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Design of systems with extremal dynamic properties
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Abstract. In this article the problem of determination of coefficients a1, a2, . . . , an of the characteristic equation which yield required
extremal values of the solution x(t) at extremal values τ of time is solved. The extremal values of x(t) and τ are treated as functions of
the roots s1, s2, . . . , sn. The analytical formulae enable to design the systems with prescribed dynamic properties. The zeros and poles can
be located using the known method.

The extremal dynamic error x(t) is the most important property of the behaviour of the system. This extremal value of the dynamic
error has fundamental role in the chemical industry where for example overrising temperature or pressure can lead to an explosion.

A second very important property is the extremal time τ connected with the extremal value of the error. This property is essential in
the electroenergetic system, which can be destroyed by the overvoltages waves.

Key words: systems, extremal dynamic properties, overvoltages waves.

1. Problem statement

We consider three sets of variables. Two of these sets are
known, and knowing this we want to determine the third set.

Problem 1. There are given initial conditions c1, c2, ..., cn

and the coefficients a1, a2, ..., an of the differential equation
x(n)(t) + a1x

(n−1)(t) + ... + anx(t) = 0. We want to de-
termine extremal times τ1, τ2, ..., τn−1 at which the solution
of x(t) of the differential equation assumes extremal values
x1, x2, ..., xn.

For this problem analytic formulae of solution x(t) and
necessary condition x(1)(t) = 0, and sufficient condition
x(2)(t) 6= 0 are known. Numerical solution can be obtained
immediately using a computer.

Problem 2. There are given eigenvalues s1, s2, ..., sn of
the characteristic equation of the differential equation and ex-
tremal times τ1, τ2, ..., τn−1 are known. We want to determine
corresponding initial conditions c1, c2, ..., cn.

Problem 3. There are given initial conditions c1, c2, ..., cn

and extremal times τ1, τ2, ..., τn. We want to find corre-
sponding coefficients a1, a2, ..., an of the differential equation
n
∑

i=1

aix
(i)(t) = 0.

2. Statement of the problem 2

Consider the n-th order linear differential equation with con-
stant and real parameters:

x(n)(t) + a1x
(n−1)(t) + ... + an−1x

(1)(t) + anx(t) = 0,

an 6= 0,
(1)

where

x(k)(t) =
dxk(t)

dtk

with initial conditions

x(i−1)(0) = ci, i = 1, 2, ..., n.

The characteristic equation for (1) is

sn + a1s
n−1 + ... + an−1s + an = 0. (2)

We assume that the roots of (2) are simple and real: sj 6= si

for j 6= i. The solution of (1) is:

x(t) =
n

∑

k=1

Akeskt. (3)

The coefficients Ak for k = 1, 2, . . . , ..., n in the explicit form
are

Ak =
a∗

n
∏

v=1,v 6=k

(sv − sk)
, (4)

where

a∗ = cn −
n

∑

v=1,v 6=k

svcn−1 +

n
∑

v=1,v 6=k

svskcn−2 + ...

+ (−1)n−1
n

∏

v=1,v 6=k

svc1.

Denote by τ the value of t for which x(t) has a local ex-
tremum (if such extremum exists). Then the conditions for
the extremum are:

x(1)(τ) = 0, x(2)(τ) 6= 0. (5)

We consider τ and x(τ) as functions of s1, . . . , sn and look
for solutions of the following problems:
First task. What are the conditions for x[τ(s1, . . . , sn)] to
have an extremum with respect to (s1, . . . , sn)?
Second task. What are the conditions for τ(s1, . . . , sn) to
have an extremum with respect to (s1, . . . , sn)?
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Third task is a conjunction of the first and second task.
The equations

∂x

∂si

= 0, i = 1, ..., n, (6)

∂τ

∂si

= 0, i = 1, ..., n, (7)

represent necessary conditions for existence of the local ex-
tremum of these functions.

3. Solution of the tasks

3.1. Task 1. In the paper [1] it is proved that the necessary
condition for x[τ(s1, . . . , sn)] to have an extremum with re-
spect to (s1, . . . , sn) is

(−1)nτn

n
∏

k=1

Ak = 0. (8)

From this we conclude that either

τ = 0 (9)

which means that c2 = 0 (10)
or Ak = 0, for some value of k, k from [1, . . . , n] (11)
which gives some relations between the roots and initial con-
ditions.

