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ESTIMATION OF CUTTING FORCE MODEL 
COEFFICIENTS WITH REGULARIZED INVERSE 

PROBLEM 

Piotr Pawełko, Bartosz Powałka, Stefan Berczyński 

S u m m a r y  

In this paper, a method for estimation of cutting force model coefficients is proposed. The method 
makes use of regularized total least squares to identify the cutting forces from the measured 
acceleration signals and the frequency response function (FRF) matrix. An original regularization 
method is proposed which is based on the relationship between the harmonic components of the 
cutting forces. Numerical tests are performed to evaluate the effectiveness of the method. The 
method is compared with unregularized methods and common Tikhonov regularization combined 
with GCV and L-curve methods. It was found that the proposed method provides more accurate 
estimates of the cutting force coefficcients than the unregularized method and common 
regularization techniques. Furthermore the influence of  acceleration measurement errors, FRF matrix 
errors and FRF matrix conditioning on the accuracy of the estimated coefficients is investigated. It 
was concluded that FRF matrix errors influence the most the accuracy of the results. 
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Estymacja współczynników modelu siły skrawania z zastosowaniem technik regularyzacji  

S t r e s z c z e n i e  

W artykule zaproponowano metodę estymacji współczynników modelu siły skrawania. Metoda 
stosuje regularyzowaną technikę ortogonalnych najmniejszych kwadratów dla identyfikacji sił 
skrawania na podstawie mierzonych sygnałów przyśpieszeń oraz macierzy częstotliwościowych 
funkcji przejścia. Zaproponowano oryginalną metodę regularyzacji opartą na zależności pomiędzy 
składnikami harmonicznymi sił skrawania. Przeprowadzono symulację numeryczną weryfikującą 
skuteczność metody. Przedstawiona metoda jest porównana z podejściem bez regularyzacji oraz 
regularyzowanym metodą Tikhonova stosowaną wraz z metodami GCV oraz L-curve. Pozwala 
uzyskać dokładniejsze oszacowanie wartości współczynników niż estymacja bez regularyzacji lub z 
regularyzacją Tikhonova. Dokonano również oceny wpływu błędu pomiaru przyśpieszeń, błędów 
macierzy funkcji przejścia oraz jej uwarunkowania na dokładność estymowanych współczynników. Na 
podstawie przeprowadzonej analizy wykazano, że największy wpływ mają błędy macierzy funkcji 
przejścia.  

Słowa kluczowe: identyfikacja siły, przyspieszenia, macierzy częstotliwościowych funkcji przejścia, 
regularyzacja, model siły skrawania 
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1. Introduction 

The measurement of cutting forces is required to estimate the cutting force 
model coefficients. The coefficients of the mechanistic force model are 
frequently used to produce stability lobes diagrams that provide cutting 
parameters that ensure stable machining. Such cutting coefficients are very often 
determined directly from the milling tests for the specific material-cutting tool 
pair. During the cutting test the cutting forces are measured by a force 
dynamometer and then the coefficients of the force model are estimated to fit the 
analytically expressed forces to the experimental ones [1-5]. Such an approach is 
recommended in research laboratories but it is not favored in industrial practice 
for numerous reasons. For instance, usage of a dynamometer in an industrial 
plant during production is troublesome. This is due to the fact that mounting  
a dynamometer requires changes to a fixture as well as modification of the NC 
code. This leads to not only production disruption but also increases costs.  

This paper presents a method for estimating cutting force model 
coefficcients using acceleration signals that can be easily measured without 
disrupting the production process. Cutting forces can be estimated by using the 
experimentally measured frequency response function and applying inverse 
identification techniques [6].  

The cutting forces model is presented in Section 2 and the FRF matrix 
construction is shown in Section 3. The time domain representation of cutting 
forces is transformed into frequency domain and harmonic components of 
cutting forces are used to derive the regularization matrix in Section 4. Section 5 
describes the numerical experiment. The objective of the numerical studies was 
to compare the proposed regularization method with unregularized solutions and 
common regularization techniques. Addditionally, the influence of various 
factors on the solution i.e. acceleration measurement error, impact force 
measurement error, conditioning of the FRF matix and error of the FRF matrix 
were investigated. It was found that the proposed approach provides an accurate 
estimation of coefficients that relate cutting forces with the chip cross-sectional 
area.  

