and the Tresca
criterion, which may prove important when the discussion is
extended to uncertainty analysis [10].

2. BIOMIMETIC STRUCTURAL OPTIMIZATION METHOD —
THE STIFFEST DESIGN

The method used in the paper is based on the observation of
adaptive remodeling of trabecular bone. The starting point is a
precise theoretical result concerning the stiffest design problem.
So, the goal is to maximize the stiffness of a structure, that is
minimization of the functional

J(Q) = / tuds (1)
I
under constraints
/ dx-Vp=0 2)
Q
and state equations
divo(u)=0 in Q, 3)
o(uw).n=t on I}, 4
o(uw).n=0 on TI,, (5)
u=0 on Ij. 6)

Here, Q represents domain of the elasticity system, u the dis-
placement, V = |€| a given volume, Iy part of the boundary
with Dirichlet condition, I'; part of the boundary loaded by
traction forces, I',, part of the boundary subject to modification.

0Q =Ty UI';UT,, tis a constant vector of traction forces and
I, is a part of the boundary subject to modification.

The Lagrange function for the problem under consideration
can be defined as follows

L(Qt,/l)zft.utdS'i'/l /dx—V() . (7)

I £

The state equation in the weak form can be written as follows

—/0’(u,):s(¢p)dx+/t.¢pds=0. (8)

Q; I
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Here u,, ¢ € Hf (@) and Q, = T,(Q). For fixed field V(x)
which vanishes on the entire boundary of 9Q with the excep-
tion of T, the Lagrange function depends only on two scalar
variables (¢, 1). Then we take shape derivative of both Lagrange
function and weak state equation using speed method. At the
local minimum this first derivative should vanish. The shape
derivative is denoted here by (e)’.

[L(Q,/l)]’=/t.u’ds+/1/V.nds=0, 9)

N Iy

—/U(u’) :a(go)dx—/a'(u):8(<p)V.nds:0. (10)

Q T,

After substituting ¢ :=u’ in the weak state equation and ¢ :=u
in its shape derivative

/t.u’dsz—/a(u) :e(u)V.nds. (11)

I Iy

Using this result in the derivative of Lagrange function gives

/[/l—a(u) :e(u)]V.nds =0. (12)

Iy

Since at the stationary point this should hold for any vector field
V(x) on T, then

o(u) : &(u) = A =const. (13)
For the stiffest design the strain energy density on the part of the
boundary subject to modification should be constant. The ob-
tained result, consistent with previous studies [11, 12] and other
results [13] can be used to develop a structural optimization
method suitable for finding a solution in the form of a structure
with minimal mass, with assumed properties related to the ma-
terial from which the structure is to be made. The assumption
concerning the value of the Lagrange multiplier on the surface
can be treated interchangeably with the assumed volume con-
dition [14]. Therefore, it is necessary to develop an appropriate
algorithm that would implement the postulate of equalizing the
energy density on the surface of the structure. Such an algo-
rithm can be found in the phenomenon of adaptive remodeling
of trabecular bone.

3. BIOMIMETIC STRUCTURAL OPTIMIZATION METHOD
BASED ON TRABECULAR BONE HOMEOSTASIS
PRINCIPLE

The first observation of the behaviour of the trabecular bone
tissue was made by Wolff and published in 1892 [15]. The ob-
servation proposed by Julius Wolff — known as the Wolff’s law
— can be described as a structural adaptation of the bone to the
external forces and is called trabecular bone remodeling phe-
nomena. Adaptive trabecular bone remodeling is a biological

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. 155900, 2026

process by which trabecular bone adjusts its structure in re-
sponse to changing mechanical loads. This is a key mechanism
that allows bones to maintain their strength and structural in-
tegrity. Trabecular bone is a type of bone found primarily in the
ends of long bones, such as the femur and vertebrae. From the
mechanical point of view the clue of the remodeling process
is minimizing tissue mass and at the same time achieving the
highest possible structural stiffness. This process is described by
the regulatory model [16—19]. The regulatory model of trabec-
ular bone refers to the mechanisms and processes that govern
the remodeling and adaptation of trabecular bone in response
to mechanical stimuli by mechanotransduction process. What is
also very important, this process takes place only on the surface
of the trabecular bone.