3.2. Task 2. In the paper [1] it is proved that the necessary
conditions for τ(s1, . . . , sn) to have an extremum with respect
to (s1, . . . , sn) are

(−1)n

n
∏

k=1

Ak

n
∏

k=1

skτn−1

[

τ +

n
∑

k=1

1

sk

]

= 0. (12)

From (12) results that:
τ = 0 (13)

(similarly as in task1), or

Ak = 0, for some value of k, k from [1, . . . , n] (14)

(similarly as in task 1), or

τ = −
n

∑

k=1

1

sk

=
an−1

an

. (15)

In the paper [2] another necessary condition has been
found, i.e.:

Dn(τ)=

∣
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∣
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∣
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∣

∣

∣

∣

∣

∣

∣

c1 c2 c3 c4 ... cn−1 cn
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0 τ −2 ... 0 0

... ... ... ... ... ... ...

− a1
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0 0 0 ... τ 2 − n

− 1
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0 0 0 ... 0 τ

∣

∣

∣
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∣

∣

∣

∣

∣
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∣

∣
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∣

∣

∣

∣

=0.

(16)

Substituting τ =
an−1

an

into (16) gives another necessary

condition

Dn=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣
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c1 c2 c3 c4 ... cn−1 cn

an−2 −an−1 an 0 ... 0 0

an−3 0 −an−1 2an ... 0 0

an−4 0 0 −an−1 ... 0 0

... ... ... ... ... ... ...

a1 0 0 0 ... −an−1 (n − 2)an

1 0 0 0 ... 0 −an−1
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣
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∣

∣
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∣

=0.

(17)
In the special case of one multiple root of Eq. (2) the

necessary conditions for the solution of the task 1 involving
(8), (9), (10) are true and for the solution of the task 2 we
have similarly that [5]:

τ =
−n

s
, (18)

x (τ) = e−n

[

An

(

an−1

an

)n−1

+ ... + A2
an−1

an

+ A1

]

,

(19)
where

Ak =

k
∑

i=0

x(k−i)(0) (−1)
i
si

i! (k − i)!
, k = 1, 2, ..., n (20)

and
dτ

ds

∣

∣

τ=−n
s

=

n−1
∑

i=0

x(i)(0) (−1)
i
sn−1−i

i!

·
n−i−1
∑

j=0

nj−1 (n − j − i)

j!
= 0,

(21)

d2τ

ds

∣

∣

τ=−n
s

=
An−1n

n (−1)
n

s−1

n−1
∑

j=1

Aj (−1)
j · j · nj−2 · sn−j+1 (n−j+1))

.

(22)

3.3. Particular cases. Let us consider 3-rd order differential
equation

x(3)(t) + a1x
(2)(t) + a2x

(1)(t) + a3x(t) = 0 (23)

with the initial conditions

x(0) = c1

x(1)(0) = c2

x(2)(0) = c3



















. (24)

Solution of Eq. (23) is

x(t) =
c3 − c2(s2 + s3) + c1s2s3

(s1 − s2)(s1 − s3)
es1t

+
c3 − c2(s3 + s1) + c1s3s1

(s2 − s3)(s2 − s1)
es2t

+
c3 − c2(s1 + s2) + c1s1s2

(s3 − s1)(s3 − s2)
es3t,

(25)
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where s1, s2, s3 are the roots of the equation

s3 + a1s
2 + a2s + a3 = 0. (26)

The derivative of x(t) is equal

x(1)(t) =
s1[c3 − c2(s2 + s3) + c1s2s3]

(s1 − s2)(s1 − s3)
es1t

+
s2[c3 − c2(s3 + s1) + c1s3s1]

(s2 − s3)(s2 − s1)
es2t

+
s3[c3 − c2(s1 + s2) + c1s1s2]

(s3 − s1)(s3 − s2)
es3t.