2. Force model 

Mechanistic cutting force models assume that cutting forces are 
proportional to the chip cross-sectional area. The constants that relate to such 
cutting forces and the chip cross-sectional area are called specific cutting force 
coefficients. They depend on cutter geometry, inserts and piece materials as well 
as cutting conditions. Mechanistic cutting force models often incorporate the 
effect of the cutting edge which is proportional to the depth of cut. The constants 
of proportionality are referred to as edge constants. Then the tangential, ciF , 
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radial, tiF  and axial, aiF  cutting forces acting on the ith cutting edge (Fig. 1) are 

functions of instantaneous chip thickness ( )izf ϕsin  and depth of cut ap: 

( ) ( )( )( ) ( )( )
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where: zf  is feed per tooth (mm) and iϕ  is instantaneous angular location of the 

ith cutting edge, t is time, the coefficients tc KK ,  and aK are the specific cutting 

force coefficients in tangential, radial and radial directions respectively. The 
coefficients tece KK ,  and aeK are the edge constants, the enterϕ and exitϕ  are 

immersion angles at entry and exit state.  
 

 

 
 

Fig. 1. Geometry of the end milling process 
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Local cutting forces from the working cutting edges expressed by formula 
(1) can be easily transformed into feed xF , cross-feed yF  and axial zF global 

forces (Fig. 1). For a cutter with z cutting edges it takes the following form: 

 ( )
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where ( ) ( ) ( ) ( ) T

x y zt t t t =  F F F F    

Global cutting forces (2) can be expressed as a function of cutting coefficients: 

 ( ) ( )t t=F W K  (3) 

Where [ ]c ce t te a aeK K K K K K=K  and  
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Cutting forces ( )tF  can be transformed into a frequency domain by applying 

Fourier transform to equation (3): 

 ( ) ( )ω ω=F W K  (5) 

Since ( )tW  is a periodic function that results from the periodic pulse functions 

( )ih t . Its Fourier transform is represented by the spectral lines spaced along the 

frequency axis at intervals 2tω π τ= . The time period τ  depends on spindle 

speed N [RPM] and number of cutting edges z, ( )60 Nzτ = . Thus the kth 

harmonic component of the cutting force vector is 

 ( ) ( )t tk kω ω=F W K  (6) 
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Frequently the Z-direction is much stiffer than X and Y and therefore it does not 
significantly influence the stability of the milling process. In such cases, cutting 
force model coefficients aK  and aeK  are not required. Then the matrices ( )tW  

and ( )ωW  are reduced to the first two rows and the first four columns, e.g.: 
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  (7) 

The reduced ( )tW  and ( )ωW  matrics will be referred to as ( )r tW  and 

( )r ωW  respectively. 

3. Frequency response function matrix 

The frequency response function (FRF) is defined as the ratio between the 
harmonic response of the system and the harmonic force. For the purpose of 
stability analysis, the system response is expressed in the form of displacements 
[7]. The FRF matrix that is used for generating stability lobes relates the cutting 
forces to the relative tool-workpiece displacements. Very often, for convenience, 
the FRF matrix used in stability analysis is obtained by performing an impact 
hammer test on the cutting tool and workpiece. The instrumented hammer exerts 
a force in the directions of the cutting forces and an accelerometer is used to 
measure the response of the system at the cutting tool and the workpiece. 

