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M. BUSŁOWICZ∗

Białystok University of Technology, Faculty of Electrical Engineering, 45D Wiejska St., 15-351 Białystok, Poland

Abstract. In the paper the problems of practical stability and asymptotic stability of fractional discrete-time linear systems with a diagonal
state matrix are addressed. Standard and positive systems are considered. Simple necessary and sufficient analytic conditions for practical
stability and for asymptotic stability are established. The considerations are illustrated by numerical examples.
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1. Introduction

The problems of analysis and synthesis of dynamic systems
described by fractional order differential (or difference) equa-
tions have recently attained considerable attention, see [1–8],
for example.

In the case of linear continuous-time fractional order sys-
tems there are analytic, LMI and frequency domain conditions
for asymptotic stability [9–15].

The stability analysis of fractional order discrete-time lin-
ear systems is more complicated because asymptotic stability
of such systems is equivalent to asymptotic stability of the cor-
responding infinite-dimensional discrete-time systems of the
natural order with delays [16]. Therefore, existing conditions
for asymptotic stability are also sufficient.

The conditions for practical stability with a given length of
practical implementation for standard fractional discrete-time
systems are derived in [16–18]. These conditions are consid-
erable simplified in the case of positive systems [3, 19–21].

The aim of the paper is to give simple analytic neces-
sary and sufficient conditions for practical stability and for
asymptotic stability of fractional discrete-time linear systems
described by the state-space model with the real diagonal state
matrix, standard and positive. To the best knowledge of the
author, such conditions have not been established yet.

The following notations are used: ℜn×m – the set of n×m

real matrices and ℜn = ℜn×1; ℜn×m
+ – the set of n×m real

matrices with non-negative entries and ℜn
+ = ℜn×1

+ ; Z+ – the
set of non-negative integers; In – the n × n identity matrix.

2. Problem formulation

Let us consider the fractional discrete-time linear system de-
scribed by the homogeneous state equation

∆αxi+1 = Axi, i ∈ Z+, (1)

where

xi =




x1
i

...

xn
i


 , ∆αxi+1 =




∆α1x1
i+1

...

∆αnxn
i+1


 , (2)

with xr
i ∈ ℜnr , αr ∈ (0, 1), r = 1, ..., n, xi ∈ ℜN ,

N = n1 + · · · + nn and

A =




A11 ... A1n

... ...
...

An1 ... Ann


 , Akr ∈ ℜnk×nr (k, r = 1, ..., n).

(3)
In (2) ∆αrxr

i denotes the fractional difference of order
αr ∈ (0, 1) of the discrete-time function xr

i defined by [3]

∆αrxr
i = xr

i +

i∑

k=1

(−1)k

(
α

k

)
xr

i−k, (4a)

where
(

α

k

)
=

αr(αr − 1) · · · (αr − k + 1)

k!
, k = 1, 2, .... (4b)

Using (4) we may write Eq. (1) in the form

xi+1 = A0xi +

i∑

k=1

Akxi−k, i ∈ Z+, (5)

where

A0 =




A11 + In1
α1 ... A1n

... ...
...

An1 ... Ann + Inn
αn


 , (6a)

Ak =




In1
ck(α1) ... 0

... ...
...

0 ... Inn
ck(αn)


 , (6b)
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and

ck(α) = (−1)k

(
α

k + 1

)
, k = 1, 2, .... (7)

Equation (5) describes the discrete-time linear system with
increasing numbers of delays.

The coefficients (7) can be computed by the following
simple algorithm suitable for computer programming [20]

ck+1(αr) = ck(αr)
k + 1 − αr

k + 2
, k = 1, 2, ..., (8)

where c1(αr) = 0.5αr(1 − αr).
From (8) it follows that ck(αr) > 0 for αr ∈ (0, 1) and

k = 1, 2, .... Moreover, coefficients ck(αr) strongly decrease
for increasing k. Therefore, in practical problems it is assumed
that k is bounded by some natural number L. This number
is called the length of practical implementation. In this case
Eq. (5) takes the form

xi+1 =






A0xi +
i∑

k=1

Akxi−k for i = 0, 1, · · · , L

A0xi +
L∑

k=1

Akxi−k for i = L + 1, L + 2, · · ·

(9)

with the initial condition x0 ∈ ℜN . Equation (9) describes a
linear discrete-time system with L delays in a state.