(27)

The necessary condition for the extremum x(t) is

x(1)(t) |t=τ = 0. (28)

The necessary condition (15) takes the form

τ1 =
a2

a3
(29)

and the second necessary condition (16) becomes

D3(τ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 c2 c3

−a1

a3
τ −1

− 1

a3
0 τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (30)

or, in explicit form

a3c1τ
2 + (c3 + a1c2)τ + c2 = 0. (31)

Dividing Eq. (31) by τ − a2

a3
gives

τa3c1 + c3 + a1c2 + a2c1 = 0 (32)

and the rest of division, which must be equal to zero, as an-
other necessary condition

a2
2c1 + (c3 + a1c2)a2 + a3c2 = 0. (33)

Elimination of c3 from Eq. (32) using Eq. (33) gives finally

τ2 =
c2

a2c1
. (34)

Elimination of c2 gives

τ2 = − c3 + c1a2

(a3 + a2a1)c1
(35)

and elimination of c1 results in

τ2 = − c2a2

c2a3 + a1a2c2 + a2c3
. (36)

Equation (28) can be written in more convenient form:

[s1(s2−s3)e
s1τ+s2(s3−s1)e

s2τ+s3(s1−s2)e
s3τ ] c3

+
[

s1(s
2
3−s2

2)e
s1τ+s2(s

2
1−s2

3)e
s2τ+s3(s

2
2−s2

1)e
s3τ

]

c2

+ s1s2s3 [(s2−s3)e
s1τ+(s3−s1)e

s2τ+(s1−s2)e
s3τ ] c1 = 0.

(37)
Assuming c1, c2, c3 as different from zero and using Eqs. (33),

(37) we can calculate the unknowns
c2

c1
and

c3

c1
.

Denote

B3 =[s1(s2−s3)e
s1τ+s2(s3−s1)e

s2τ+s3(s1−s2)e
s3τ ],

B2 =
[

s1(s
2
3−s2

2)e
s1τ+s2(s

2
1−s2

3)e
s2τ+s3(s

2
2−s2

1)e
s3τ

]

,

B1 =s1s2s3 [(s2−s3)e
s1τ+(s3−s1)e

s2τ+(s1−s2)e
s3τ ].

(38)

We obtain
c3

c1
=

B1(a1a2 + a3) − B2a
2
2

B2a2 − B3(a1a2 + a3)
, (39)

c2

c1
=

−a2B1 + a2
2B3

B2a2 − B3(a1a2 + a3)
, (40)

where τ is determined by (29).
It is clear from Eq. (34) that c2 = 0 gives τ2 = 0.
Similarly to this we see from Eq. (35) that c3 = 0 gives

τ2 = − a2

a3+a1a2

< 0 because a1, a2, a3 are positive.
Finally from Eq. (36) we obtain that c2 = 0 gives τ2 = 0,

and putting c3 = 0 we obtain τ2 = − a2

a3 + a1a2
< 0.

We conclude that for τ2 > 0 all three initial conditions c1,
c2, c3 must be different from zero,

c2

c1
> 0 and

c3

c1
< −a2.

If we require concrete value of τ2 then
c2

c1
is determined

by (34) and (40) and
c3

c1
is obtained from (39) by putting

τ2 =
c2

c1a2
into (38).

Remark 1. If the necessary conditions (29) or (33) are not
fulfilled then it is possible to obtain τ∗

1 > 0 and τ∗
2 > 0, but

these are not optimal times.

Remark 2. Putting
dx

dt

∣

∣

∣

∣

τp

= 0 and
d2x

dt2

∣

∣

∣

∣

τp

= 0 it is easy to

obtain the condition for flexing point c1c3 − c2
2 = 0.

3.4. Numerical examples. Example 1. Let us consider the
3-rd order equation

d3x(t)

dt3
+ 6

d2x(t)

dt2
+ 11

dx(t)

dt
+ 6x(t) = 0. (1e)

Here a1 = 6, a2 = 11, a3 = 6 and s1 = −1, s2 = −2,
s3 = −3.

From the condition (29) we have

τ =
a2

a3
=

11

6
. (2e)

From the condition (33) we have

121c1 + 72c2 + 11c3 = 0

If c1 6= 0, then 72
c2

c1
+ 11

c3

c1
= −121. (3e)

From Eq. (37) we obtain the second condition
(

c3

c1
+ 5

c2

c1
+ 6

)

e2τ − 4

(

c3

c1
+ 4

c2

c1
+ 3

)

eτ

+ 3

(

c3

c1
+ 3

c2

c1
+ 2

)

= 0.

