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Abstract. It is proved that there exist the relations between coefficients of the transcendental equations and the infinite number of their roots,
similar to Vieta’s formulae.

These relations may be obtained for the entire analytic functions using theorems of residues and argument principle. In particular the
meromorphic functions will be considered.
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1. Introduction

The transcendental equations appear very frequently in many
applications [1]. Stability problems, parameters optimization
and optimal control are more difficult than in the system dy-
namics without time-delays [2].

2. Statement of the problem

It is well known that the number of roots of the algebraic
equations is finite. According to this, Vieta’s formulae have
the finite number of the sum-products of their roots. In the
transcendental equations the number of roots is infinite and
the roots are going to infinity. This is the reason that only the
sums of their inverse-roots may be finite for some type of the
quasi-polynomials. Let us consider quasipolynomial

F (s) = A(s) + B(s)e−τs , (1)

where

A(s) =

m
∑

k=0

am−ksk , (2)

B(s) =

n
∑

k=0

bn−ksk , (3)

m < n, ak, bk, τ ∈ R, τ > 0 .

We assume that for assuring the asymptotic stability

F (s) = 0 −→ Re s < 0 . (4)

We use a notion of the principal term, closely connected with
the stability problem. In order to find the principal term, the
formula (1) is premultiplied by esτ .

Definition 1. The principal term of quasipolynomial (1) after
premultiplying it by esτ is the term bkskesτ in which the ar-

gument of the power s and τ have the highest value for some
k = 0, 1, . . . , n.

Remark 1. There are some quasipolynomials which do not
have a principal term, for example F (s) = s4e3s + s5e2s +1.

Remark 2. In the case of multiple commensurable delays τk

the quasipolynomial takes the form:

F (s, esτ ) =
∑

i,j

bijs
ie−τjs = 0,

i = 0, 1, 2, . . . , n, j = 1, 2, . . . , k.

(5)

Multiplying (5) by eτms with

τm = max
i≤j≤k

τj

we obtain an equivalent equation
∑

i,j

bijs
ieλjs = 0,

i = 0, 1, 2, . . . , n, j = 1, 2, . . . , k.

Theorem 1 [3]. A quasipolynomial with no principal term has
infinitely many roots with arbitrary large, positive real parts.

From this it results that the presence of principal term in a
quasi-polynomial is a necessary condition for its stability (4).

3. Solution of the problem

In order to calculate the reciprocal roots sum the following
theorem [4] can be used:

Theorem 2 [4]. Let F (s) be a meromorphic function in a giv-
en closed area C and ϕ(s) a meromorphic function in the
same area provided that the poles of ϕ(s) and the zeroes of

the function F (s) do not overlap. Then the integral
∮

C

on

a closed curve C surrounding this area is equal to:
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1

2πi

∮

C

F (1)(s)

F (s)
ϕ(s) ds =

=
∑

ϕ(sk) −
∑

ϕ(pj) +
∑

Res
F (1)(qi)

F (qi)
ϕ(qi).

(6)

where sk – zeroes of the function F (s) inside this area, pj –
poles of the function F (s) inside this area, qi – poles of the
function ϕ(s) inside this area.

For our purposes we consider the function (1)

F (s) = A(s) + B(s)e−τs

which does not have poles, but instead it has an infinite num-
ber of zeroes sk. It is a holomorphic function, which is the
specific case of the meromorphic function. Its derivative

F (1)(s) = A(1)(s) +
(

B(1)(s) − τB(s)
)

e−τs. (7)

In our problem we shall consider the function

ϕ(s) =
1

s
, (8)

since we want to find
∞
∑

k=1

1

sk
, where sk are the zeroes of the

function F (s). The function ϕ(s) has one pole qi = 0, which
does not overlap with any zero of the function F (s). With the
exception of this point it is a holomorphic function. Taking
into consideration the Eqs. (6)–(8) and (2), (3) in the formula
(6) we have to calculate the integrals:

