N

www.czasopisma.pan.pl m www journals.pan.pl

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 74(1), 2026, Article number: e156765
DOI: 10.24425/bpasts.2025.156765

CONTROL, INFORMATICS AND ROBOTICS

Fault detection method for DFIG based on particle
swarm optimized sliding mode observer

Tingting XIE'®*, Hongwei ZHANG?2, and Chenjia NI3

1 Shanghai Industrial and Commercial Polytechnic, Shanghai 200000, China
2 Jiangsu Hongdou Energy Technology Co., Ltd, Wuxi 214000, China
3 Harbin Welding Institute Limited Company, Harbin 150000, China

Abstract. The traditional sliding mode observer can achieve effective fault detection by reconstructing the doubly-fed induction generators
(DFIG) model and comparing it with the measurable state quantity. However, unreasonable sliding mode observer parameters will greatly reduce
the accuracy of fault detection and even cause false alarms. Aiming at the difficulty of selecting sliding mode parameters, this paper proposes
to combine particle swarm optimization (PSO) algorithm with sliding mode observer for fault detection of DFIG. This method can obtain
extremely high observation accuracy while minimizing chattering in the observer. First, this paper designs a sliding mode observer based on the
mathematical model of the DFIG. Then, the PSO algorithm is used to find the optimal sliding mode observer gain. Finally, the normal operating
conditions, the voltage drop fault of the grid terminal and the rotor current sensor fault are set, and on this basis, Simulink simulation models
under different fault conditions are established. After comparing the actual rotor current value and the residual error of the observed value, the
fault detection is realized. It is proven by simulation that this sliding mode observer can realize fault detection well, and it can be seen that the

sliding mode observer has the characteristics of fast response speed and high accuracy.
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1. INTRODUCTION

Doubly-fed induction generators (DFIG) are currently the most
widely used wind generators. It consists of a wound asyn-
chronous generator with a stator winding directly connected to
a fixed frequency three-phase grid and a back-to-back converter
installed on the rotor winding [1]. Mainly through power elec-
tronic technology, vector control technology and microcomputer
information processing technology to achieve high-performance
control of DFIG, so as to obtain a stable, high-quality electrical
energy. Due to the complex internal structure and harsh oper-
ating environment of DFIG, the system components are prone
to electrical and mechanical failures. Once a failure occurs in
the system, it will cost a lot to repair the failure. Therefore,
the DFIG control system should have the ability to detect early
faults online, improve the reliability of wind turbines, and reduce
maintenance costs [2—4].

There are currently two common fault detection methods.
One is a method that does not rely on analytical models [5, 6],
such as neural network algorithms and support vector machines.
The other is methods that rely on analytical models [7, 8],
such as Kalman filters, state observers. [9] imported the vibra-
tion signal characteristics of wind turbines into a long short-
term memory (LSTM) network for training to detect early
failures of wind turbines. Since the supervisory control and
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data acquisition (SCADA) system of the wind turbine genera-
tor provides a wealth of sensor information, [10] developed a
multiscale spatio-temporal convolutional deep belief network
(MSTCDBN). By capturing the hidden spatio-temporal fea-
tures in SCADA data, feature learning and classification are
performed to achieve DFIG fault detection. This method can
not only learn the spatial correlation information between sev-
eral different variables, but also capture the temporal charac-
teristics of each variable. In view of the limited fault data set
collected during the actual operation of wind turbines, [11]
proposed a data enhancement method based on Hermite inter-
polation, and then diagnosed wind turbine faults by designing a
spherical data model. [12] proposed a dendritic cell algorithm
(DCA) based on the immune system (IS) inspired mechanism.
In the case of given dual sensor redundancy, both detection and
sensor failure can be isolated. For the faults caused by sensor
aging, [13] is characterized by the slow change of the sensor
measurement noise covariance matrix. The quality information
of the weighted innovation sequence is used to estimate the sen-
sor noise covariance. In the fault detection method based on
the analytical model, the estimated value is obtained by setting
the fault observer. Determine whether a fault occurs according
to the observation residuals, which provides an effective way
for the measurement of status information. It avoids the sys-
tem expenditure and hardware complexity caused by traditional
measurement methods. [14] and [15] studied the stability of the
rotor current when the stator voltage is affected by a nearby grid
fault. A fault observer is proposed to detect the stator voltage
fault and determine the appropriate switching time of the fault
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stabilizer. In [16], a new diagnostic method based on an aug-
mented state and disturbance observer is proposed for DFIG to
handle insulated gate bipolar transistor (IGBT) faults, rotor and
stator current sensor outages, and stator voltage sensor outages.
Sliding mode observer can remain insensitive to external dis-
turbances when observing nonlinear systems, and are widely
used in fault diagnosis. In order to improve the reliability of the
cascaded brushless doubly-fed induction generator wind energy
conversion system (CBDFIG-WECS), [17] designed a sliding
mode observer to detect faults based on the residual of the ob-
servation signal and the measurement signal.

