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Abstract. The Drazin inverse of matrices is applied to find the solutions of the state equations of the fractional descriptor continuous-time

systems with regular pencils. An equality defining the set of admissible initial conditions for given inputs is derived. The proposed method

is illustrated by a numerical example.
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1. Introduction

Descriptor (singular) linear systems have been considered in

many papers and books [1–15]. The eigenvalues and invariants

assignment by state and output feedbacks have been investi-

gated in [7, 10, 16, 17] and the minimum energy control of

descriptor linear systems in [18, 19]. The computation of Kro-

necker’s canonical form of singular pencil has been analyzed

in [14]. The positive linear systems with different fraction-

al orders have been addressed in [20]. Selected problems in

theory of fractional linear systems has been given in mono-

graph [21].

Descriptor standard positive linear systems by the use of

the Drazin inverse has been addressed in [1–3, 9, 13, 22, 23].

The shuffle algorithm has been applied to checking the posi-

tivity of descriptor linear systems in [9]. The stability of pos-

itive descriptor systems has been investigated in [15]. Reduc-

tion and decomposition of descriptor fractional discrete-time

linear systems have been considered in [11]. A new class of

the descriptor fractional linear discrete-time systems has been

introduced in [12].

In this paper the Drazin inverse of matrices is applied to

find the solutions of the state equations of the fractional de-

scriptor continuous-time linear systems with regular pencils.

The paper is organized as follows. In Sec. 2 the state

equation of the fractional descriptor continuous-time linear

systems and some basic definitions of the Drazin inverse are

recalled. The solution to the state equation is given in Sec. 3.

The proposed method is illustrated by numerical examples in

Sec. 4. Concluding remarks are given in Sec. 5.

The following notation will be used: ℜ – the set of re-

al numbers, ℜn×m – the set of n × m real matrices and

ℜn = ℜn×1, Z+ – the set of n × n nonnegative matrices,

In – the n × n identity matrix, ker A – the kernel of the

matrix.

2. Preliminaries

Consider the fractional descriptor continuous-time linear sys-

tem

E0D
α
t x(t) = Ax(t) + Bu(t), 0 < α < 1, (1)

where α is fractional order, x(t) ∈ ℜn is the state vector

u(t) ∈ ℜm is the input vector, E, A ∈ ℜn×n, B ∈ ℜn×m and

0D
α
t x(t) =

1

Γ(1 − α)

t
∫

0

1

(t − τ)α

dx(τ)

dτ
dτ (2)

is the Caputo definition of α ∈ ℜ order derivative of x(t) and

Γ(α) =

∞
∫

0

e−ttα−1dt (3)

is the Euler gamma function.

It is assumed that det E = 0 but the pencil (E, A) of (1)

is regular, i.e.

det[Es − A] 6= 0 for some s ∈ C

(the field of complex numbers).
(4)

Assuming that for some chosen c ∈ C, det[Ec − A] 6= 0 and

premultiplying (1) by [Ec − A]−1 we obtain

E 0D
α
t x(t) = Ax(t) + Bu(t), (5a)

where

E = [Ec−A]−1E, A = [Ec−A]−1A, B = [Ec−A]−1B.

(5b)

Note that the Eqs. (1) and (4) have the same solution x(t).

Definition 1. [13] The smallest nonnegative integer q is called

the index of the matrix E ∈ ℜn×n if

rank E
q

= rank E
q+1

. (6)
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Definition 2. [13] A matrix E
D

is called the Drazin inverse

of E ∈ ℜn×n if it satisfies the conditions

EE
D

= E
D

E, (7a)

E
D

EE
D

= E
D

, (7b)

E
D

E
q+1

= E
q
, (7c)

where q is the index of E defined by (6).

The Drazin inverse E
D

of a square matrix E always exists

and is unique [4, 13]. If detE 6= 0 then E
D

= E
−1

. Some

methods for computation of the Drazin inverse are given in

[14, 22].