The numerical method to solve the optimum design problem
is considered already in [20-23] without mathematical back-
ground. To this end a new shape functional is defined by

J(@) = / F(o(u):e(u)—A)dI'(x), (14)

r

where F is a given function. This assumption can reflect the idea
of homeostasis. The regulatory model presented in Fig. 1 can
be described by the relation of the remodeling process to the
mechanical stimulation. The main assumption resulting from
clinical observation is the existence of a certain mechanical
stimulation value A, characteristic of bone tissue and related to
the tissue mechanical parameters, measured with strain energy
density (SED). This distinguished value, called the homeostatic
stimulation value, defines an ideal state in which there is an
ideal balance between resorption and new tissue formation. If
this situation occurs, it means that there is no need to modify
the amount of tissue at a given location in the structural surface
(locally). If, on the other hand, the value of mechanical stimula-
tion from external forces differs from the distinguished value of
A (practically for SED values outside the insensitivity zone), the
process of remodeling will caused in different amount of tissue
and s is parameter controlling a size of the insensitivity zone. If
the excitation is greater than the A+ s value, the tissue will be
added to the structural surface; if it is less than the A — s value,
a small amount of the tissue will be removed. The regulatory
model, although not complex, allows for a very good simulation
of this behaviour of the bone tissue under load. The insensitivity
concept was originally proposed by Carter [24] as an enhance-
ment of the mechanostat theory of Frost [16]. Another name
is the lazy zone, which was an expression of the observation
that the bone is lazy in response to changes in load. Assuming

Bone gain

Insensitivity
zone

A
/ 25‘ SED

Bone loss

Fig. 1. The regulatory model scheme and the insensitivity zone concept
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that the homeostatic SED lambda value is the Lagrangian mul-
tiplier from formula (13), one can describe a biomimetic way to
achieve stiffest design solution.
The heuristic algorithm is as follows
e it is assumed that the energy density o (u) : £(u) has a con-
stant value A on I,

e if at a given point on I',, this density is greater than A+,

then the boundary is moved outside;

e if at a given point on I}, this density is smaller than A —s,

then the boundary is moved inside;

o these steps are repeated until equilibrium is achieved;

o the value of A is modified if the final design is unsatisfactory;
where s is parameter controlling a size of the insensitivity zone
and I'), is a part of its boundary subject to modification. The
value of A is unknown. In order to determine it properly, it is
necessary to refer to the strength parameters of the material.
Such an estimation of the relationship between the condition of
constant value of strain energy density on the structure surface
and the material strength according to the strength hypotheses
criteria will allow for effective use of the method.

4. RELATION BETWEEN HUBER YIELD CRITERION AND
ELASTIC ENERGY ON FREE SURFACE

When considering the shape optimization problem consisting in
compliance optimization under volume constraint, it is known
that if the variable part of the boundary (design boundary) is
unloaded, then the elastic energy density on this boundary ac-
cording to formula (13) is constant.

Knowledge of A is crucial for the optimization procedure. On
the other hand, the structure should satisfy the yield condition,
in this case the Huber-Mises-Hencky condition. Hence there
arise the following questions:

e What is the relation between the energy density and Huber-
Mises-Hencky criterion?

e How to guarantee the structure integrity by setting the ap-
propriate 1?7

e What is the best starting A for launching the optimization
process?

It is possible to assume that the variable boundary consists
of several smooth patches and consider a point P in the interior
of such a patch. Let us attach to the point P a coordinate system
with the x3 axis pointing perpendicularly outside the body and
X1, X2 plane tangent to the boundary.

Since the surface is free, then

o3j=0;3=0 for j=1,2,3. (15)
Now by rotating the x1,x; axes around x3 we may further diago-
nalize the remaining part of o. As a result, the system x;,x7,x3
may be considered as corresponding to principal stresses. Ob-
serve that only o7y and 0%, may be nonzero.

Invoking the Hooke’e law in the principal stresses coordinates
(isotropic material)

[(1+v)o;;—vs] for i=1,2,3, (16)

Eii =

| =

where s = 0| + 022 + 0733, it is possible to write down the ex-
pression for A (twice the elastic energy density)
1 2 2 2 2
/lzf[(1+v)(0'11+0'22+0'33)—vs ] 17
and the reduced stress corresponding to the Huber-Mises-
Hencky criterion
2 _ 1 2 2 2
Tred = 5 [(o11 = 022)* + (011 —033)* + (02— 033)*] . (18)
In general there is no relation between these two quadratic forms
in terms of principal stresses, because A is positive definite, while
Ored 18 not and always vanishes for the body subjected to uniform

pressure.
In the situation described above formulas (17), (18) reduce to

1
A= z [0'121 +0'222 - 21/0'110'22] (19)
for the energy density and
O'id = 0'121 + 0'222 — 011022 (20)

for the reduced stress of the Huber-Mises-Hencky criterion.
Since 0 < v < 1/2, both quadratic forms are positive definite
and may be compared. Denoting x; = 071, X = 02, there are
two quadratic forms