But there are still some problems with sliding mode observers:
Observer gain is usually obtained through experience. Unrea-
sonable gain selection often occurs, but a larger gain may cause
chattering of the observed value, and a smaller gain makes
the observed value converge too slowly, or even diverge. Par-
ticle swarm optimization (PSO) is one of the most well-known
swarm intelligence-based optimization techniques inspired by
nature [18, 19]. Owing to its flexibility and ease of implemen-
tation, it has been widely applied in various optimization sce-
narios. For example, in [20], the PSO technique is employed
to enhance the performance of the observation process by opti-
mally tuning the parameters of a Luenberger observer according
to a specified performance index. Motivated by this, the present
paper proposes a PSO-optimized sliding mode observer (PSO-
SMO) for fault detection of DFIGs, aiming to determine the
optimal observer gains and thereby improve fault detection ca-
pability. The simulation proves that the method can obtain the
best gain of the sliding mode observer, and has the character-
istics of fast response and high observation accuracy. The rest
of this paper is arranged as follows: Section 2 introduces the
PSO algorithm. Section 3 introduces the design of PSO-SMO
method. In Section 4, the convergence analysis of the sliding
mode observer is carried out. In Section 5, we discuss the use
of PSO-SMO to perform fault detection experiments on DFIG
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faults under three different operating conditions. The last section
summarizes the paper. Figure 1 is a control structure diagram
of DFIG based on stator voltage orientation [21].

2. PSO ALGORITHM PRINCIPLE

PSO is a swarm intelligence algorithm. Each particle in the
algorithm represents a potential solution to the problem, and
each particle obtains the corresponding fitness value according
to the fitness function. The speed of a particle determines the
direction and distance of the particle movement, and the speed
is dynamically adjusted according to the movement experience
of itself and other particles, so as to realize the optimization of
the individual in the solvable space [22].

Suppose there is a population X = (X1, X, ...X,,) composed
of n particles in a D-dimensional search space, where the
i-th particle is represented as a D-dimensional vector X =
(Xi1,Xi2,...X;p)T, namely the position of the ith particle in
the D-dimensional search space. Calculate the fitness value cor-
responding to each particle position X according to the fitness
function F(X;).

The velocity of the i-th particle is V = (V;1,Vja,...Vip)T, is,
and the optimal position it has found so far is called the individ-
ual extreme value Ppeg = (Pi1, Pi2,...Pip)T. In each iteration
process, the particle updates its own speed and position accord-
ing to the individual extreme value and the global extreme value.
The update formula is as follows:

Vi = wVieern (Pl = xty )+ ear (PE = xE). ()

k+1 _ vk k+1
Xia = XiatVia 2)
where d = 1,2,...,D,i =1,2,...,n, w is the inertia weight, k is
the current iteration times, V;4 is the velocity of the particle, ¢
and c; are acceleration factors, r; and r, are random numbers
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Fig. 1. DFIG control structure diagram of sliding mode observer for stator voltage orientation
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distributed between [0,1]. In order to prevent blind search of
particles, the position and velocity are limited to [ —Xmax, Xmax s
[—Vimax, Vmax] respectively.

3. OBSERVER DESIGN
3.1. Mathematical model of DFIG

The DFIG uses a wound three-phase asynchronous motor. In
order to independently control the active power and reactive
power of the DFIG, the stator voltage-oriented vector control
method is used to transform the three-phase static coordinate
system into a synchronous rotating coordinate system [23, 24].
In this paper, the rotor current is the observation object, so only
the state space model of the rotor current is considered

= Ai, +Bu+f,
{” irBut 3)
y=Ci,,
where
[—RyL2, R,
- Ws — Wy
A= |OLiL, oLy
-R,L2, R, |
Wr=ws o
O'LSLr oL,
-L 1 wfr—w
m 0 0| [T—Lw,
B |LsLr oL, oL, L
- —L, 1 |” | RsLmts
0 0 — L,
olLgL, oL, oLy

3.2. Design of sliding mode observer

According to the mathematical model of DFIG, a sliding mode
observer is established. The structure is as follows:

“4)

ir = Al +Bu+ f+eq,
y =Ciy,

where u,,, is the equivalent control item.
. s ig
Let the sliding mode surface s = 4 = . .Cfr , then the
Sq igr—igr
error equation can be obtained by subtracting (3) from (4)

idr -

§=As+leq . )
Let § = 0, the equivalent control item can be obtained
Ueg = —As. (6)

In order to improve the robustness of the observer and ensure
that the sliding mode reachability condition is established, that
is, 5§ < 0.