Owing to the fact that it is impossible to mount the accelerometer on the 
tool during cutting, the FRF matrix used for the purpose of force reconstruction 
must be measured at different locations. Moreover, contrary to the FRF matrix 
being used for stability analysis, it can be used for force identification and  
can have any form including accelerance relating measured accelerations signals 

(Fig. 2) ( ) ( ) ( ) ( )1 2 ...
T

La a aω ω ω ω =  a  to the applied force 

( ) ( ) ( ) ( ) T

x y zF F Fω ω ω ω =  F  as: 

  (8) 

When L accelerometers are used for force reconstruction the FRF matrix 
has a form: 

( ) ( ) ( )ω ω ω=a G F
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  (9) 

 

 

 
Fig. 2. Sample location of the sensors used in cutting force reconstruction 

4. Cutting force reconstruction 

4.1. Identification of the cutting force 

The forces generated in the cutting process act on the machine structure 
causing vibrations. The accelerations measured by L accelerometers are related 
to the cutting forces in the frequency domain through the FRF matrix (9). Due to 
the fact that the frequency representation of the cutting forces during a stable cut 
is dominated by the tooth passing frequency, 2 / 60t z Nω π=  and its harmonics 
the response of the structure will be also dominated by these components. 
Fourier coefficients of the measured accelerations at the kth harmonic of the 
tooth passing frequency are: 

 ( ) ( ) ( )t t tk k kω ω ω=a G F  (10) 

Identification of the cutting force is limited to the 2 first harmonics. Considering 
the first two harmonics (k = 1, 2) the following matrix equation can be written: 
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Thus, Fourier coefficients of the cutting forces can be estimated by means of 
least squares (LS).  LS approach consists in minimizing: 
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LS assumes that only the acceleration signal is charged with errors. In order to 
solve more general problems, where the FRF matrix also suffers from errors, the 
total least square (TLS) can be applied. Its application is theoretically justified 
because the frequency response function is usually determined by means of 
impact tests and therefore, the errors in the force and acceleration measurements 
influence its estimate. TLS minimizes a sum of weighted squared residuals: 
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LS and TLS might not provide a good solution when FRF matrix 1 2−G  is nearly 
rank-deficient or it is highly affected by noise. Additionally errors present in the 
acceleration signal may lead to meaningless force harmonics estimates. 
Regularization may be applied in order to stabilize the solution. Frequently 

Tikhonov regularization is applied. It consists in minimizing 1 2−G : 
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Regularization parameter λ is found in the present research using generalized 
cross-validation [8] and L-curve methods [9]. 

The proposed regularization consists in imposing a constraint on the 
solution vector. When equality constrains are applied the formulations of 
regularized least squares and regularized total least squares are as follows: 
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4.2. Regularization matrix 

Regularization matrix L is chosen to obtain a solution with desirable 
properties. In the present paper, derivation of the regularization matrix L consists 
in finding the relationship between the first and second harmonic components of 
the cutting forces. It can be concluded from the matrix W  (4) that only xF  and 

yF  components are related via coefficients , ,c ce tK K K  and teK . 

Usually the stability analysis is performed in X-Y plane because of the high 
stifnness in the axial direction In such a case only cK  and tK coefficients are 

required to model cutting forces. In order to estimate these coefficients feed and 
cross-feed cutting forces must be measured. Applying trigonometric formulas to 
(7) cutting forces can be expressed as: 
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where ( )2 60N tφ π=  is the angular location of the leading cutting edge (i = 1). 

Fourier transforms of these terms due to the periodical nature have non-zero 
values only at harmonics of the tooth passing frequency. When applying the 

(17) 

(18) 
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basic properties of the Fourier transform the 1st and 2nd harmonics of the 
particular terms are: 
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 (19) 

Performing simple operations, we have: 

 ( ) ( ) ( ) ( )5 5
2 2 0

3 3
x t y t x t y tjF F j F Fω ω ω ω+ − − =  (20) 

Thus the regularization matrix L for the searched vector 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
T

x t y t z t x t y t z tF F F F F Fω ω ω ω ω ω    
is:  

 
5 5

1 0 0
3 3

j j
 = − − 
 

L  (21) 

Matrix L imposes the equality constraint: 

 1 2 0− =LF  (22) 

4.3. Estimation of cutting force model coefficients 

Matrix L is used to determine cutting force vector 1 2−F  from (16). The 
obtained cutting force vector harmonic components are then used to calculate the 
cutting force model coefficients ( ), , ,c ce t teK K K K  utilizing formula (6) for the 

reduced matrix ( )r tkωW . The following equation is obtained when one 
separates real and imaginary parts and takes into consideration the first and 
second harmonic of tooth passsing frequency: 
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This equation is used to determine values of cutting force model coefficients 
using LS method. 