AE :x%+x§—2vx1x2 @28
and

0'r2ed =x% +x§—x1x2. (22)

Both forms can be simultaneously diagonalized by substitution

X1 =Y1-Y2 X2=Y1+y2
yielding
@
and
g = Vi 4393 (24)
Observe that

242
+v<3

0 0.5 1 .
<v< = <2—2v

It means that the ellipse corresponding to (24) is slimmer than
that corresponding to (23).

The results presented above lead to final conclusions. Let H
denote the Huber-Mises-Hencky criterion ellipse together with
its interior. Similarly by A the smallest ellipse corresponding
to (23) containing H is denoted, and by Aj, the biggest ellipse
corresponding to (23) contained in H. It is immediate from the
definitions of ellipses that

o2

red
E

Aci © A =2(1-v) (25)
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and 5
O-red (2 6)
£

2
A © A= 3 (1 + V)

Itis also possible to define the ellipse having the area constituting
the average of Ay and A, for which

2
O—red
E

2
Aayr = §(2_ V) 27
Figures 2-4 show the layout of these ellipses for different
values of v. The Young modulus is always 210 [GPa], and
Ored = 0.5 [GPa]. The curves have colors: H — green, Ajy —
red, Aexe — magenta, A,y — dotted blue.

Fig. 4. Huber-Mises-Hencky case — ellipses for v = 0.45

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. 155900, 2026

5. RELATION BETWEEN TRESCA YIELD CRITERION AND
ELASTIC ENERGY ON FREE SURFACE

A very similar reasoning may be carried out for the Tresca yield
criterion, which has the form
Ord=max [| oy —on|,| o1 -0 |, on-033|]  (28)
where o7eq corresponds to twice the maximal shear stress. In
our case it reduces to
Ored =max [| oy —on || o || oan []. (29)
The safe A (and consequently the energy density) will now be
smaller, because the Tresca criterion is stricter than the Huber

one. Namely, the safe A corresponding to the ellipse contained
in the Tresca polygon is

g, 2 d
Asafe = §(1+V)% . (30)
The outer ellipse is the same as in the Huber case since the
Huber ellipse goes through vertices of the polygon.
The best value, Apeg, obtained in the same way as formerly

reads
2

1 o
Anes = 7 (5-3v) <. 31)
Again it is smaller. Figures 5—7 show the geometry of the situa-
tion for various values of v.

Fig. 6. Tresca case for v =0.15
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Fig. 7. Tresca case for v =0.45

6. REGULARIZATION OF THE OPTIMIZATION METHOD
USING THE INSENSITIVITY ZONE

Structural optimization is an excellent way to achieve solutions
that are much better than those that are possible using tradi-
tional design methods. The design process can be divided into
two stages, namely the synthesis stage and the analysis stage.
In the synthesis stage, key decisions must be made regard-
ing the shape of the designed structure. This stage is served
by topological optimization, which is crucial from the point
of view of obtaining a structure with the highest stiffness and
minimized mass. Since topological optimization concerns the
synthesis stage (at this stage, the spatial shape of the struc-
ture is sought and is not known), it differs from shape opti-
mization and size optimization. Also, the developed tools and
methods used to perform topological optimization are specific
and different from other structural optimization methods. In
the group of various approaches to the topology optimiza-
tion problem, the most popular is the SIMP (Solid isotropic
material with penalization) method [25-29]. It has practically
dominated commercial software and is dominant in industrial
practice [30-33]. Since the problem of stiffest design, the goal
of the topology optimization algorithm (compliance minimiza-
tion) has no solution without additional assumptions, usually
the volume of the material in the design domain is limited.
But this is a fundamental problem in this approach, because
there can be no guidelines on how to choose the value of the
volume constraint in any domain. In the approach described
in the paper, the design paradigm is different and refers to the
Lagrange multiplier, and as shown in the previous chapters,
further to the strength properties of the material. Instead of
the volume constraint, the Lagrange multiplier is assumed (ac-
cording to strength hypothesis) to have a constant value during
the whole optimization procedure. The relationship between
the Lagrange multiplier and the volume constraint has been
described in many papers on topological optimization meth-
ods [34, 35]. In the paper [35] the authors discuss the prob-
lem of designing an optimal shape and note that increasing
the Lagrange multiplier leads to a decrease in the weight of
the solution. In a sense, this corresponds to the relationship
of the multiplier with material properties postulated in the pa-