On the basis of the above observer, the switching control item
Ugm s added, as shown in (7)

05 ..
kisqa+er|sq| sign(sq)

Usw = 05 . . @)
kysq+ey|sq|  sign(sq)
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In summary, the sliding mode observer established in this pa-
per is

i = Al +Bu+ f +v,
{r et ®)
y = Clr 9
where v = utoq + 4, is the sliding mode control law, then
y = VIl (9)
V2
(Rl R 0.5 o
——|Sa+t +kisq+ :
_ (aL%Lr oL, ) St @rsatkisaterlsal sign(sa)
) _Rstm R, 0.5 .
—Wy+t ——— s, +kas,+er|s sien (s
| ! (O'L%Lr oL, ) 4T 2sq| " sign (sq)

When the observer satisfies the Lyapunov’s stability theorem,
the system state error will reach the sliding mode surface within
a finite time, that is, the observer converges. Among them, the
gain of a sliding mode observer k1, k2, €1, €7 is very important
to the performance of the observer. When the gain selection
of the sliding mode observer is unreasonable, it will directly
affect the overall performance of the observer. When the gain
selection of the sliding mode observer is unreasonable, it will
directly affect the overall performance of the observer, and cause
serious false alarms. In order to improve the robustness, a larger
gain parameter is usually required, but this may cause chattering
of the observed value. The smaller gain makes the observation
value converge too slowly, and the anti-interference ability is
insufficient. Therefore, this paper applies the PSO algorithm
and designs the objective function needed to find the optimal
gain of the sliding mode observer, so as to solve the parameter
selection problem of the sliding mode observer.

Through the mathematical model of the DFIG, the PSO algo-
rithm and the design of the sliding mode observer, the structure
of the rotor current observer is shown in Fig. 2. It is divided
into two parts, namely the rotor current sliding mode observer
part and the PSO algorithm optimization part. The rotor current
observer is built according to (8), and the PSO optimization
module is built according to Section 2 in the text, where R, is
the preset lower limit of fitness, and F (X;) is the fitness function.
In order to minimize the chattering of the sliding mode observer
and obtain higher observation accuracy, the fitness function is
designed as

T T

F(X)=«a /t|sd|dt+‘/t|sqidt
i) )
1
T T
+B /t|sd|dt—/l|sq|dt . (10)
i) 0
2

where [#9,T] represents the convergence interval of the sliding
mode observer. The goal of the first part of (10) is to minimize
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Fig. 2. PSO-SMO principle diagram

the steady-state error of the rotor currents of the d and g axes, as
expressed in the first part of (10). Meanwhile, to avoid extreme
cases (where the observation error of one axis current is large
while the error of the other axis current is small, causing the
overall fitness value to still appear minimal), an additional term
related to the rotor current errors of the d-axis and g-axis is
introduced, namely the second part of the equation.

[to,T] is the convergence interval of the sliding mode ob-

server. At the same time, in order to avoid extreme situations
(the observation error of one axis current is large, while the
other axis current error is small, so that the overall fitness value
is still at the minimum). Therefore, an error function of the rotor
current between the d-axis and the g-axis is added, which is
shown in the second part of (10). @ and g are the weight ratio.
By adjusting the relative size, the importance of each partin (10)
can be expressed separately.

The steps of the PSO-SMO algorithm:

1. Initialize the particle swarm. Including the group size n, the
position X; and velocity V; of each particle are randomly
generated, at this time k = 1.

2. Assign each particle to the control rate v, and calculate the
fitness value F(X;) of each particle according to 10.

3. For each particle X;, compare its fitness value F(X;) with
the fitness value F'(Ppeg (i) of the individual extreme value
Presi (i), if F(X;) < F(Puest(i)), replace F(Ppeg(i)) with
F(X;).

4. For each particle X;, compare its fitness value F(X;) with
the fitness value F(Gpes) of the population extremum G peg.
If F(X;) < F(Ghpest), replace F(Gpest) With F(X;).

