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Positive linear systems with different fractional orders
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Abstract. A new class of positive linear systems with different fractional orders is introduced. A solution to the set of linear differential

equations with different fractional orders is derived Necessary and sufficient conditions for the positivity of the fractional systems are

established. It is shown that the linear electrical circuits composed of resistors, supercondensators, coils and voltage (current) sources are

positive systems with different fractional orders.
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1. Introduction

A dynamical system is called positive if and only if its tra-

jectory starting from any nonnegative initial state remains

forever in the positive orthant for all nonnegative inputs An

overview of state of the art in positive systems theory is giv-

en in monographs [1, 2]. Variety of models having positive

linear behavior can be found in engineering, management sci-

ences, economics, social sciences, biology and medicine, etc..

Mathematical fundamentals of the fractional calculus are giv-

en in the monographs [3–5]. The positive fractional linear

systems have been introduced in [6, 7]. Stability of fraction-

al linear 1D discrete–time and continuous-time systems has

been investigated in the papers [8–11] and of 2D fractional

positive linear systems in [12]. The notion of practical stabili-

ty of positive fractional discrete-time linear systems has been

introduced in [13] and the relationship between fractional or-

der continuous-time systems configuration and its dynamics

has been analyzed in [3]. Some recent interesting results in

fractional systems theory and its applications can be found in

[14, 15].

In this paper a new class of positive linear systems

with different fractional orders will be introduced. Using the

Laplace transform method the solution to the set of linear dif-

ferent fractional orders differential equations will be derived

and necessary and sufficient conditions for the positivity of

the fractional systems will be established.

The paper is organized as follows. In Sec. 2 the set of lin-

ear differential equations with different fractional orders is in-

troduced and its solutions is derived using Laplace transform

method. Necessary and sufficient conditions for the positivity

of the fractional linear systems are established in Sec. 3. In

Sec. 4 it is shown that the linear electrical circuits are positive

systems with different fractional orders. Concluding remarks

are given in Sec. 5.

The following notation will be used in this paper. The set

of real n × m matrices will be denoted by ℜn×m and the

set of n × m real matrices with nonnegative entries will be

denoted ℜn×m
+ (ℜn

+ = ℜn×1
+ ). The n×n identity matrix will

be denoted by In.

2. Linear differential equations with different

fractional orders and their solutions

In this paper the following Caputo definition of the fractional

derivative will be used

dαf(t)

dtα
=

1

Γ(n − α)

t
∫

0

f (n)(τ)

(t − τ)α+1−n
dτ (1)

where n − 1 < α < n, n ∈ N = {1, 2, ...}

Γ(x) =

∞
∫

0

tx−1e−tdt (2)

is the gamma Euler function and

f (n)(τ) =
dnf(τ)

dτn
. (3)

It is well known [5, 7] that the Laplace transform (L) of

(1) is given by the formula

L

[

dαf(t)

dtα

]

=

∞
∫

0

dαf(t)

dtα
e−stdt =

sαF (s) −
n

∑

k=1

sα−kf (k−1)(0+),

(4)

where F (s) = L[f(t)] and n − 1 < α < n, n ∈ N .

Consider a fractional linear system described by the equa-

tion






dαx1

dtα

dβx2

dtβ






=

[

A11 A12

A21 A22

][

x1

x2

]

+

[

B1

B2

]

u,

p − 1 < α < p; q − 1 < β < q; p, q ∈ N

(5)
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where x1 ∈ ℜn1 and x2 ∈ ℜn2 are the state vectors,

Aij ∈ ℜni×nj , Bi ∈ ℜni×m; i, j = 1,2, and u ∈ ℜm is

the input vector.