per. The relation of the adopted value of the Lagrange multi-
plier to the obtained volume of the optimal solution also de-
pends on other parameters of the optimization procedure itself.
It is usually assumed [28, 36] that the material volume is a
monotonically decreasing function of the Lagrange multiplier.
Therefore, in the classical approach like SIMP method, the La-
grange multiplier is treated only as a coefficient that must be
found to satisfy the volume constraint. Experience shows that
the application of existing procedures leads to reasonable re-
sults, although for example in [36,37] it was stated that there
is no rigorous proof of its existence for each of the volume
constraints. In the approach presented in the paper, the opti-
mization method is based on the regulatory model of trabec-
ular bone remodeling. An important element of the concept
of building a system for the biomimetic structural optimiza-
tion method is the notion of insensitivity zone. The connec-
tion between observations of nature and the optimization prob-
lem, especially in relation to bone remodeling and to apply
the bio-mechanical observations and models to the structural
optimization issues can be found in various works presenting
different approaches [38, 39]. In the latter paper, the concept
of the insensitive zone was used in the description of the dy-
namical system and the role of the insensitivity zone itself in
the dynamical system approach to optimization was indicated.
However, the formulations used are based on the assumption
of density formulation, indicating similarities between the the-
ory of bone remodeling and the density formulation of topol-
ogy optimization. In the approach presented in the paper, there
are no assumptions regarding the use of artificial material in
the optimization process. Each iteration corresponds to a func-
tional configuration modeled from a specific material with spe-
cific strength properties. It is in the context of the value of
the Lagrangian multiplier adopted in the model by using in-
sensitivity zone, rather than a single value, that regularization
will be applied in the biomimetic optimization method. The
use of this concept allows for regularization without focusing
on the existence of the Lagrange multiplier correspondence
to the volume constraint. In fact, bone remodeling continues
uninterrupted, regardless of whether the local bone loads are
within the insensitivity zone or not. In addition to the load it-
self (measured by the SED value), the way in which the bone
is loaded is also important. And this is also why the existence
of the insensitivity zone in bone remodeling models is essen-
tial. It allows for the consideration of the influence of many
cases of loading of the bone structure during daily activity,
and bone remodeling leads to the evolution of the structure
reflecting the recorded mechanical stimulation. Although this
is a very interesting area of research [21,40], for the moment
we will focus on defining the parameters characterizing the in-
sensitive zone with reference to the considerations presented
in the above sections concerning the relationship between the
value of the Lagrange multiplier and the limit stresses result-
ing from the strength hypothesis. It is therefore necessary to
find a way to determine the lower and upper limits of the in-
sensitivity zone and to develop heuristics useful in numerical
calculations.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. €155900, 2026
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7. ACQUIRED HEURISTICS AND COMPUTATION

STRATEGY
To carry out the biomimetic structural optimization simulation
it is necessary to combine two areas — numerical simulation of
deformation of the structure under load and structural evolu-
tion. The finite element method is used, FrontISTR [41,42] was
selected for this purpose.

The more difficult task is to plan how to reflect the evolution
of the structure. Complete flow of the system is presented in
Fig. 8. Based on previous experience [43], it was decided to
build separate computational meshes for each simulation step.
Input finite element mesh, provided in STL format, is sliced into
a set of two-dimensional images containing the cross-sections
of the input data. Set of slices is the primary representation of
data in the structural optimization system. Before volumetric
mesh generation, data is first discretized to reduce scale of the
problem and thus reduce the mesh size. This enables storing
high-resolution two-dimensional slices while performing stress
simulation on data of reduced scale for faster computation. Dis-
cretized data is used to build volumetric mesh, by creating mesh
cells by spanning tetragonal elements between adjacent slices,
as shown in Fig. 9. Comparison of input mesh and mesh recre-
ated from discretized data is shown in Fig. 10. Resulting mesh,
free of topological defects, is used as an input for stress simu-
lation. According to the remodeling scenario described by the

.