5. Update the velocity (Xl.k and position (Vl.k of particle ac-
cording to (1) and (2), at this time k = k + 1, and then return
to step 2. If the termination condition is met (the maximum
number of iterations or F(X;) < Ry is reached), the algo-
rithm is exited and the optimal solution ki, k;, €1, & is
obtained.

4. CONVERGENCE ANALYSIS
4.1. Stability analysis

Theorem 1. Define the Lyapunov function as follows:
T (11)
=5 5.
2
If V=sTs+sTs <0, the observer converges progressively.

Proof.

V=sTs+sTs

o]

=2 (s'dsd +§qsq)

oo [

Sq

3/2
:2(—k1s2—61 |sd|3/2—k2s5 —82|Sq| / )

Since ki, kp, &1 and &, are positive real number, V <0. Ac-
cording to the Lyapunov’s stability theorem, the sliding mode
observer is stable. O

4.2. Robustness

In order to enable the sliding mode observer to accurately ob-
serve the rotor current in the presence of interference, it is nec-
essary to analyze the robustness of the sliding mode observer.

Theorem 2. Consider the rotor current model with uncertain
d M
interference d(t), when d(t) = H< T
d» M,
of sliding mode control law, the observer error will converge to
the following region

, under the action
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Proof. In the case of interference, the mathematical model of
the system is

{;:Ay+Bu+f+d0L (12)

y=Ci,.

The designed sliding mode observer is shown in (8), and sub-
tracting (8) from (12) can be obtained

§= A (i —E) +d () = A (i —1,) + (ks = els|"S -sign(s))

=d(t) —ks—g|s|* - sign(s). (13)

According to Lyapunov’s stability theorem, when s s < 0, the
system is still stable in the presence of interference d(¢).

sTs =8aSa+845q
R,L% R,
- (_crLzL, oL,
—vi+sqdi (D) +(—wy) (iar —fd,)sq

R.L2 R\, .
(—0_222" - o-lr,,) (igr —igr)Sq —Vv2+sqda(1)
rit

) (idr _fdr)sd +wf(iqr —fqr)sd

3
= —klsfl—el |sd|% +s5qd; (1) —kzsg —62|Sq|2 +54d2(1)
< (di=kilsal) Isal+ (d2 = k2 |sq]) |s4]

— €1 |Sd|% —62\Sq|%

(14
di —ki|sg| <0,
hen ! tlsal , then sT5 < 0, and the system con-
dz—k2|sq| <0.
verges. Therefore, the system status error will remain in the
area:

M,
lsal < k_l,
< M, (15)
S —.
q k2
m]

4.3. Convergence in finite time

Theorem 3. Under the action of the control law, the system
error equation is

|0.5

§=—ks—gq|s| sign(s). (16)

If k,& > 0, then s, s will tend to O within a finite time.

Proof. Multiply both ends of (16) by e** at the same time, and
get

d(e* - ‘
% =gk -s|0'5 e -sign(s). (17)
(17) is simplified to
d(e*t-s) K
=—ge 2 dt. (18)

|e’“ -s|0'5 -sign(s)
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Integrate both sides of (18) at the same time to get

sign(s(0)) -4 [Is ()3 + £ - £ e ]2,

ln(l+%|s(0)|0'5)

e

s(1) = ty < 03k 19)
In(1+ £|s(0)]%
0 [ (1+£15(0)[°)
0.5k

From equation (16), it can be seen that a and b will approach 0
within a finite time ¢,-. O

5. SIMULATION EXPERIMENT

This paper mainly analyzes three operating conditions, which
are normal operating conditions, voltage drop faults at the
power grid terminal, and rotor current sensor faults. In order
to verify the feasibility and correctness, this paper uses MAT-
LAB/SIMULINK to build a vector control DFIG simulation
model. According to the residual difference between the ob-
served value of the rotor current output by the built PSO-SMO
module and the actual value, the fault detection of the system is
realized.