The time-delay system (9) is called the practical realiza-
tion of the fractional system (1).

Definition 1 [19]. The fractional system (1) is called practi-
cally stable if the system (9) is asymptotically stable.

Definition 2 [19]. The fractional system (1) is called asymp-
totically stable if the system (9) is asymptotically stable for
L → ∞.

From Definition 1 and theory of asymptotic stability of a
discrete-time linear system we have the following theorem.

Theorem 1. The fractional system (1) with a given length L

of practical implementation is practically stable if and only if

w(z) 6= 0, |z| ≥ 1, (10)

where

w(z) = det

{
INz − A0 −

L∑

k=1

Akz−k

}
, (11a)

or equivalently (for z 6= 0),

w(z) = det

{
INzL+1 − A0z

L −

L∑

k=1

AkzL−k

}
. (11b)

From the above it follows that to practical stability checking
of the fractional system (1) we can apply the existing meth-
ods for the asymptotic stability analysis of the discrete-time
systems (9) with delays.

The problem of practical stability of the fractional sys-
tem (1) (asymptotic stability of time-delay system (9)) in the
case n1 = · · · = nn = 1 and N = n has been consid-
ered in [16–18] for standard systems (i.e. non-positive) and

in [3, 19–21] for positive systems. In [20] it has been shown
that practical stability and asymptotic stability of the posi-
tive fractional system are equivalent to asymptotic stability
of the corresponding natural order positive discrete-time sys-
tems without delays of the same size as the system (1). In
the case of standard systems there are only sufficient con-
ditions for asymptotic stability [16, 18]. This follows from
the fact that asymptotic stability of a fractional discrete-time
system is equivalent to asymptotic stability of the correspond-
ing infinite-dimensional discrete-time systems with delays of
a natural order [16].

In this paper we consider the fractional system (1) with
the state matrix of the form

A = block diag{Ã1, Ã2, · · · , Ãn}, (12a)

where

Ãr = diag{ar1, ar2, · · · , arnr
} (12b)

with not necessarily different entries, i.e. may be ark = aij

for some r, i = 1, ..., n and k = 1, ..., nr, j = 1, ..., ni.
In this case the block diagonal matrix A0 has the form

A0 =




Ã1 + In1
α1 ... 0

... ...
...

0 ... Ãn + Inn
αn


 . (13)

The matrix A whose all elementary divisors are of first de-
gree ([22], pp. 59–65) can be transformed by the similarity
transformation to the diagonal form (12). In this case

rank[λiIN − A] = N − ni,

where ni denotes multiplicity of eigenvalue λi, i = 1, 2, ..., p

(p ≤ N) of the matrix A.
In particular, the matrix A with real distinct eigenvalues

can be always transformed to the diagonal form (12).
The aim of the paper is to give simple algebraic necessary

and sufficient conditions for practical stability and for asymp-
totic stability of the fractional system (1), (12), standard and
positive.

3. Solution to the problem

From a structure of the matrix A (12) it follows that the sys-
tem (1) can be written as a set of N scalar fractional systems

∆αrxr
i+1 = arkxr

i , αr ∈ (0, 1), (14)

for r = 1, 2, ..., n, k = 1, 2, ..., nr.
Therefore, firstly we consider the problems of practical

stability and asymptotic stability of a scalar fractional system

∆αxi+1 = axi, α ∈ (0, 1). (15)

The problem of practical stability of the system (15) has been
recently considered in [17].
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3.1. Stability of scalar system. Practical implementation for
i > L of the system (15), of the form,

xi+1 = (a + α)xi +
L∑

k=1

ck(α)xi−k (16)

has the characteristic function

w(z) = z − a − α −

L∑

k=1

ck(α)z−k. (17)

We consider the following problem: find values of the co-
efficient a ∈ ℜ for which the system (15) is: 1) practically
stable with fixed length L of practical implementation, 2) as-
ymptotically stable. To solution of this problem we apply the
D-decomposition method of Nejmark [23].

According to this method, the real axis ℜ is divided by
the real root boundary of polynomial (17) on three intervals.