| Input Data Slicing |

==

[ Data Dlscretlzatlon/}—)[ Volumetric Mesh Building |
. . Y,

_*_
; stop? ;

|(—| CSM Simulation |
Fig. 8. Activity diagram for the structural optimization system. Input
data is sliced into a collection of two-dimensional images. In each
iteration discretization of data is performed followed by volumetric
mesh building. Created mesh is an input for stress simulation, which is
used as input for mesh evolution

»» i

Fig. 9. Data discretisation and volumetric mesh building steps per-
formed for sample data. Input data is approximated by low-scale poly-
gons which are used to build volumetric mesh
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regulatory model, depending on the calculated value of the en-
ergy density, the surface of the structure is modified by adding
or removing material on its surface. In the most basic version
of the remodeling algorithm two threshold energy values are
defined — high and low. If material is present in an area with
energy below the low value, it is removed if energy is above
the high value, material is added. Result of 5 iterations of the
algorithm is shown in Fig. 11.

Fig. 10. (a) Sample input data — structural node connecting four beams;
(b) Input data sliced into a collection of two-dimensional images;
(c) Volumetric mesh reconstructed from slices

Fig. 11. Example of mesh evolution: (a) Input data is a structure with

random holes, supported on the left side with sheer force applied on

the right side; (b) Structure after 5 steps of evolution. Material grew in
areas with high energy and was removed where energy was low

In practical applications the simple evolution algorithm,
based on two fixed thresholds, has numerous issues caused by
imperfections of underlying representation. To demonstrate is-
sues caused by loss of resolution introduced by data discretiza-
tion consider four identical bars with rectangular cross sections.
Each bar is made of aluminum (v = 0.33, E = 70 MPa) and has
length of 300 mm and a side of 10 mm. Slicing is performed
along the X axis of coordinate systems (each slice represents
a cross-section of input data and YZ plane). First bar, named
baseline, BL is aligned along the X axis. Second and third, Y15
and Y30, are BL rotated 15 and 30 degrees along the Y axis, re-
spectively. Fourth, YZ, is rotated along the Y axis by 15 degrees
and then rotated along the Z axis by 15 degrees. Each bar was
supported from one side and stretched along its axis with force
of 50 kN and simulation using the structural optimization sys-
tem was performed — input data was sliced and volumetric mesh
was reconstructed and used for simulation. Results are shown
in Fig. 12. Stress distribution on the surface of each test case
was calculated and is shown in Fig. 13. Baseline test case (BL),
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Fig. 12. (a) Four bars, superimposed, used to demonstrate the impact

of volumetric mesh imperfections on the simulation; (b) Fragment of

each bar next to each other. Baseline (BL) bar, aligned to the slicing

axis, has uniform energy distribution on the surface. Other three bars,
due to surface imperfections, exhibit surface energy variations

Surface SED Distribution

BL - Baseline Y15 -15deg. Y Y30 - 30deg. Y YZ 15deg. Y and Z

8000 - 1500- 1504 »
6000 -
1000~ 100~
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3 4000-
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S
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Fig. 13. Distribution of strain energy density on the surface on four bars
shown in Fig. 12. The baseline bar has uniform energy distribution. All
other test cases have energy variations

which has sides parallel to slicing axis, can be perfectly repre-
sented in the reconstructed mesh. This leads to uniform energy
distribution on the surface. Other three test cases have surfaces
approximated by finite elements mesh with different degrees of
accuracy. This leads to non-uniform distribution with visible
notches, where energy is concentrated, and areas with increased
cross-section where energy is lower. The evolution algorithm
based on fixed thresholds does not perform well for such data.
Surface imperfections lead to oscillations, when the algorithm
adds and removes material in the same area due to inability
to even out surface energy. To mitigate this effect a heuristic
approach with dynamic thresholds is used.

Structural optimization performed by the algorithm is local
search that starting from the initial configuration performs space
search of all possible shapes by evolving mesh according to
strain energy distribution on the surface. The goal of optimiza-
tion is to fit the distribution of energy on the structural surface
between two thresholds defining the insensitive zone. The ini-
tial version used fixed insensitive zone. For the upper value of
insensitive zone A,y calculated using (27) was used, for lower
0.544yr. During algorithm development and testing, the follow-
ing numerous observations were made, which lead to definition
of heuristic optimization algorithm.