Initial conditions for (5) have the form

x1(0) = x10 and x2(0) = x20. (6)

Theorem 1. The solution of the equation (5) for 0 < α < 1;

0 < β < 1 with initial conditions (6) has the form

x(t) = Φ0(t)x0 +

t
∫

0

[Φ1(t − τ)B10 + Φ2(t − τ)B01] u(τ)dτ

(7)

where

x(t) =

[

x1(t)

x2(t)

]

, x0 =

[

x10

x20

]

,

B10 =

[

B1

0

]

, B01 =

[

0

B2

]

Tkl =



















































In for k = l = 0
[

A11 A12

0 0

]

for k = 1, l = 0

[

0 0

A21 A22

]

for k = 0, l = 1

T10Tk−1,l + T01Tk,l−1 for k + l > 0

(8)

Φ0(t) =
∞
∑

k=0

∞
∑

l=0

Tkl

tkα+lβ

Γ(kα + lβ + 1)
, (9a)

Φ1(t) =

∞
∑

k=0

∞
∑

l=0

Tkl

t(k+1)α+lβ−1

Γ [(k + 1)α + lβ]
, (9b)

Φ2(t) =

∞
∑

k=0

∞
∑

l=0

Tkl

tkα+(l+1)β−1

Γ [kα + (l + 1)β]
, (9c)

Proof. Using the Laplace transforms

Xi(s) = L[xi(t)], i = 1, 2 and U(s) = L[u(t)]

we may write the equations (5) for 0 < α < 1; 0 < β < 1 in

the form
[

sαX1(s)

sβX2(s)

]

=

[

A11 A12

A21 A22

][

X1(s)

X2(s)

]

+

+

[

sα−1x10

sβ−1x20

]

+

[

B1

B2

]

U(s)

(10)

since by (4) for 0 < α < 1; 0 < β < 1

L

[

dαx1

dtα

]

= sαX1(s) − sα−1x10,

L

[

dβx2

dtβ

]

= sβX2(s) − sβ−1x20.

From (10) we have

[

X1(s)

X2(s)

]

=

[

In1
sα − A11 −A12

−A21 In2
sβ − A22

]

−1

{[

sα−1x10

sβ−1x20

]

+

[

B1

B2

]

U(s)

}

.

(11)

Using (8) it is easy to verify that

[

In1
− A11s

−α −A12s
−α

−A21s
−β In2

− A22s
−β

][

∞
∑

k=0

∞
∑

l=0

Tkls
−(kα+lβ)

]

=

=

[

In1
0

0 In2

]

,

(12)

where the matrices Tkl are defined by (8).

Using (12) we obtain

[

In1
sα − A11 −A12

−A21 In2
sβ − A22

]

−1

=

=

{[

In1
sα 0

0 In2
sβ

][

In1
− A11s

−α −A12s
−α

−A21s
−β In2

− A22s
−β

]}

−1

=

[

In1
− A11s

−α −A12s
−α

−A21s
−β In2

− A22s
−β

]

−1

[

In1
s−α 0

0 In2
s−β

]

=

=
∞
∑

k=0

∞
∑

l=0

Tkls
−(kα+lβ)

[

In1
s−α 0

0 In2
s−β

]

.

(13)

Substitution of (13) into (11) yields

[

X1(s)

X2(s)

]

=
∞
∑

k=0

∞
∑

l=0

Tkl

[

x0s
−(kα+lβ+1)+(B10s

−[(k+1)α+lβ]+B01s
−[kα+(l+1)β])U(s)

]

.

(14)

Applying the inverse Laplace transform (L−1) and the con-

volution theorem to (14) we obtain

[

x1(t)

x2(t)

]

= L−1

[

X1(s)

X2(s)

]

=

∞
∑

k=0

∞
∑

l=0

TklL
−1

[

x0s
−(kα+lβ+1)+(B10s

−[(k+1)α+lβ]+B01s
−[kα+(l+1)β])U(s)

]

= Φ0(t)x0 +

t
∫

0

[Φ1(t − τ)B10 + Φ2(t − τ)B01] u(τ)dτ

(15)

since L−1

[

1

sα+1

]

=
tα

Γ(α + 1)
.
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Remark. Note that if α = β then from (9a) we have [6, 7]