Lemma 1. [4, 13] The matrices E and A defined by (5b)

satisfy the following equalities

1. AE = EA and A
D

E = EA
D

, E
D

A = AE
D

,

A
D

E
D

= E
D

A
D

, (8a)

2. kerA ∩ kerE = {0}, (8b)

3. E = T

[

J 0

0 N

]

T−1, E
D

= T

[

J−1 0

0 0

]

T−1, (8c)

detT 6= 0, J ∈ ℜn1×n1 , is nonsingular, N ∈ ℜn2×n2 is

nilpotent, n1 + n2 = n,

4. (In − EE
D

)AA
D

= In − EE
D

and (In − EE
D

)(EA
D

)q = 0. (8d)

3. Solution to the state equation by the use

of Drazin inverse

In this section the solution to the state Eq. (1) will be pre-

sented by the use of the Drazin inverses of the matrices E

and A.

Theorem 1. The solution to the Eq. (1) is given by

x(t) = Φ0(t)EE
D

v + E
D

t
∫

0

Φ(t − τ)Bu(τ)dτ

+(EE
D
− In)

q−1
∑

k=0

(EA
D

)kA
D

Bu(kα)(t),

(9a)

where

Φ0(t) =
∞
∑

k=0

(E
D

A)ktkα

Γ(kα + 1)
,

Φ(t) =

∞
∑

k=0

(E
D

A)kt(k+1)α−1

Γ[(k + 1)α]
,

(9b)

u(kα)(t) = 0D
kα
t u(t) (9c)

and the vector v ∈ ℜnis arbitrary.

Proof. Proof is accomplished by showing that (9) satisfies the

Eq. (5a). Substituting (9a) in the left side of the Eq. (5a),

using (9b), Definition 2 and Lemma 1 we obtain

E0D
α
t x(t)

= E0D
α
t



Φ0(t)EE
D

v + E
D

t
∫

0

Φ(t − τ)Bu(τ)dτ

+(EE
D
− In)

q−1
∑

k=0

(EA
D

)kA
D

Bu(kα)(t)

]

= E0D
α
t

























EE
D

v +
∞
∑

k=1

(E
D

A)ktkα

Γ(kα+1) v

+E
D

t
∫

0

(t−τ)α−1

Γ(α) Bu(τ)dτ

+E
D

t
∫

0

∞
∑

k=0

(E
D

A)k+1(t−τ)(k+2)α−1

Γ[(k+2)α] Bu(τ)dτ

+(EE
D
− In)

q−1
∑

k=0

(EA
D

)kA
D

Bu(kα)(t)

























=

∞
∑

k=0

E(E
D

A)k+1tkα

Γ(kα + 1)
v + E

D
Bu(t)

+(E
D

)2A

t
∫

0

Φ(t − τ)Bu(τ)dτ

+(EE
D
− In)

q−1
∑

k=0

(EA
D

)kA
D

Bu(kα)(t)

= A



Φ0(t)EE
D

v + E
D

t
∫

0

Φ(t − τ)Bu(τ)dτ

+(EE
D
− In)

q−1
∑

k=0

(EA
D

)kA
D

Bu(kα)(t)

]

+ Bu(t)

(10)

since

0D
α
t EE

D
v = 0, E(E

D
A)k+1 = A

k+1
(E

D
)k,

Φ(t) =

∞
∑

k=0

(E
D

A)kt(k+1)α−1

Γ[(k + 1)α]
=

tα−1

Γ(α)

+

∞
∑

k=0

(E
D

A)k+1t(k+2)α−1

Γ[(k + 2)α]

(11)

and (8d) holds.

Therefore, the solution (9a) satisfies Eq. (5a).

From (9a) for t =0 we have

x(0) = x0 = EE
D

v

+(EE
D
− In)

q−1
∑

k=0

(EA
D

)kA
D

Bu(kα)(0).
(12)

Therefore, for given admissible u(t) the consistent initial con-

ditions should satisfy the equality (12). In particular case for

u(t) = 0 we have x0 = EE
D

v and x0 ∈ Im(EE
D

) where

Im denotes the image of EE
D

.
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Theorem 2. Let

P = EE
D

, (13a)

Q = E
D

A. (13b)

Then:

1) P k = P for k = 2,3,. . . , (14)

2) PQ = QP = Q, (15)

3) PΦ0(t) = Φ0(t), (16)

4) PΦ(t) = Φ(t). (17)

Proof. Using (13a) we obtain

P 2 = EE
D

EE
D

= EE
D

= P (18)

since by (7b) E
D

EE
D

= E
D

and by induction

P k = P k−1P = EE
D

EE
D

= P 2 = P for k = 2, 3, . . . .