The real roots boundary corresponds to such values of a

for which the polynomial (17) has roots z = 1 and z = −1.
Solving with respect to a the equations w(1) = 0 and

w(−1) = 0, where w(z) has the form (17) one obtains, re-
spectively,

a = g(L, α) and a = b(L, α), (18)

where

g(L, α) = 1 − α −

L∑

k=1

ck(α), (19)

b(L, α) = −1 − α −

L∑

k=1

ck(α)(−1)−k. (20)

Hence, we have three intervals for values of the coefficient a:

a < b(L, α), (21a)

b(L, α) < a < g(L, α), (21b)

a > g(L, α). (21c)

Lemma 1. The fractional system (15) with the given length
L of practical implementation is practically stable if and only
if the condition (21b) holds.

Proof. According to the D-decomposition method, it is suffi-
cient to prove that in the interval [b(L, α), g(L, α)] there ex-
ists at least one value of a for which the fractional system (15)
is practically stable (the system (16) is asymptotically stable).
It is easy to check that (see also Fig. 1) 0 ∈ [b(L, α), g(L, α)]
for all α ∈ (0, 1) and for any finite L. Therefore, for simplici-
ty of considerations, we may choose a = 0. In this case, using
(17) for a = 0, the characteristic equation can be written in
the form

zL+1 − αzL −

L∑

k=1

ck(α)zL−k = 0. (22)

In [24] it has been shown that all roots of the polynomial
zn + an−1z

n−1 + · · · + a1z + a0 have absolute values less

than 1 if 1 > |an−1| + · · · + |a1| + |a0|. This condition for
Eq. (22) has the form

1 > α +

L∑

k=1

ck(α). (23)

Using the formula [3, 20]
∞∑

k=1

ck(α) = 1 − α, α ∈ (0, 1), (24)

from (23) we obtain

1 − α −

L∑

k=1

ck(α) > 1 − α −

∞∑

k=1

ck(α) =0.

Hence, the condition (23) holds and the characteristic func-
tion (17) for a = 0 has L+1 roots which satisfy the condition
|zr| < 1 (r = 1, 2, ..., L + 1). This means, according to the
D-decomposition method, that the interval [b(L, α), g(L, α)]
is the asymptotic stability region of the system (16) and al-
so the practical stability region of the fractional system (15).
This completes the proof.

Using (19) and (20) with fixed L, we can find boundaries
of practical stability regions in the plane (a, α). The bound-
aries g(L, α) and b(L, α), computed for L = 10, L = 1000
and L = 100 000, are shown in Fig. 1.

Fig. 1. Boundaries of practical stability regions for L = 10 (lines 1),
L = 1000 (lines 2) and L = 100 000 (lines 3) versus fractional

order α ∈ (0, 1)

From Fig. 1 it follows that values of g(L, α) depend on
the length L of practical implementation whereas values of
b(L, α) are almost the same for all L ≥ 10.

If, for example, α = 0.1 then from (21b) and (19), (20)
we have the following values of a for which the system (15)
is practically stable with the given length L of practical im-
plementation:

• if L = 10 then −1.0750 < a < 0.7333,
• if L = 1000 then −1.0718 < a < 0.4689,
• if L = 100 000 then −1.0718 < a < 0.2959.
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Hence, the system (15) with a = 0.5 is practically stable
for L = 10 but it is not practically stable for any L ≥ 1000.

From Fig. 1 and (21b), (19), (20) it follows that if
a ∈ (−1, 0) then the system (15) is practically stable in-
dependently of the length of practical implementation for any
α ∈ (0, 1) (i.e. it is practically stable for all L ≥ 1).

It is easy to see that if α → 0 then Eq. (15) takes the
form xi+1 = axi and the system described by this equation
is asymptotically stable if and only if |a| < 1. Moreover,
if α → 1 then from (4a) and (15) we obtain the equation
xi+1 = (1 + a)xi and the asymptotic stability condition has
the form −2 < a < 0. These conditions also follow from
Fig. 1.

To establish the conditions for asymptotic stability of the
system (15), we consider the condition (21b) and formulae
(19), (20) for L → ∞.