5. Numerical experiment 

The aim of the numerical experiment was to compare the accuracy of the 
estimated cutting coefficients obtained based on the cutting forces identified 
with the method of least squares, the orthogonal method of least squares, the 
regularized method of orthoganal least squares and Tikhonov regularization 
combined with GCV and L-curve methods. The factors influencing the errors of 
the estimated cutting coefficients might include experimental inaccuracies of the 
determined FRF matrix as well as inaccuracies of the acceleration signal 
measurement performed during machine cutting. Errors of the frequency 
response functions determined in an impulse test result from the measurement 
errors of the exciting force and the response registered in the form of an 
acceleration signal. The conditioning of the transfer matrix ( )1 2 ω−G  may well 

be an additional factor possibly influencing the error of the estimates. Owing to 
the fact that the conditioning of the FRF matrix depends on frequency, the 
cutting forces were generated for various spindle rotational speeds. The FRF 
matrix used in the numerical experiment was modelled with the use of 3 modes 
of vibrations with natural frequencies of 60, 82 and 103 Hz and corresponding 
modal damping of 0.1, 0.15 and 0.07. It was assumed that 6 acceleration signals 
as shown in Fig. 1 would be used for the identification. Thus, the FRF matrix 

( )1 2 ω−G  has the size of 12x6. 
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The FRF matrix was determined for the assumed system based on  
a simulated impulse test, where both the force loading the system and the 
registered acceleration were burdened with the Gaussian error. The frequency 
response functions were estimated by means of H1 estimator based on  
9 averages. The FRF matrix with errors was used for force reconstruction. 
Figure 3 presents comparison of the precise FRF with the function determined in 
the simulated impulse test. In this test standard deviations in force and 
acceleration measurement were set to 5 N and 0.4 m/s2 respectively. 

 
 

 
 

Fig. 3. Amplitude of the “true” and “measured” frequency response function G1x(w) 

The machine tool structure was excited by cutting forces corrseponding to  
a full immersion cutting with a 2-blade cutter. The cutting forces were 
determined using formula (2) with the assumption of the following values  
of the specific cutting force coefficients of 21000 N/mmtcK = ,

2700 N/mmrcK =  and 2250 N/mmacK =  as well as the edge constants of 

50 N/mmteK = , 30 N/mmreK =  and 15 N/mmaeK =  at depth of cut 

2mmpa = , feed per tooth 0.15 mmzf = . These parameters were kept constant 

throughout the tests and the spindle speed was varied to obtain different tooth 
passing frequencies. 

The acceleration signals were determined based on the simulated (exact  
– Fig. 4) cutting forces and the precise value of the FRF matrix. The acceleration 
signals determined in this way were burdened with errors in the same way  
as was the case in the impulse test simulation. An example of the acceleration 
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(ω
)|
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signal with the assumed random error with standard deviation σ = 0.4 m/s2 is 
presented in Fig. 5.  

 
 

 
Fig. 4. Cutting forces exciting the investigated structure 

 

 
 

Fig. 5. Sample acceleration signal without and with random error 
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The numerical tests were conducted for various levels of errors in force and 
acceleration measurement as well as for various tooth passing frequencies 
(various spindle rotational speeds). Six levels of standard deviations of the  
force measurement error were assumed N as well 

as 9 levels of standard deviations of the acceleration measurement error 
 m/s2 and the following 12 values of 

tooth passing frequencies Hz. Thus, 
648 variants were considered. Each variant was performed 10 times which 
allowed determination of the root mean square error (RMSE). 

In many cases, the coefficients obtained with the use of the TLS method 
assume negative values, which is of no physical meaning. Therefore, the results 
obtained with this method were only presented in Fig. 6. 