(19)

Using (13a) and (13b) we obtain

PQ = EE
D

E
D

A = E
D

EE
D

A = E
D

A = Q (20)

and

QP = E
D

AEE
D

= E
D

EAE
D

= E
D

EE
D

A = E
D

A = Q

(21)

since (8a) holds. From (9b) and (13a) we have

PΦ0(t) =

∞
∑

k=0

P (E
D

A)ktkα

Γ(kα + 1)

=

∞
∑

k=0

PE
D

A(E
D

A)k−1tkα

Γ(kα + 1)

=
∞
∑

k=0

(E
D

A
D

)ktkα

Γ(kα + 1)
= Φ0(t)

(22)

since by (20) PE
D

A = E
D

A. Proof of (17) is similar.

4. Example

Consider Eq. (1) with the matrices

E =

[

1 0

0 0

]

, A =

[

−1 0

0 −2

]

,

B =

[

1

2

]

, 0 < α < 1.

(23)

The pencil of (23) is regular since

det[Es − A] =

∣

∣

∣

∣

∣

s + 1 0

0 2

∣

∣

∣

∣

∣

= 2(s + 1) 6= 0. (24)

We chose c = 1 and the matrices (5b) take the forms

E = [Ec − A]−1E

=

[

2 0

0 2

]

−1 [

1 0

0 0

]

=

[

0.5 0

0 0

]

,

A = [Ec − A]−1A

=

[

2 0

0 2

]

−1 [

−1 0

0 −2

]

=

[

−0.5 0

0 −1

]

,

B = [Ec − A]−1B =

[

2 0

0 2

]

−1 [

1

2

]

=

[

0.5

1

]

.

(25)

Using (7b) and (23) we obtain

E
D

=

[

2 0

0 0

]

and A
D

=

[

−2 0

0 −1

]

. (26)

It is easy to check that the matrices (26) satisfying the con-

ditions (7) and (8).

Using (26) and (9b) we obtain

Φ0(t) =

∞
∑

k=0

(E
D

A)ktkα

Γ(kα + 1)
=

∞
∑

k=0

tkα

Γ(kα + 1)

[

−1k 0

0 0

]

(27a)

and

Φ(t) =
∞
∑

k=0

(E
D

A)kt(k+1)α−1

Γ[(k + 1)α]

=
∞
∑

k=0

t(k+1)α−1

Γ[(k + 1)α]

[

−1k 0

0 0

]

(27b)

since

E
D

A =

[

2 0

0 0

][

−0.5 0

0 −1

]

=

[

−1 0

0 0

]

. (28)

From (9a) and (27) we have the desired solution in the form

x(t) = Φ0(t)EE
D

v + E
D

t
∫

0

Φ(t − τ)Bu(τ)dτ

+(EE
D
− In)

q−1
∑

k=0

(EA
D

)kA
D

Bu(kα)(t)

=

∞
∑

k=0

[

tkα

Γ(kα + 1)

[

−1k 0

0 0

]

v +
1

Γ[(k + 1)α]

[

(−0.5)k

0

] t
∫

0

(t − τ)(k+1)α−1u(τ)dτ



 +

[

2

1

]

u(t)

(29)
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since

EE
D

=

[

1 0

0 0

]

, EE
D
− I2 =

[

−2 0

0 −1

]

, q = 1

and A
D

B =

[

−0.5 0

0 −1

]

−1 [

0.5

1

]

=

[

−1

−1

]

(30)

for arbitrary v ∈ ℜ2.

5. Concluding remarks

The Drazin inverse of matrices has been applied to find the

solutions of the state equations of the descriptor fractional

continuous-time systems with regular pencils. The equality

(12) defining the set of admissible initial conditions for giv-

en inputs has been derived. The proposed method has been

illustrated by a numerical example. Some properties of the

matrices P , Q, Φ0(t) and Φ(t) have been established (Theo-

rem 2).

Comparing the presented method with the method based

on the Weierstrass decomposition of the regular pencil [12]

we may conclude that the proposed method is computationally

attractive since the Drazin inverse of matrices can be comput-

ed by the use of well-known numerical methods [13, 14]. The

presented method can be extended to the positive descriptor

fractional continuous-time linear systems. An open problem

is an extension of the considerations for standard and positive

continuous-discrete descriptor fractional linear systems [13,

24–26].
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