(4e)
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For τ =
11

6
we find from (39) and (40) that

c3

c1
=

8.829826,
c2

c1
= −3.0295567 and τ2 =

c2

c1a2
< 0.

Example 2. We assume c2 = 0 , then τ1 = 0. The condition
(2e) is not fulfilled.

From (3e) we obtain
c3

c1
= −11. (5e)

From (4e) we have

5e2τ2 − 32eτ2 + 27 = 0 (6e)

what yields τ2 = 1.686399, which is not extremal time.

Example 3. We assume that c2 = 0, and that the condition

(2e) holds, i.e. τ =
11

6
, but the condition (33)

c3

c1
= −11 is

not fulfilled because from (4e) we obtain

3
c3

c1
+ 6

c3

c1
+ 6

= e
11

6 (7e)

and
c3

c1
= −9.687 6= −11.

Hence τ =
11

6
is not extremal, because the necessary

condition
c3

c1
= −11 is not fulfilled.

Example 4. We assume c1 = 0, c2 = 1, then from (33)

we have c3 = −72

11
c2. We have expected τ1 =

11

6
, but the

necessary condition (28) is not fulfilled because:

dx

dτ
= 0 gives τ1 = 0.264, τ2 = 1.665.

4. Task 3

It is very difficult problem to determine the values of roots

s1, s2, ..., sn , which fulfill the necessary condition τ =
an−1

an
and Dn = 0.

The solution of algebraic equation of degree higher than
n=4 is possible only using some additional assumption [3].
For that reason we use the properties of symmetrical algebra-
ic equations. From the theoretical point of view such equa-
tions can be solved up to 9-th degree, which is satisfactory
for practical applications.

We illustrate the method by example of 3-rd order equa-
tion.

d3x(t)

dt3
+ a1

d2x(t)

dt2
+ a2

dx(t)

dt
+ a3x(t) = 0 (41)

with the initial conditions: x(0) = c1, x(1)(0) = c2, x(2)(0) =
c3.

The characteristic Eq. (41) is:

s3 + a1s
2 + a2s + a3 = 0. (42)

We assume that the roots of (42) s1 6= s2 6= s3 are real and
negative.

We want to have simple analytic formulae for s1, s2, s3

by using some symmetrization of Eq. (42).

First step.

We put s = 3
√

a3 · z, a3 > 0 (43)
Then we obtain the equation:

z3 +
a1

3
√

a3
z2 +

a2

3

√

a2
3

z + 1 = 0. (44)

Second step.

We denote
b1 =

a1

3
√

a3
, b2 =

a2

3

√

a2
3

(45)

and assume that

b1 = b2 or a1 =
a2

3
√

a3
. (46)

Then the Eq. (44) takes a form

z3 + b1z
2 + b1z + 1 = 0 (47)

which is symmetric.
We observe that the extremal time for Eq. (41) is

τ1 =
a2

a3
(48)

with the necessary condition

D3 =

∣

∣

∣

∣

∣

∣

∣

c1 c2 c3

a1 −a2 a3

1 0 −a2

∣

∣

∣

∣

∣

∣

∣

= 0, (49)

so
D3 = a2

2c1 + (a1a2 + a3)c2 + a2c3 = 0. (50)

After symmetrization we have for Eq. (47) that

τ1 = b1. (51)

Now the condition (50) has the form

D3 =

∣

∣

∣

∣

∣

∣

∣

c1 c2 c3

b1 −b1 1

1 0 −b1

∣

∣

∣

∣

∣

∣

∣

= b2
1(c1 + c2) + b1c3 + c2 = 0.

(52)
Using (51) we have

τ2
1 (c1 + c2) + τ1c3 + c2 = 0. (53)

In the well-known way [3] we calculate the roots of Eq. (47)

z1 = −1,

z2 =
1

2

[

1 − τ1 +

√

(1 − τ1)
2 − 4

]

,

z3 =
1

2

[

1 − τ1 −
√

(1 − τ1)
2 − 4

]

.