Table 1
Main parameters of DFIG system
’ Item ‘ Value ‘ Item ‘ Value ‘
Grid voltage (V) 220 |Nominal power (VA) | 3730
Grid frequency (Hz) 50 | Voltage (line-line) (V)| 460
DC bus voltage (V) 600 | Number of pole pairs 4
Wind speed (m/s) <12 | Rs(Q) 1.115
Wind turbine blade radius (m) | 2 | R,(Q) 1.083
Gearbox transmission ratio 1:3 |Lgs, Loy (mH) 5.974
L 0.2037

5.1. Simulation conditions

The simulation parameters of the PSO-SMO algorithm are as
follows: n=2,w=0.2,c1=c2=04,a=3,8=1,1=0.15s,
T =1 s. The minimum fitness value is preset to be R;;, = 0, the
maximum number of iterations is km,x = 25, and the particle
search range is [0,20000]. When the conditions are met(the
maximum number of iterations kpax =25 or F (Gpest) < R;1,), the
algorithm exits and the optimal gain k1, k7, €1, &3 of the sliding
mode observer is obtained. By comparing with the traditional
sliding mode observer, the effectiveness of the proposed method
is proven, and it has many advantages.

5.2. Normal

In the case of no fault, set the wind speed to 6 m/s, and opti-
mize the sliding mode observer through the PSO algorithm. In
order to reduce the chattering of the observer, the optimization
objective of this paper mainly considers the steady-state process
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of the observer. After the observer converges, the steady-state
error can be regarded as a fixed value. In order to reduce the
time-consuming process of parameter optimization, the steady-
state error within a period of time can be selected to calculate
the fitness function, that is, the integration interval of the fitness
function is set to [#9,7T]. Figure 3 shows the changing process
of the fitness value during the optimization process. When the
fitness value reaches the minimum, it indicates that the gain pa-
rameter is optimal at this time. It can be seen from the figure
that the fitness value gradually decreases during the iteration,
and approaches the minimum value of 9.06- 1073 after 20 it-
erations. Figure 4 shows the gain variation curve of the sliding
mode observer. In the first iteration, k1, k2, €1, &> are randomly
selected. After 20 iterations, each gain curve gradually becomes
stable, and finally the optimal gains are k| = 11892, k, = 11739,
&1 =5189, &, = 8567, respectively.
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Fig. 3. Fitness curve
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The obtained optimal parameters are imported into the sliding
mode observer for fault detection experiments. Figure 5 shows
the tracing curve of the measured and observed values of the
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Fig. 5. Measured and observed tracking curve of rotor current d-axis

rotor current d-axis. Figure 6 shows the error curve between
the measured value and the observed value of the rotor current
d-axis. Two kinds of sliding mode observers are used to observe
the rotor current, namely the traditional sliding mode observer
and PSO-SMO. It can be seen from the observation accuracy
and error curve that the two sliding mode observers can track the
rotor current value well, and the observation error in the steady
state is about 1073, By comparing the traditional sliding mode
observer with PSO-SMO, it can be found that in the process of
reaching the sliding mode surface, the traditional sliding mode
observer has a large error, while the PSO-SMO has a very small
error. In addition, the PSO-SMO observation accuracy is higher
and the response speed is faster. Figure 7 shows the tracking
curve of measured and observed values of rotor current g-axis.
Figure 8 shows the error curve between the measured value and
the observed value of the rotor current g-axis. It has a similar
change process with the d-axis current, and it can still be seen
that PSO-SMO performs better than the traditional sliding mode
observer.
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Fig. 6. Error curve between measured value and observed value
of rotor current d-axis
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Fig. 7. Measured and observed tracking curve of rotor current g-axis
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Fig. 8. Error curve between measured value and observed value
of rotor current g-axis

5.3. Voltage drop failure

In this paper, the input voltage amplitude of the power grid is
311V, the frequency is 50 Hz, and the phase difference is 120°
three-phase alternating current. When a ground fault occurs in
the power grid, a voltage drop will occur. When the fault is set
at 0.6—1.4 s, the three phases A, B, and C of the grid voltage are
all grounded, and the grid voltage returns to the normal value
after 1.4 s. The fault is detected by the designed sliding mode
observer. Since the three phases A, B, and C are all grounded,
the voltage drop amplitude of each phase is the same, and the
voltage drop is set as

ug =Ug(1—h)e™s!, (20)
where Uy is the grid voltage amplitude, w, is the grid voltage
electrical angular velocity, and # is the percentage of the fault
degree. Figure 9 shows the tracing curve of the measured and
observed values of the rotor current d-axis. Figure 10 shows

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. 156765, 2026

——— Measured i
dr
60 F Conventional SMO id‘_ e

PSO-SMOi
40 F ! .