Using (24), from (19) one obtains

g∞(α) = lim
L→∞

g(L, α) = 0. (25)

Now, we consider the following equality (for α > 0 and
|y| ≤ 1)

(1 + y)α = 1 + αy +
α(α − 1)

2!
y2 + · · ·

+
α(α − 1)(α − 2) · · · (α − k + 1)

k!
yk + · · ·

For y = 1 we have

2α = 1 + α +
α(α − 1)

2!
+ · · ·

+
α(α − 1)(α − 2) · · · (α − k + 1)

k!
+ · · ·

(26)

From (7) and (26) it follows that

2α = 1 + α +

∞∑

k=1

(−1)kck(α). (27)

Hence, from (20) we have

b∞(α) = lim
L→∞

b(L, α) = −2α. (28)

From the above, formula (21b) and Definition 2 we have
the following lemmas.

Lemma 2. The fractional system (15) is asymptotically stable
if and only if

−2α < a < 0. (29)

Lemma 3. If
1) −1 < a < 0 then the fractional system (15) is asymp-

totically stable for any α ∈ (0, 1)
2) −2 < a < −1 then the fractional system (15) is as-

ymptotically stable for

log2(−a) < α < 1, (30)

where log2 a is the base 2 logarithm of a.

Proof. It follows directly from Lemma 2 and the relationship
−2α ∈ (−2, −1) for all α ∈ (0, 1).

If the system (15) is positive, then xi ≥ 0 for all i ∈ Z+

and for any non-negative initial condition x0. It is well known
that the system (15) is positive if and only if [3, 21]

a + α ≥ 0. (31)

Lemma 4. The positive fractional system (15) with the given
length L of practical implementation is practically stable if
and only if

−α ≤ a < g(L, α), (32)

where g(L, α) is defined by (19). Moreover, this system is
asymptotically stable if and only if

−α ≤ a < 0. (33)

Proof. If is easy to see that b(L, α) < −α, where b(L, α)
is defined by (20). Hence, the condition (32) directly follows
from (31) and (21b). Since −α > −2α for any α ∈ (0, 1),
from (29) and (31) we obtain (33).

From comparison (29) and (33) it follows that the condi-
tions of asymptotic stability of standard and positive fractional
order system (15) are different.

3.2. Stability of the system with diagonal matrix. Now we
consider the stability problem of the fractional system (1) with
diagonal state matrix (12). Stability of this system is equiva-
lent to stability of N scalar systems (14) for r = 1, 2, ..., n,
k = 1, 2, ..., nr.

Applying Lemmas 1, 2 and 3 to the fractional system (14)
one obtains the following theorems.

Theorem 2. The fractional system (1), (12) with the given
length L of practical implementation is practically stable if
and only if the condition

b(L, αr) < ark < g(L, αr) (34)

holds for all r = 1, 2, ..., n, k = 1, 2, ..., nr, where

g(L, αr) = 1 − αr −

L∑

k=1

ck(αr), (35)

b(L, αr) = −1 − αr −

L∑

k=1

ck(αr)(−1)−k. (36)

Theorem 3. The fractional system (1), (12) is asymptotically
stable if and only if the condition

−2αr < ark < 0 (37)

holds for all r = 1, 2, ..., n, k = 1, 2, ..., nr. Moreover, if
ark ∈ (−1, 0) for all r = 1, 2, ..., n and k = 1, 2, ..., nr,
then the system (1), (12) is asymptotically stable for all
αr ∈ (0, 1).

Theorem 4. If all entries ark (r = 1, 2, ..., n, k = 1, 2, ..., nr)
of the matrix (12) are known then the system (1), (12) is as-
ymptotically stable for

αr < αr < 1, (38)

where αr = 0 for ark ∈ (−1, 0) and αr = log2(−ark) for
ark ∈ (−2, −1).
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The system (1), (12) is positive, if xi ∈ ℜN
+ for i ∈ Z+

and for any non-negative initial condition x0. It is easy to
see that positivity of all subsystems (14) for r = 1, 2, ..., n,
k = 1, 2, ..., nr is equivalent to positivity of the system (1),
(12).

Hence, from Lemma 4 we have the following theorem.