(54)

The necessary condition for extremum of z(τ) is:

dz

dt

∣

∣

∣

∣

τ

= z1 [c3 − c2 (z2 + z3) + c1z2z3] (z2 − z3) ez1τ1

+ z2 [c3 − c2 (z3 + z1) + c1z3z1] (z3 − z1) ez2τ1

+ z3 [c3 − c2 (z1 + z2) + c1z1z2] (z1 − z2) ez3τ1 = 0.
(55)
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After substitution of (54) into Eq. (55) we obtain two lin-

ear Eqs. (53) and (55) for calculation of
c2

c1
and

c3

c1
, c1 6= 0,

which are valid for desired τ .
In Table 1 calculated values of

c2

c1
,
c3

c1
and extremal value

xe

c1
for desired τ are given.

Table 1

Calculated values of
c2

c1

,
c3

c1

and
xe

c1

for desired τ

τ

c2

c1

c3

c1

xe

c1

4 −1.859175078 3.901494083 −0.02011293436

5 −2.426487984 7.617737519 −0.01001620229

6 −3.022879434 12.64108984 −0.004615215005

7 −3.602067672 18.72905480 −0.00207307644

8 −4.157408762 25.77894619 −0.000912363558

9 −4.692639896 33.75516350 −0.000393838628

10 −5.213693094 42.65830025 −0.000167021302

In Fig. 1 dependency of τ on
c2

c1
and

c3

c1
is illustrated and

in Fig. 2 dependency of the extremal value
xe

c1
on τ .

Fig. 1. Extremal timeτas a function of
c2

c1

and
c3

c1

Fig. 2. Extremal value of
xe

c1

as a function of τ

After returning to the variable s we have:

a1 = b1
3
√

a3,

a2 =
b1

3
√

a3
,

τ1 =
b1

3

√

a2
3

=
τ1z

3

√

a2
3

,

(56)

where τ1z =
a2

a3
.

5. Conclusions

Problem 1. In this problem no parametric optimization is
possible.
Problem 2. The application of the symmetrical equations en-
ables the determination of the roots of the characteristic equa-
tions. These roots fulfill the necessary and satisfactory con-
ditions of the existence of the dynamic error x(τ) and the
extremal value of τ which are determined in the article. This
enables the parametric optimization of the system.
Problem 3. The analytic formulae for the roots si , the time τ

and extremal value of x(τ) which are obtained in this article
can be used to design the control system with the prescribed
value of τ and x(τ) as a function of the initial conditions ci.
The known method of the zeros and poles location [4] can
be applied in the final step of the design. These results will
be used to develop the method for the more general systems
[7, 8].

REFERENCES

[1] H. Górecki and A. Turowicz, “Optimum transient problem in
linear automatic control systems”, Automatic and Remote Con-

trol, Proc. 1st IFAC Congress V.I., 59–61 (1965).
[2] H. Górecki and A. Turowicz, “About some linear adaptive con-

trol systems”, Atti del IX Convegno dell’Automazione e Stru-

mentazione tenutosi a Milano 1, 103–123 (1966).
[3] A. Mostowski and M. Stark, Higher Algebra, part 2, pp. 82–85,

PWN, Warsaw, 1954, (in Polish).
[4] T. Kaczorek, “Design of single-input system for specified poles

an zeros using gain elements”, Control Principles 2 (4), CD-
ROM (1972).

[5] H. Górecki, “Optimization and control of dynamic systems”,
AGH Scientific Publications 9, 378–382 (2006), (in Polish).

[6] H. Górecki and M. Zaczyk, “Extremal dynamic errors in linear
dynamic systems”, Bull. Pol. Ac.: Tech. 58 (1), 99–105 (2010).

[7] H. Górecki and S. Białas, “Relations between roots and coeffi-
cients of the transcendental equations”, Bull. Pol. Ac.: Tech. 58
(4), 631–632 (2010).

[8] S. Białas and H. Górecki, “Generalization of Vieta’s formulae
to the fractional polynomials, and generalizations the method
of Graeffe-Lobactievsky”, Bull. Pol. Ac.: Tech. 58 (4), 625–629
(2010).

Bull. Pol. Ac.: Tech. 61(3) 2013 567