20 a

/
o
60
40 d
-40 20
0

-60 i 06 06l

-100 F — 1

Fig. 9. Measured and observed tracking curve of rotor current d-axis

15 F PSO-SMO error idr =
Conventional SMO error i
dr
10 8
5 |- -

. . ﬂu,

5 / \
d0f 1 1
0.5 5
A5F 0 0 .
4 15 16

Error i dr(A)

0.6 0.610.62 -5

25t ‘ ‘ ‘ ]

0 0.5 1 1.5 2
t/s

Fig. 10. Error curve between measured value and observed value
of rotor current d-axis

the error curve between the measured value and the observed
value of the rotor current d-axis. When the fault is added in
0.6 s, the sliding state is broken. The current value fluctuates
greatly at first, and then quickly tends to O to reach a new bal-
ance. When the fault is removed at 1.4 s, the curve oscillates
greatly, and convergence is reached again after 1.6s. It can be
seen from the error curve that PSO-SMO has a smaller error,
converges to 0 faster, and is more robust than traditional sliding
mode observer. Figure 11 shows the tracking curve of measured
and observed values of rotor current g-axis. Figure 12 shows
the error curve between the measured value and the observed
value of the rotor current g-axis. It has a similar change process
with the d-axis current. By observing the residual value of the
rotor current measurement value and the observation value, the
fault detection of the system can be realized. At 0.6 s, the sliding
mode is broken. The error value suddenly jumps to —0.15, and
then gradually converges to 0, so it is judged that the system is
malfunctioning at 0.6 s. The same is true for the g-axis. In ad-
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dition, by comparing the PSO-SMO with the traditional sliding
mode observer, it can be found that the traditional sliding mode

observer has a great error when encountering a fault, while the
PSO-SMO still has high stability.

5.4. Sensor failure

When the rotor current sensor fails, the rotor current sensor
can be used for fault detection. Set the fault occurrence time to
0.7-1.2s, and the fault value is

0 0<tr<0.7
d=1{ 2 07<r<12 21
0 r>1.2.

Figure 13 shows the tracing curve of the measured and ob-
served values of the rotor current d-axis. Figure 14 shows the
error curve between the measured value and the observed value
of the rotor current d-axis. The result shows that the observa-
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Fig. 13. Measured and observed tracking curve of rotor current d-axis
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Fig. 14. Error curve between measured value and observed value
of rotor current d-axis

tion curve is basically consistent with the actual curve. When a
fault is added at 0.7 s, a sudden change occurs in the curve, and
then the error quickly approaches zero. When the sensor failure
was removed at 1.2 s, the error curve showed small fluctuations,
and then it quickly approached zero. Combining the observation
curve and the error curve, it can be found that the sensor fail-
ure will break the sliding mode, and the normal sliding mode
motion state cannot be restored during the failure period, so the
sliding mode observer is very sensitive to the sensor failure.
Figure 15 shows the tracking curve of measured and observed
values of rotor current g-axis. Figure 16 shows the error curve
between the measured value and the observed value of the rotor
current g-axis. It has a similar change process with the d-axis
current. In addition, comparing PSO-SMO with traditional slid-
ing mode observers, it can be seen that the designed method has
faster convergence speed and stability.

The three operating conditions of DFIG are analyzed above.
This paper proposes the PSO-SMO method to observe the ro-
tor current. Under normal operating conditions, the observation

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. €156765, 2026
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error fluctuates around zero. When there is a large error be-
tween the measured value and the observed value, it indicates
that the system may be malfunctioning. In summary, the PSO-
SMO designed in this paper can observe the rotor current well.
Compared with the traditional sliding mode observer, the re-
sponse speed is faster, the accuracy is higher, and the chattering
is smaller.

6. CONCLUSIONS

Due to improper selection of sliding mode parameters, the obser-
vation performance of the observer will be degraded, resulting
in false alarms in fault detection. Therefore, for the problem
that the parameters of the sliding mode observer are not easy
to select, this paper uses the combination of the PSO algorithm
and the sliding mode observer for fault detection of the DFIG.
Compared with the traditional sliding mode observer, the pro-
posed PSO-SMO method has better observation accuracy. In the
event of failure, it has better stability and sensitivity. In addition,

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. 156765, 2026

this paper sets up two types of faults, namely grid voltage drop
fault and rotor current sensor fault. Through the designed slid-
ing mode observer, three operating conditions are simulated and
analyzed. The simulation results show that the designed sliding
mode observer is sensitive to the failure of DFIG, and has the
advantages of fast convergence speed, high accuracy and good
stability.