It is not desirable to narrow the insensitive zone as much as
possible to concentrate SED distribution because system with
too narrow thresholds has tendency to enter oscillations. Os-

cillations are caused by two distinct phenomena. One class of
oscillations appears in areas where very fine structure of beam
elements, as predicted by theoretical models, cannot be real-
ized by the finite elements model. Those oscillations are man-
ifested as a porous structure that changes each step. This kind
of behavior can be described as ‘harmless’ — it does not af-
fect the optimized structure as a whole and appears only in
areas between well defined and stable features. Second group
of oscillations is caused by inability to represent optimal size
of beam-like element using finite elements mesh. In this sce-
nario system changes between structure with excess energy and
structure with energy too low, below the lower threshold and
is unable to fit the whole surface energy distribution inside the
insensitive zone. This effect is additionally magnified by surface
imperfections, presented earlier. This group of oscillations can
lead to change of topology by breaking beam element, which in
extreme cases can lead to the collapse of structure. This in turn
causes rapid degradation of quality of the solution and algorithm
starts pursuing different optimum, usually ending up with worse
quality of the final solution.

Increasing resolution of the finite mesh does not solve the
issue with destructive oscillations. The finite element size is
an input parameter to the system and decreasing the element
size leads to the increase in a resolution of the finite elements
mesh. Increase in resolution does not mitigate problems with
oscillations as a higher resolution leads to a different topology,
where a finer structure can be realized. This, in turn, brings back
the oscillation issue.

The use of a wide insensitive zone leads to decreased amount
of oscillations by allowing a wider variety of sizes that can be
‘fit’ inside. Wide insensitive zone leads to an increased set of
solutions that are considered optimal by the system. This allows
definition of secondary quality measures to compare optimal
solutions. Three secondary measures are considered: maximum
displacement, volume and average surface SED. Maximum de-
flection is maximum displacement, calculated during simula-
tion. Volume is the total volume of the finite elements mesh.
Volume, not mass, is used because it does not require density
as an additional system input. Average surface SED is aver-
age value of strain energy density on the surface of optimized
object. Average surface SED should be as high as possible, be-
cause structural optimization should get surface energy density
distribution as close to the upper threshold value as possible.
Observation of behavior of surface SED distribution and aver-
age value in particular allows us to better understand and fine
tune the algorithm. From the practical perspective average sur-
face SED is irrelevant. The two other measures are very easy
to measure in the implementation of the optimized structure.
Maximum displacement and volume are not correlated — all so-
lutions on the Pareto front are optimal according to secondary
criteria. In scenarios where initial state has parts with surface
energy significantly below the lower threshold, it is beneficial to
slow down initial removal process. For the parts with high as-
pect ratio (i.e., flat bar) material removal, which behaves in this
case similar to morphological dilation, can remove the whole
structure. If the process is manually slowed down by decreas-
ing the initial value of the lower threshold for few iterations the
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structure can be refined into a part with higher energy density
on the surface and optimization process will continue.

It was observed that wide insensitive zone leads to suboptimal
solutions in cases where the initial state has strain energy den-
sity above the upper threshold, which results in initial material
removal. This observation is counter-intuitive, as approaching
insensitive zone from the higher value should lead to solution
with a higher average surface SED than approaching the same
zone from the lower values. Higher average SED should, in
turn, lead to better secondary measures of obtained optimum.
Performed tests lead to observation that approaching insensitive
zone from the high average surface SED values makes optimiza-
tion process susceptible to local optima and local search used is
not able to leave them.

The stop criterion, defined as fitting the whole energy into
the insensitive zone is, in practice, rarely met and instead op-
timization runs for set amount of iteration. Upper value of the
insensitive zone is derived from the von Mises yield criterion
hence the final solution must be free of elements exceeding this
threshold. Elements with energy below the lower threshold are
allowed.

To overcome described issues the system was modified and
fixed thresholds were replaced with a heuristic algorithm uti-
lizing dynamic threshold values. Proposed approach consists of
four steps and instead of using stop criteria it works with a fixed
number of steps.

Used heuristic is an attempt to create universal optimization
algorithm which contains all practical experience gathered dur-
ing testing in a closed form solution. This allows performing
structural optimization with hands off approach, that is flexible
enough to work with different input data. Proposed heuristic uses
dynamic insensitive zone that depends on input parameters and
surface SED distribution. Algorithm uses following parameters:

e number of iterations, n — total number of optimization iter-
ations to perform,

o material yield strength, 074, used internally to calculate A4y,
using formula (27) which is used as an upper threshold of
the insensitive zone.

e initial upper threshold reduction, @ — value between (0, 1]
used to decrease initial value of the upper threshold,

e initial and final percentile of surface SED distribution,
Binit, 8 — algorithm calculated dynamic value of the lower
threshold dynamically each step as a requested percentile
of surface SED distribution. Two parameters are provided,
initial and target, as percentile varies with the optimization
progress.