∞
∑

k=1

1

sk
=

1

2πi

∮

CR→∞

F (1)(s)

F (s)

ds

s
−

1

2πi

∮

Cr→0

F (1)(s)

F (s)

ds

s
=

=
1

2πi

∫s
CR→∞

m
∑

k=1

kam−ksk−1 + M

m
∑

k=0

am−ksk +

n
∑

k=0

bn−kske−sτ

ds

s
−

−
1

2πi

∮

Cr→0

m
∑

k=1

kam−ksk−1 + M

m
∑

k=0

am−ksk +

n
∑

k=0

bn−kske−sτ

ds

s
,

(9)

where M =

(

n
∑

k=1

kbn−ksk−1
− τ

n
∑

k=0

bn−ksk

)

e−sτ .

Because
∫r

CR→∞

F ′(s)

F (s)

ds

s
= 0 for Re s > 0 .

The integration area has been presented in the Fig. 11.

Fig. 2. Integration path C or contour of integration

The first integral in (9) depends only on the rising of the
function b0s

ne−sτ for R → ∞. So from (9) we have that

1

2πi

∫s
CR→∞

m
∑

k=1

kam−ksk−1 + M

m
∑

k=0

am−ksk +

n
∑

k=0

bn−kske−sτ

ds

s
= −

τ

2
, (10)

where M =

(

n
∑

k=1

kbn−ksk−1
− τ

n
∑

k=0

bn−ksk

)

e−sτ , for

Re s < 0. The second integral in (9) is equal:

1

2πi

∮

Cr→0

m
∑

k=1

kam−ksk−1 + M

m
∑

k=0

am−ksk +
n

∑

k=0

bn−kske−sτ

ds

s
=

= Res
s=0

1

s

m
∑

k=1

kam−ksk−1 + M

m
∑

k=0

am−ksk +

n
∑

k=0

bn−kske−sτ

=

=
am−1 + bn−1 − τbn

am + bn
,

(11)

where M =

(

n
∑

k=1

kbn−ksk−1
− τ

n
∑

k=0

bn−ksk

)

e−sτ .

From (9), (10) and (11) we have finally that
∞
∑

k=1

1

sk
= −

τ

2
−

am−1 + bn−1 − τbn

am + bn
=

= −
(am − bn)τ + 2(an−1 + bn−1)

2(am + bn)
.

1By Piotr Grabowski’s courtesy.
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Theorem 3 (Basic result). The relation between coefficients
and the roots of the quasipolynomial equations of the type
(1), (2), (3) is given by the following formula:

∞
∑

k=1

1

sk
=

1

2

[

F (1)(s)

F (s)

]

s=∞

−

[

F (1)(s)

F (s)

]

s=0

. (12)

In case when it is necessary to calculate
∞
∑

k=1

1

s
p
k

, p = 1, 2, . . .

an analogous procedure leads to the formula:

∞
∑

k=1

1

s
p
k

=
1

2(p − 1)!

[

F (1)(s)

F (s)

](p−1)

s=∞

−

−
1

(p − 1)!

[

F (1)(s)

F (s)

](p−1)

s=0

.

4. Conclusions

The method proposed may be used for much more general
functional equations, for example partial differential equations
or other, under the restriction that the transmittance of the sys-
tem is an analytic entire function [4].

5. Simple example

Let
F (s) = a + bs + e−sτ , τ > 0.

After premultiplying it by esτ we have that the principal term
is bsesτ . The first derivative is

F (1)(s) = b − τe−sτ .

We have that
F (1)(s)

F (s)

∣

∣

∣

s=0
=

b − τ

a + 1

and

1

2

F (1)(s)

F (s)

∣

∣

∣

∣

s=∞

=
1

2

b − τe−sτ

a + bs + e−sτ

∣

∣

∣

∣

s=∞

= −
τ

2
.

Finally
∞
∑

k=1

1

sk
=

1

2

F (1)(s)

F (s)

∣

∣

∣

∣

∣

s=∞

−
F (1)(s)

F (s)

∣

∣

∣

∣

s=0

=

= −
τ

2
−

b − τ

a + 1
=

(1 − a)τ − 2b

2(a + 1)
.