 

 
Fig. 6. Influence of acceleration measurements error on the estimation accuracy 

Figure 6 presents values of the root mean square error of the determined 
coefficients obtained for various levels of error in acceleration measurement and 
for the ideal force measurement ( 0[ ]force Nσ = 0 N). It might be concluded that the 

use of the proposed regularization facilitates an improvement in the estimation 
accuracy. The root mean square error in the estimation of coefficients cK  and 

tK  obtained with the proposed RTLS method does not exceed 10% of the added 
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values of these coefficients within the range up to 21.0 [m/s ]accσ = . Tikhonov 
regularization combined with L-curve method were found to be the least 
accurate, giving less accurate results than GCV. This could be expected due to 
the low dimension of the FRF matrix [10]. Slightly better results are obtained 
using Tikhonov regularization and GCV method but it still performs worse than 
LS method without regularization. It should be noted that in the considered 
problem we deal with low condition numbers where the unregularized solution is 
preferable [11]. Similar observations can be made from the Fig. 7 - Fig. 9 where 
the estimators accuracy is expressed as the function of force measurement error, 
condition number and transfer matrix error respectively. 

 

 
 

Fig. 7. Influence of force measurements error on the estimation accuracy 

Figure 7 shows the influence of the error in force measurement during the 
impulse test on the mean square error with the assumed ideal acceleration 
measurement ( ]/[0 2smacc =σ 0 m/s2). The force measurement error on the estimation 

accuracy was observed to be of negligible influence. Within the range of the 
tested values of the standard deviations in the force measurement error, the 
values of the root mean square error are one order lower than for the analysed 
standard deviations in the acceleration signal measurement error.  

Figure 8 presents the influence of the matrix  conditioning on the 
accuracy of the obtained estimates. The course of the curves specifying this 
dependence is similar in terms of quality for all the compared methods. 
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Nevertheless, there is no significant influence of the matrix  conditioning 
on the estimation accuracy: the estimation errors are not proportional to the 
conditional numbers. The conclusion, however, is not of general character, but is 
only related to the conditioning range of the FRF function matrices which were 
present in the conducted numerical experiment. Nonetheless, it might be 
suggested that in similar tasks of inverse identification, the conditioning of the 
FRF matrix is not a factor which decides the estimation accuracy. Therefore, the 
use of methods which improve the conditioning of the FRF matrix (e.g. 
Truncated Singular Value Decomposition) are not expected to bring the 
expected results. 

 

 
Fig. 8. Influence of the FRF matrix conditioning on the estimation accuracy 

Figure 9 illustrates the influence of the errors in the determination of the 

FRF matrix 21G −  on the estimation accuracy. The error was determined as: 
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experimental (error burdened) FRF matrix. 
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Fig. 9. Influence of the FRF matrix error on the estimation accuracy 

The coefficient estimation of the machine cutting process model with the 
use of the RTLS method is much more resistant to the FRF matrix error than the 
LS method and Tikhonov regularization. The root mean square errors of the 
estimators of the coefficients cK  and tK  are characterised by a similar error 
functions. However, for the RTLS method, within the range up to the value of 

Gε =15%, the root mean square error was found to not exceed 10% of the 

precise value of coefficients cK  and tK .  

6. Conclusions  

The article presents a method for identifying the coefficients of the 
mechanistic cutting forces model without the necessity for direct measurement 
of the cutting force. These forces are identified based on the acceleration signals 
measured during machine cutting coupled with the use of the frequency response 
function matrix. An original regularization method was proposed based on the 
relationship between the identified harmonic components of the cutting forces. 
The dependence was obtained based on the mechanistic model of the cutting 
force. As a result of the conducted numerical tests, it was concluded that the 
estimation of the coefficients of the mechanistic model with the use of the TLS 
method extended with the proposed regularization technique is more accurate 
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than the TLS and LS methods. Additionally the Tikhonov regularization 
technique combined with L-curve and GCV were tested. It was found that the 
application of Tikhonov regularization gives less accurate results than the 
unregularized (LS) solution. This is attributed to the low condition number of the 
applied FRF matrix. In addition, the analysis showed that the FRF matrix errors 
have more of a significant influence on the estimation accuracy than matrix 
conditioning.  
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