REFERENCES

[1] H. Benbouhenni, N. Bizon, M.I. Mosaad, I. Colak, A.B. Djilali,
and H. Gasmi, “Enhancement of the power quality of dfig-based
dual-rotor wind turbine systems using fractional order fuzzy
controller,” Expert Syst. Appl., vol. 238, p. 121695, 2024, doi:
10.1016/j.eswa.2023.121695.

[2] A.D. Bebars, A.A. Eladl, G.M. Abdulsalam, and E.A. Badran,
“Internal electrical fault detection techniques in dfig-based wind
turbines: A review,” Prot. Control Mod. Power Syst., vol. 7, no. 2,
pp. 1-22, 2022, doi: 10.1186/s41601-022-00236-z.

[3] X. Jin, Z. Xu, and W. Qiao, “Condition monitoring of wind
turbine generators using scada data analysis,” IEEE Trans. Sus-
tainable Energy, vol. 12, no. 1, pp. 202-210, 2021, doi: 10.1109/
TSTE.2020.2989220.

[4] H.Habibi, I. Howard, and S. Simani, ‘“Reliability improvement of
wind turbine power generation using model-based fault detection
and fault tolerant control: A review,” Renew. Energy, vol. 135,
pp. 877-896, 2019, doi: 10.1016/j.renene.2018.12.066.

[5] C.Xiao,Z. Liu, T. Zhang, and X. Zhang, “Deep learning method
for fault detection of wind turbine converter,” Appl. Sciences,
vol. 11, no. 3, p. 1280, 2021, doi: 10.3390/app11031280.

[6] S. Ranjan Kabat, C. Kumar Panigrahi, and B. Prasad Ganthia,
“Fuzzy logic based fault current prediction in double fed induc-
tion generator based wind turbine system,” Mater. Today-Proc.,
vol. 80, pp. 2530-2538, 2023, doi: 10.1016/j.matpr.2021.06.403.

[7] M. Kamarzarrin, M.H. Refan, and P. Amiri, “Open-circuit faults
diagnosis and fault-tolerant control scheme based on sliding-
mode observer for dfig back-to-back converters: Wind turbine
applications,” Control Eng. Pract., vol. 126, p. 105235, 2022,
doi: 10.1016/j.conengprac.2022.105235.

[8] Y. Zhang, T. Jiang, and J. Jiao, “Model-free predictive current
control of a dfig using an ultra-local model for grid synchroniza-
tion and power regulation,” IEEE Trans. Energy Convers.,vol. 35,
no. 4, pp. 2269-2280, 2020, doi: 10.1109/TEC.2020.3004567.

[9] M. Li, D. Yu, Z. Chen, K. Xiahou, T. Ji, and Q.H. Wu, “A data-
driven residual-based method for fault diagnosis and isolation in
wind turbines,” IEEE Trans. Sustainable Energy, vol. 10, no. 2,
pp- 895-904, 2019, doi: 10.1109/TSTE.2018.2853990.

[10] H. Wang, H. Wang, G. Jiang, Y. Wang, and S. Ren, “A multi-
scale spatio-temporal convolutional deep belief network for sen-
sor fault detection of wind turbine,” Sensors, vol. 20, no. 12,
p- 3580, 2020, doi: 10.3390/s20123580.

[11] W. Yu, Y. Lu, and J. Wang, “Application of small sample virtual
expansion and spherical mapping model in wind turbine fault
diagnosis,” Expert Syst. Appl., vol. 183, p. 115397, 2021, doi:
10.1016/j.eswa.2021.115397.

[12] E. Alizadeh, N. Meskin, and K. Khorasani, “A dendritic cell
immune system inspired scheme for sensor fault detection and
isolation of wind turbines,” IEEE Trans. Ind. Inf., vol. 14, no. 2,
pp. 545-555, 2018, doi: 10.1109/TT1.2017.2746761.


https://doi.org/10.1016/j.eswa.2023.121695
https://doi.org/10.1186/s41601-022-00236-z
https://doi.org/10.1109/TSTE.2020.2989220
https://doi.org/10.1109/TSTE.2020.2989220
https://doi.org/10.1016/j.renene.2018.12.066
https://doi.org/10.3390/app11031280
https://doi.org/10.1016/j.matpr.2021.06.403
https://doi.org/10.1016/j.conengprac.2022.105235
https://doi.org/10.1109/TEC.2020.3004567
https://doi.org/10.1109/TSTE.2018.2853990
https://doi.org/10.3390/s20123580
https://doi.org/10.1016/j.eswa.2021.115397
https://doi.org/10.1109/TII.2017.2746761

[13]

[14]

[15]

[16]

(17]

(18]

10

N

www.czasopisma.pan.pl ?@ www journals.pan.pl

T. Xie, H. Zhang, and C. Ni

A. Madhag and G. Zhu, “Online sensor ageing detection using a
modified adaptive filter,” Int. J. Autom. Control, vol. 14, no. 2,
pp- 187-212, 2020, doi: 10.1504/1IJAAC.2020.105518.