6. Numerical example

Let us consider an numerical example for which we can apply
another method which gives verification of the results.
The following neutral equation is given

x(t) = Kx(t − 1).

The characteristic equation is

1 − Ke−s = 0. (13)

The roots of the equation (13) are

sm = lnK ± j2πm, m = 0, 1, . . . . (14)

The sum for calculation is
∞
∑

m=1

1

sm
=

[

1

lnK
+

∞
∑

m=1

2 lnK

ln2 K + 4π2m2

]

. (15)

In [5] there is formulae 4, which will be useful for our calcu-
lation

∞
∑

m=−∞

1

m2 + x2
=

1

x2
+

∞
∑

m=1

2

m2 + x2
=

π

x
coth(πx). (16)

After substitution into (16)

x = ln
K

2π
.

We obtain that

2π2

lnK
coth

lnK

2
=

4π2

ln2 K
+

∞
∑

m=1

2

m2 +
ln2 K

4π2

=

=
4π2

ln2 K
+

∞
∑

m=1

8π2

4m2π2 + ln2 K
.

After division through
4π2

lnK
we obtain finally that

1

2
coth

lnK

2
=

1

lnK
+

∞
∑

m=1

2 lnK

ln2 K + 4π2m2
. (17)

But

coth
lnK

2
=

(

elnK
)1/2

+
(

e− ln K
)1/2

(

elnK
)1/2

−
(

e− ln K
)1/2

=

=
K1/2 + K−1/2

K1/2 − K−1/2
=

K + 1

K − 1

and from (15) and (17) we have
∞
∑

m=1

1

sm
=

1

2
coth

lnK

2
=

1

2

K + 1

K − 1
= −

1

2

K + 1

1 − K
,

for 0 < K < 1.

(18)

From (14) we see that the stability limited is for K = 1. From
(18) we have that if

K =
1

2
,

∞
∑

m=1

1

sm
=

1

2

1

2
+ 1

1

2
− 1

= −
3

2

K =
1

3
,

∞
∑

m=1

1

sm
=

1

2

1

3
+ 1

1

3
− 1

= −1

K =
1

4
,

∞
∑

m=1

1

sm
=

1

2

1

4
+ 1

1

4
− 1

= −
5

6

which agree with our method because
∞
∑

m=1

1

sm
=

1

2

[

F (1)(s)

F (s)

]

s→−∞

−

[

F (1)(s)

F (s)

]

s=0

.
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In our case F (s) = 1 − Ke−s, F (1)(s) = Ke−s and
∞
∑

m=1

1

sm
=

1

2

[

Ke−s

1 − Ke−s

]

s→−∞

−

[

F (1)(s)

F (s)

]

s=0

=

= −
1

2
−

K

1 − K
= −

1 + K

2(1 − K)
.

7. Remarks

Remark 3. It is worth to note that for the stable systems

s < 0 the term

[

F (1)(s)

F (s)

]

s→∞

= 0 because e−s for s > 0

and tending to infinity is equal zero.

The same expression

[

F (1)(s)

F (s)

]

s→∞

for s < 0 is going

to the −
τ

2
.

The formula (12) is not depended on the symmetrising efect
as in [6].

Remark 4. Generalization for the equations with many delays:
Let us consider quasipolynomial

F (s) = A0(s) + A1(s)e
−τ1s + . . . + An(s)e−τns,

where Ai(s) are the polynomials of s with real coefficients,
and

deg A0(s) > deg A1(s) > . . . > deg An(s),

0 < τ1 < τ2 < . . . < τn.

From the general formulae (12) we obtain

∞
∑

k=1

1

sk
= −

1

2
τn −

A
(1)
0 (s) +

n
∑

i=1

[

A
(1)
i (0) − τiAi(0)

]

A0(0) +

n
∑

i=1

Ai(0)

.
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