Theorem 5. The positive fractional system (1), (12) with giv-
en length L of practical implementation is practically stable
if and only if the condition

−αr ≤ ark < g(L, αr) (39)

holds for all r = 1, 2, ..., n, k = 1, 2, ..., nr, where g(L, αr)
is defined by (35). Moreover, this system is asymptotically
stable if and only if

−αr ≤ ark < 0 (40)

for all r = 1, 2, ..., n, k = 1, 2, ..., nr.

4. Illustrative examples

Example 1. Consider the fractional system (1) with the state
matrix (12) with n = 3, n1 = 2, n2 = n3 = 1, N = 4,
α1 = 0.9, α2 = 0.5, α3 = 0.2 and

A1 =

[
a1 0

0 a2

]
, A2 = [a2], A3 = [a3]. (41)

Find values of coefficients a1, a2 and a3 for which the system
is asymptotically stable.

In this case we have a11 = a1, a12 = a2, a13 = a2 and
a14 = a3.

Using Theorem 3 one obtains the following inequalities:
−2α1 < a1 < 0, −2α1 < a2 < 0, −2α2 < a2 < 0 and
−2α3 < a3 < 0. Hence, the system is asymptotically stable
if and only if

−20.9 < a1 < 0, −20.5 < a2 < 0, −20.2 < a3 < 0.

Example 2. Consider the fractional system (1) with the state
matrix (12) with n = 3, n1 = n2 = n3 = 1, N = 3 and
A1 = a11 = −0.6, A2 = a21 = −1.3, A3 = a31 = −1.9.
Find values of fractional orders α1, α2 and α3 for which the
system is asymptotically stable.

From Theorem 4 we have: 0 < α1 < 1, log2(1.3) =
0.3785 < α2 < 1, log2(1.9) = 0.9260 < α3 < 1. Hence,
the fractional system is asymptotically stable if and only if
α1 ∈ (0, 1), α2 ∈ (0.3785, 1) and α3 ∈ (0.9260, 1).

Example 3. Consider the fractional system (1) with n1 =
n2 = 1, N = 2, α1 = 0.2, α1 = 0.7 and the state matrix

A =

[
−0.9 0

0 −0.6

]
. (42)

In [18] on the basis of the sufficient condition it was shown
that the system with the length L = 25 of practical imple-
mentation is practically stable.

From Theorem 4 directly follows, that the system (1),
(42) is asymptotically stable if and only if α1 ∈ (0, 1)
and α2 ∈ (0, 1) and therefore it is practically stable for

all α1 ∈ (0, 1), α2 ∈ (0, 1) and for all fixed values L of the
length of practical implementation.

Example 4. Consider the fractional system (1) with n1 =
n2 = n3 = 1, N = 3, α1 = α2 = α3 = α and the state
matrix

A =




0 1 0

0 0 1

−1.44 −3.96 −3.5


 . (43)

Find values of fractional order α for which the system is as-
ymptotically stable.

The matrix (43) has three real eigenvalues z1 = −0.8,
z2 = −1.2, z3 = −1.5. By similarity transformation the sys-
tem (1), (43) can be transformed to the system with diagonal
state matrix

Ad =




−0.8 0 0

0 −1.2 0

0 0 −1.5


 . (44)

From Theorem 4 one obtains: 0 < α1 = α < 1,
log2(1.2) = 0.1823 < α2 = α < 1, log2(1.5) = 0.4055 <

α3 = α < 1. Hence, the system is asymptotically stable if
and only if α ∈ (0.4055, 1).

5. Concluding remarks

The problems of practical stability and asymptotic stability of
discrete-time linear system (1) of fractional order 0 < α < 1
and diagonal state matrix (12) have been addressed. Simple
necessary and sufficient analytic conditions for practical sta-
bility and for asymptotic stability of standard systems (Theo-
rem 2 and Theorems 3, 4) and for positive systems (Theorem
5) have been established.

The proposed conditions are also true for the standard
fractional discrete-time linear systems which state matrix can
be transformed by a similarity transformation to the diagonal
form (12). The transformation matrix should be monomial in
the case of positive systems.

The main results of the paper may be used in synthe-
sis of the state feedback control ui = −Kxi for the system
∆αxi+1 = Axi +Bui such that the closed-loop system is as-
ymptotically stable with diagonal state matrix Ac = A−BK .
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