H. Bastami, A.H. Abolmasoumi, and A.A. Ghadimi, “Stator volt-
age fault detection and optimal rotor current limiting in doubly
fed induction generators,” Int. Trans. Electr. Energy Syst., vol. 27,
no. 5, p. 2292, 2017.

F. Shi and R. Patton, “An active fault tolerant control approach
to an offshore wind turbine model,” Renew. Energy, vol. 75, pp.
788-798, 2015, doi: 10.1016/j.renene.2014.10.061.

M.-A. Yahiaoui, M. Kinnaert, and J. Gyselinck, “Augmented-
state-observer-based diagnostics of open-circuit and sensor faults
in dfig wind turbines,” IEEE Trans. Power Electron., vol. 38,
no. 12, pp. 16085-16099, 2023, doi: 10.1109/TPEL.2023.
3309737.

M. Hou and H. Shi, “Stator-winding incipient shorted-turn fault
detection for motor system in motorized spindle using modified
interval observers,” IEEE Trans. Instrum. Meas., vol. 70, pp.
1-16, 2021, doi: 10.1109/TIM.2020.3040994.

F. Marini and B. Walczak, “Particle swarm optimization (pso).
a tutorial,” Chemom. Intell. Lab. Syst., vol. 149, pp. 153-165,
2015, doi: 10.1016/j.chemolab.2015.08.020.

(19]

(20]

(21]

[22]

(23]

[24]

M. Jain, V. Saihjpal, N. Singh, and S.B. Singh, “An overview
of variants and advancements of pso algorithm,” Appl. Sciences,
vol. 12, no. 17, p. 8392, 2022, doi: 10.3390/app12178392.

R. Luo, Z. Wang, and Y. Sun, “Optimized luenberger observer-
based pmsm sensorless control by pso,” Modell. Simul. Eng., vol.
2022, no. 1, p. 3328719, 2022.

R. Li, W. Yu, J. Wang, Y. Lu, D. Jiang, G. Zhong, and Z. Zhou,
“Fault detection for dfig based on sliding mode observer of new
reaching law,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3,
p. €137389, 2021, doi: 10.24425/bpasts.2021.137389.

L. Jia and X. Zhao, “An improved particle swarm optimization
(pso) optimized integral separation pid and its application on
central position control system,” IEEE Sens. J., vol. 19, no. 16,
pp. 7064-7071, 2019, doi: 10.1109/JSEN.2019.2912849.

S. Drid, M. Tadjine, and M.-S. Nait-Said, “Robust backstepping
vector control for the doubly fed induction motor,” IET Control
Theory Appl., vol. 1, no. 4, pp. 861-868, 2007.

D.D. Reigosa, J.M. Guerrero, A.B. Diez, and F. Briz, “Ro-
tor temperature estimation in doubly-fed induction machines
using rotating high-frequency signal injection,” IEEE Trans.
Ind. Appl., vol. 53, no. 4, pp. 3652-3662, 2017, doi: 10.1109/
TIA.2017.2684742.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. €156765, 2026


https://doi.org/10.1504/IJAAC.2020.105518
https://doi.org/10.1016/j.renene.2014.10.061
https://doi.org/10.1109/TPEL.2023.3309737
https://doi.org/10.1109/TPEL.2023.3309737
https://doi.org/10.1109/TIM.2020.3040994
https://doi.org/10.1016/j.chemolab.2015.08.020
https://doi.org/10.3390/app12178392
https://doi.org/10.24425/bpasts.2021.137389
https://doi.org/10.1109/JSEN.2019.2912849
https://doi.org/10.1109/TIA.2017.2684742
https://doi.org/10.1109/TIA.2017.2684742

	Introduction
	PSO ALGORITHM PRINCIPLE
	 OBSERVER DESIGN
	Mathematical model of DFIG
	Design of sliding mode observer

	 Convergence analysis
	Stability analysis
	Robustness
	Convergence in finite time

	SIMULATION EXPERIMENT
	Simulation conditions
	Normal
	Voltage drop failure
	Sensor failure

	Conclusions