If at any point heuristic returns insensitive zone with lower
threshold value above higher, the lower threshold is set to 50%
of the higher value instead.

The first phase of optimization is performed for the first
25% of optimization steps and uses upper = ad,, and
lower = P(SED; Bini¢) for insensitive zone boundaries, where
P(SED:;p) returns value of given percentile p of the distribu-
tion of surface SED. This phase has two main goals. The upper
threshold is deliberately lower to promote the overgrowth of the
optimized structure and to make sure the final insensitive zone
is approached ‘from the top’ as it was observed it leads to better
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optimization results. Percentile, used to dynamically determine
the lower threshold, is used to slow down material removal rate
and parameter with value of x can be informally read as ‘at most
x% of elements can be removed in a single step.’

Second phase happens for the 50%n steps of iteration, so ends
at the 75%n of total optimization steps. During the start of this
phase lower and upper thresholds are calculated using formulas
from the previous step. At the end upper = A4 and lower =
P(SED:;p). For the steps in between linear regression is used
to calculate threshold values using step number. Optimization
gradually reaches the target insensitive zone. 3 value is higher
than betaj,;; — initially slow rate of material removal has to be
increased to make insensitive zone narrower, hence increasing
quality of the final solution.

Third phase happens between steps 75%n and n—5 and the
final values from the previous phase, upper = A,y and lower =
P(SED;p) are sustained. The final solution is refined during
this phase.

The last phase is executed for exactly 5 iterations and during
it the lower threshold is decreased down to zero. Any remain-
ing oscillations are damped and with only material increase
available we guarantee all surface SED will be below the crit-
ical value A,y thus the von Mises yield criterion will not be
exceeded under designed load.

To demonstrate algorithm operation optimization was per-
formed on a 200 mm aluminum rod (v =0.33, E =70 MPa) ele-
ment attached to a cylindrical support with a diameter of 20 mm,
stressed using force of 5 kN. Tensile strength oeq = 100 MPa.
Three structural optimizations were performed, each using 250
iterations. First optimization was performed with fixed insen-
sitive zone. Second used heuristic approach with parameters
a =0.25, Binit = 5%, B = 15% and third run was using heuristic
approach with parameters @ = 0.25, Binit = 5%, S =25%. Input
shape and results of optimization are shown in Fig. 14. Each
optimization resulted in a structure with surface SED for all op-
timized elements inside the lazy zone. To compare those results
secondary measures were calculated, shown in Table 1. Plots
of changes of secondary measures, with additional von Mises
stress are shown in Fig. 15.

Fig. 14. (a) Input data for the sample structural optimization problem.

Rod is attached to cylindrical support and stressed on the far end.

(b) Result of optimization using fixed insensitive zone. (c, d) Result of
optimization using heuristic approach with different parameters
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Table 2
Optimization parameters used in all four optimizations
Parameter Symbol Value

Steel tensile strength Ored 300 MPa
Steel lazy zone upper value Aayr 0.510 MPa
Aluminum tensile strength Ored 100 MPa
Aluminum lazy zone upper value Aavr 0.160 MPa
Iterations n 250
Initial upper threshold reduction a 0.25
Initial lower threshold percentile Binit 5%
Final lower threshold percentile B 15%

Table 1
Secondary quality measures for three optimizations for the sample
problem
Volume Max.-Displ.
Case 3
[mm"~] [mm)]
Baseline 77753.06 0.000928
Candidate 1 65917.80 0.001060
Candidate 2 73790.17 0.000947
g 0.100- g 200000
E £, 150000
3 0.010~ 2 100000
E 0.001- é 50000
(I) 5‘0 160 1%0 260 25‘)0 (I) 5‘0 160 150 260 2é0
T 100.00 - & 3000-
QE__ 10.00 - \ %1000- \
Q 100- & 300-
%@ 0.10- % 100 (——
2o N 2w, 5 ; ; ; ;
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Iteration Iteration
Algorithm —— Fixed Thresholds —— Heuristic 1 —— Heuristic 2