Φ0|α=β (t) =
∞
∑

k=0

Aktkα

Γ(kα + 1)
(16a)

From comparison of (9a) and (16a) and using (8) it is easy

to show that
k

∑

i=0

k
∑

j=0

Tij

tiα+jβ

Γ(iα + jβ + 1)

∣

∣

∣

∣

α=β

i+j=k

=

∞
∑

k=0

Aktkα

Γ(kα + 1)
(16b)

3. Positive fractional systems

Definition 1. The fractional system (5) is called positive if

x1 ∈ ℜn1

+ and x2 ∈ ℜn2

+ , t ≥ 0 for any initial conditions

x10 ∈ ℜn1

+ , x20 ∈ ℜn2

+ and all input vectors u ∈ ℜm
+ , t ≥ 0.

Let Mn be the set of n × n Metzler matrices, i.e. real

matrices with nonnegative off-diagonal entries.

Theorem 2. The fractional system (5) for 0 < α < 1;

0 < β < 1 is positive if and only if

A =

[

A11 A12

A21 A22

]

∈ Mn, (17a)

[

B1

B2

]

∈ Rn×m
+ , (n = n1 + n2) (17b)

Proof. First we shall show that

Φk(t) ∈ ℜn×n
+ for k = 0, 1, 2 and t ≥ 0 (18)

only if (17a) holds.

From the expansions (9) we have

Φ0(t) =

[

In1
0

0 In2

]

+

[

A11 A12

0 0

]

t

Γ(α + 1)
+

+

[

0 0

A21 A22

]

t

Γ(β + 1)
+ ...

(19a)

Φ1(t) =

[

In1
0

0 In2

]

tα−1

Γ(α)
+

[

A11 A12

0 0

]

t2α−1

Γ(2α)
+

+

[

0 0

A21 A22

]

tα+β−1

Γ(α + β)
+ ...

(19b)

Φ2(t) =

[

In1
0

0 In2

]

tβ−1

Γ(β)
+

[

A11 A12

0 0

]

tα+β−1

Γ(α + β)
+

+

[

0 0

A21 A22

]

t2β−1

Γ(2β)
+ ...

(19c)

From (19) it follows that Φk(t) ∈ ℜn×n
+ , k = 0, 1, 2 for

small value of t > 0 only if the condition (17a) is satisfied.

Using (16) in a similar way as in [8, 10] it can be shown

that if (17) holds then

Φ0(t) ∈ ℜn×n
+ t ≥ 0 (20a)

and

Φ1(t)B10 + Φ2(t)B01 ∈ ℜn×n
+ t ≥ 0. (20b)

In this case from (7) we have x(t) ∈ ℜn
+, t ≥ 0 since by

definition x0 ∈ ℜn
+ and u(t) ∈ ℜm

+ , t ≥ 0. The remaining

part of the proof is similar as in [6, 7].

These considerations can be extended for the set of p ma-

trix differential equations with different fractional orders.

4. Fractional linear electrical circuits

Consider linear electrical circuits composed of resistors, su-

percondensators (ultracapacitors), coils and voltage (current)

sources. As the state variables (the components of the state

vector x) the voltage across the supercondensators and the

currents in the coils are usually chosen. It is well-known [14,

16] that the current i(t) in supercondensator with its voltage

uC(t) is related by the formula

iC(t) = C
dαuC(t)

dtα
for 0 < α < 1, (21)

where C is the capacity of the supercondensator.

Similarly, the voltage uL(t) on the coil with its current

iL(t) is related by the formula

uL(t) = L
dβiL(t)

dtβ
for 0 < β < 1, (22)

where L is the inductance of the coil.

Using the relations (21), (22) and the Kirchhoff’s laws we

may write for the fractional linear circuits the following state

equation

[

dαxC

dtα

dβxL

dtβ

]

=

[

A11 A12

A21 A22

][

xC

xL

]

+

[

B1

B2

]

e (23)

where the components of xC ∈ ℜn1 are voltages across the

supercondensators, the components of xL ∈ ℜn2 are currents

in coils and the components of e ∈ ℜm are the voltages of

the circuit.