Fig. 15. Three structural optimizations with different heuristics: Base-

line: fixed insensitive zone, Candidate 1 heuristic: parameters values

a =0.25, Binit = 5%, B = 15% and Candidate 2 heuristic: parameters
values @ = 0.25, Binit = 5%, B =25%

8. NUMERICAL EXAMPLES

The presented example will be the cantilever beam in bend-
ing, in which all nodes of one edge could be fixed (clamped
wall) and the bending force is applied to the middle of the op-
posite edge. Simulation was run for two different materials —
steel and aluminum, each using two different starting configura-
tions. First starting configuration was full domain, second was
T-shaped element. Data was selected to allow comparison with
other optimization techniques described in literature [44].

Despite optimization system being designed to work with
three-dimensional models, the optimization domain size was
restricted in one dimension to emulate two-dimensional op-
timization. This restricted dimension is arbitrary referred to
as a model thickness. Thickness size was selected to ensure
model, used for the simulation, had exactly five integration
points along the restricted dimension. This ensured both good
numerical solutions and uniform model thickness. Decrease
of restricted dimension would decrease amount of integration
point affecting quality of the solution, increasing would allow
algorithm to vary model thickness, making it no longer two-
dimensional.

All four optimizations were run using the same heuristic set-
tings, shown in Table 2. Results are shown in Fig. 16 and op-
timization process is shown in Fig. 17. In all four cases opti-
mization resulted in an optimal shape, with a different topol-
ogy and thickness for steel and aluminum. The same topology
was achieved for optimization starting from beam and full do-
main.

10

Fig. 16. Results of selected steps of the optimization process, show-

ing evolution of topology and the final solution of all four test cases.

(a) Aluminum, starting from a full domain. (b) Steel, starting from a

full domain. (c) Aluminum, starting from a bar. (d) Steel, starting from
abar
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Fig. 17. Plots for all four test cases showing changes in SED on the

structural surface during the optimization process. Each plot shows

four distinct phases of the heuristic algorithm: initial phase, where

structure growth is promoted, transition phase, where parameters move

towards target values, stable phase, where the final structure forms and
the final refinement

9. CONCLUSIONS

The paper presents a new approach to shape optimization. The
main issue is the theoretical result-based assumption of equiva-
lence of energy minimization in the whole volume with a config-
uration in which the energy density on the surface is constant.
In this way, a biomimetic approach can be used, which is in
turn based on observation of the remodeling phenomenon of
the trabecular bone. The important thing, as presented in the
paper, is to indicate how to determine the value of the energy
density on the structural surface. Naturally, this value should
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be based on strength hypotheses, because the material proper-
ties determine the acceptable load on any part of the structure.
The presented discussion allows, after assuming the strength hy-
pothesis, to solve this problem. The paper discusses two strength
hypotheses, the Huber-Mises-Hencky hypothesis and the Tresca
hypothesis, and for these hypotheses presents formulas combin-
ing the reduced stress calculated according to the hypothesis and
the value of the energy density on the surface of the optimized
structure. Examples using the Huber-Mises-Hencky hypothe-
sis are presented. In this way, a procedure was developed that
allows shape optimization without the volume condition, but in-
stead with the assumption of material strength parameters. From
the point of view of engineering practice this gives a much better
solution than guessing the correct first the domain and second
the volume constraint, which in addition has the disadvantage
that in view of the nonlinearity of the solution space there is
no certainty of achieving the correct solution. Two more things
should be noted: — the postulate of correlating the value of the
energy density on the surface with the properties of the material
applies to the target configuration, — for the proper use of the
features of such an approach (for example, solving the problem
of multiple load cases), it is necessary to determine the location
and size of the insensitivity zone. The approach presented in
the paper therefore, requires the development of heuristics that
allow achieving the assumed goal in the numerical procedure
regardless of the initial configuration. Such heuristics have been
developed and operate independently of the starting point, as
shown by the numerical examples. The procedure works stably
and has been programmed with the assumption of using parallel
processing, which allows for thinking about the industrial ap-
plication of the developed programs. It should be emphasized
that without the need for filtering and the use of artificial ma-
terial definition, the proposed approach leads directly to mass
minimization. Additionally, the problem of many load cases and
changes in the shape and topology of the structure associated
with the change of the used material are an inherent feature of the
presented approach. The final result is a geometric model that
can be produced using additive methods [45]. Also in this con-
text, the presented method is a promising direction for further
research.
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