Example 1. Consider the linear electrical circuit shown on

Fig. 1 with known resistances R1, R2, R3, capacitances C1,

C2, inductances L1, L2 and sources voltages e1, e2.
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Fig. 1. Electrical circuit

Using relations (21), (22) and the Kirchhoff’s laws we may

write for the circuit the following equations.

i1 = C1
dαu1

dtα
, i2 = C2

dαu2

dtα

e1 = (R1 + R3)i1 + L1
dβi1

dtβ
+ u1 − R3i2

e2 = (R2 + R3)i2 + L2
dβi2

dtβ
+ u2 − R3i1.

(24)

The Eq. (24) can be written in the form


























dαu1

dtα

dαu2

dtα

dβi1

dtβ

dβi2

dtβ



























= A











u1

u2

i1

i2











+ B

[

e1

e2

]

, (25)

where

A =

[

A11 A12

A21 A22

]

=

=

























0 0
1

C1
0

0 0 0
1

C2

−
1

L1
0 −

R1 + R3

L1

R3

L1

0 −
1

L2

R3

L2
−

R2 + R3

L2

























,

B =

[

B1

B2

]

=





















0 0

0 0

1

L1
0

0
1

L2





















.

(26)

From (26) it follows that the fractional electrical circuit is

not positive since the matrix A has some negative off-diagonal

entries.

If the fractional linear circuit is not positive but the ma-

trix B has nonnegative entries (see for example the circuit in

Fig. 1) then using the state-feedback

e = K

[

xC

xL

]

(27)

we may usually choose the gain matrix K ∈ Rm×n so that

the closed-loop system matrix (obtained by substitution of

(27) into (23))

Ac = A + BK (28)

is a Metzler matrix.

Theorem 3. Let A be not a Metzler matrix but B ∈ Rn×m
+ .

Then there exists a gain matrix K such that the closed-loop

system matrix Ac ∈ Mn if and only if

rank[B, Ac − A] = rankB (29)

Proof. By Kronecker-Cappely theorem the equation

BK = Ac − A (30)

has a solution K for any given B and Ac − A if and only if

the conditions (29) is satisfied.

Example 2. (continuation of Example 1).

Let

Ac =

























0 0
1

C1
0

0 0 0
1

C2

a1

L1
0 −

R1 + R3

L1

a3

L1

0
a2

L2

a4

L2
−

R2 + R3

L2

























(31)

for ak ≥ 0 k = 1, 2, 3, 4.

In this case the condition (29) is satisfied since

rank[B, Ac − A] =

= rank





















0 0 0 0 0 0

0 0 0 0 0 0

1

L1
0

a1 + 1

L1
0 0

a3 − R3

L1

0
1

L2
0

a2 + 1

L2

a4 − R3

L2
0





















=

= rank





















0 0

0 0

1

L1
0

0
1

L2





















= 2.

(32)

456 Bull. Pol. Ac.: Tech. 58(3) 2010



Positive linear systems with different fractional orders

The equation (30) has the form





















0 0

0 0

1

L1
0

0
1

L2

























k11 k12 k13 k14

k21 k22 k23 k24



 =

=





















0 0 0 0

0 0 0 0

a1 + 1

L1
0 0

a3 − R3

L1

0
a2 + 1

L2

a4 − R3

L2
0





















.

(33)

and its solution is

K =





k11 k12 k13 k14

k21 k22 k23 k24



 =

=





a1 + 1 0 0 a3 − R3

0 a2 + 1 a4 − R3 0



 .

(34)

The matrix (34) has nonnegative entries if ak ≥ 0 for

k = 1, 2 and ak ≥ R2 for k = 3, 4.

On the following two examples of fractional linear circuits

we shall shown that it is not always possible to choose the

gain matrix K so that the two conditions are satisfied:

1. the closed-loop system matrix Ac ∈ Mn,

2. the closed-loop system is asymptotically stable.

Example 3. Consider the fractional linear circuit shown in

Fig. 2 with given resistance R, capacitance C, inductance L

and source of voltage e.

Fig. 2. Simple electrical circuit

Using (21), (22) and the second Kirchhoff’s law we obtain

for the circuit the state equation









dαuC

dtα

dβi

dtβ









= A





uC

i



 +Be, 0 < α < 1; 0 < β < 1,

(35)

where

A =







0
1

C

−
1

L
−

R

L






, B =







0

1

L






. (36)

From (36) it follows that A is not a Metzler matrix but

B ∈ R2
+. It is easy to see that the condition (29) is satisfied

for

Ac =







0
1

C
a

L

b − R

L






(37)

and from (30) we obtain






0

1

L






[ k1 k2 ] =







0 0

a + 1

L

b

L






(38)

and

K = [ k1 k2 ] = [ a + 1 b ] (39)

Note that the characteristic polynomial of the matrix (37)

det





In1
sα − A11 −A12

−A21 In2
sβ − A22



 =

=

∣

∣

∣

∣

∣

∣

∣

sα −
1

C

−
a

L
sβ +

R − b

L

∣

∣

∣

∣

∣

∣

∣

=

= sα+β +
R − b

L
sα −

a

LC

(40)

has one negative coefficient and the closed-loop circuit is un-

stable for a ≥ 0 and any b.

Example 4. Consider the fractional linear system shown in

Fig. 3 with given resistances R1, R2, capacitance C, induc-

tance L and source of voltage e.

Fig. 3. Electrical circuit

Using the relations (21), (22) and the second Kirchhoff’s

law we obtain for the circuit the state equation







dαuC

dtα

dβi

dtβ






= A





uC

i



 + Be, (41)
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where

A =







−
1

R2C

1

C

−
1

L
−

R1

L






, B =







0

1

L






. (42)

The matrix A is not a Metzler matrix but B ∈ R2
+. It is

easy to check that the condition (29) is satisfied for

Ac =







−
1

R2C

1

C
a

L

b − R1

L






, a, b ≥ 0 (43)

and from (30) we obtain






0

1

L






[ k1 k2 ] =







0 0

a + 1

L

b

L






(44)

and

K = [ k1 k2 ] = [ a + 1 b ]. (45)

In this case the characteristic polynomial of the matrix

(43) has the form

p(s) =

∣

∣

∣

∣

∣

∣

∣

sα +
1

R2C
−

1

C

−
a

L
sβ +

R1 − b

L

∣

∣

∣

∣

∣

∣

∣

=

= sα+β +
R1 − b

L
sα +

1

R2C
sβ +

R1 − aR2 − b

R2CL

(46)

and it is possible to choose the values of parameters a, b so

that the closed-loop system is asymptotically stable [17].

The following question arises. What are the necessary and

sufficient conditions under which there exists a gain matrix K

such that the closed-loop system is positive and asymptotical-

ly stable? This problem will be the topic of the subsequent

paper.

5. Concluding remarks

A new class of positive linear systems with different fraction-

al orders has been introduced. Solution to the set of linear

differential equations with different fractional orders has been

derived using Laplace transform method (Theorem 1). It has

been shown that the fractional linear systems are positive if

and only if the system matrix A is a Metzler matrix and the

matrix B has nonnegative entries (Theorem 2). It has been

also shown that linear electrical circuits are positive systems

with different fractional orders. If the systems matrix A is not

Metzler matrix but the matrix B has nonnegative entries then

there exists a gain matrix of the state-feedbacks such that the

closed-loop system matrix is a Metzler matrix if and only if

the condition (29) is satisfied (Theorem 3).The consideration

have been illustrated by examples of linear electrical circuits.

An open problem has been formulated.
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