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NONLINEAR VIBRATION ANALYSIS
OF PREBUCKLING AND POSTBUCKLING
IN LAMINATED COMPOSITE BEAMS

G. ABDOLLAHZADEH', M. AHMADI

In this stud y, we attempt to analyse free nonlinear vibrations of buckling in laminated composite beams.
Two new methods are applied to obtain the analytical solution of the nonlinear governing equation
of the problem. The effects of different parameters on the ratio of nonlinear to linear natural frequencies
of the beams are studied. These methods give us an agreement with numerical results for the whole range

of the oscillation amplitude.
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1. INTRODUCTION

Nonlinear vibrations of beams have occurred in many engineering applications. Most of the studies
on the nonlinear vibration analysis which have been done on isotropic beams (Qaisi, 1993; Guo
and Zhong, 2004; Xie et al., 2002; Nayfeh and Nayfeh, 1995; Bhashyam and Prathap, 1980; Carlos
et al.,, 2004). Azrar et al., (1999) developed a semi analytical approach based on Lagrange’s
principle and the harmonic balance method for the nonlinear dynamic response of beams. The large
amplitude free vibrations of uniform beams using a relatively simple and accurate finite element

formulation has been studied by Gupta et al., (2009).
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On the other hand, a few studies which have reported on the nonlinear free vibrations of composite
beams (Kapania and Raciti, 1989; Singh et al., 1991; Ganapathi et al., 1998; Malekza deh
and Vosoughi, 2009). Kisa (2004) presented a new method for the numerical modeling of the free
vibration of a cantilever composite beam having multiple open and non-propagating cracks.
The higher order theory for composite sandwich beam with viscoelastic core to improve the ‘“Mead
& Markus” theory has been studied by Arvin et al., (2010). They showed that by increasing
the fiber angles of face sheets and/or the core’s thickness, loss factors are increased and natural
frequencies are decreased. Lee et al., (2009) investigated the dynamic characteristics of the shape
memory alloy (SMA) helical spring due to the martensite — austenite transformation. They showed
the laterally loaded helical spring can be regarded as a uniform beam with the equivalent flexural
stiffness for intermediate and long springs.

Finding the modal characteristics of free and forced beam vibrations by considering complicating
the parameters is an interesting area in engineering vibration. Linear and nonlinear partial
differential equations in space and time are presented in order to display the governing equation
of the beam vibrations. Another aspect in nonlinear science is nonlinear analysis; it is quite difficult
to prepare an exact solution for nonlinear equations to see the effects of other parameters
analytically in the analysis; therefore, many researchers have worked on the analytical approximate
methods for nonlinear equations.

Recently, some approximate methods have been proposed to solve nonlinear equations such
as homotopy perturbation method (He, 1999, Bayat et al., 2013), energy balance method
(He, 2002), the max—min approach (He, 2008a), amplitude—frequency formulation (He, 2008b,
Pakar and Bayat, 2013), Parameter expanding method (He, 2006), variational approach (He, 2007),
Hamiltonian approach (He, 2010a, Ahmadi et al., 2014, Bayat and Pakar, 2012), and variational
iteration method (He et al., 2010b).

In this paper the free vibration of laminated composite beams is studied. The paper has
the following sections: After the Introduction, the mathematical formulation of the problem
of the vibration of laminated composite beams is given. Then, the basic concept of the energy
balance method (EBM) and He’s amplitude frequency formulation (HAFF) is described.
Subsequently, EBM and HAFF are studied to demonstrate the applicability and preciseness of these
methods. This is followed by a presentation of some comparisons between analytical and numerical
solutions. Finally, it is showed that EBM and HAFF can converge to a precise cyclic solution

for laminated composite beams.
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2. MATHEMATICAL FORMULATION

Consider a composite laminated beam of length 1, height h, width b, and mass density p that is
subjected to a compressive axial load P. The nondimensional equation governing free, undamped,

large-amplitude lateral vibrations measured from the undeformed equilibrium position is given

by Emam and Nayfeh (2009).
o Pt o+ A (L) —w 0,000 =0
1) WAw " + —Eajow w "+ A (L) -w'(0,)w "=

Where:

2

h x

Fig. 1. Geometry of a laminated composite beam

The dot indicates the derivative with respect to time t, the prime indicates the derivative
with respect to the spatial coordinate x, and the hat identifies the dimensional quantities. »
is the radius of gyration of the cross section, A4, B11, D11 are the axial, coupling, and bending

stiffnesses, respectively and defined as:

N
) A= Z:
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Where an is the reduced-transformed stiffness of the kth lamina, 7, is its height, and N

k
is the number of layers. The material properties are assumed not to change within a typical lamina

Hyer (1998). The boundary conditions are given by
(6) w=0 and w"=0 at x =0,1
(@) w=0 and w'=0 at x =0,1

For simply supported and clamped—clamped beams, respectively. Emam and Nayfeh (2009) exactly
solved the nonlinear static problem of Eq. (1). The static postbuckling response corresponding

to the first buckling mode is obtained as follows (Emam, 2013):

®) w (x):bg sin(Ax)

For a simply supported beam and

) w (x)=b, (1—cos(Ax))
For a clamped—clamped beam. Where bg and b, are two constants defined as
_—4A 2 |P A’

10 o AL 2P A
(10) * ﬂ.a+\/; PR

an b, =—=[]+5-1
And A? is the nondimensional first critical buckling load that is equal to 72 for simply supported

beams and 4m? for clamped—clamped beams. It is worth noting that the constant A vanishes

for symmetric laminates, as can be noted in Eq. (2).
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It is important to emphasize that Eq. (1) governs only the nonlinear free vibrations of beams
in the prebuckling state. To investigate the nonlinear free vibrations of composite beams
in postbuckling, one needs to introduce a dynamic disturbance to the static, buckled, equilibrium
position. As such, the total transverse deformation w(x,t) due to a dynamic deformation v(x,t)

that takes place around a static equilibrium position wg can be defined as

(12) wx, ) =w, (x)+v(x,t)
Inserting Eq. (12) into Eq. (1) yields the nondimensional equation governing large-amplitude free

vibrations of composite beams in the postbuckling state. The result is (Emam, 2013)

(13) VRS R otwf'"‘;w lvdx 7%awf.[;v “dx —av "J.olw vidx 7%0(\) "Jolv Zdx +Alw ! ()-w ! (O)"
+A[v "(,6)—v '(O,t)](w T+ =0

In terms of v, boundary conditions of simply supported and clamped—clamped boundary conditions

are, respectively, given by

(14) v=0 and v"=0 at x =0,

(15) v=0 and v'=0 at x =0,1

The nonlinear free vibrations of composite beams in prebuckling and postbuckling are governed
by Egs. (1) and (13), respectively. Emam (2013) applied the Galerkin method and derived

the governing differential equation of motion as (Ke et al., 2010):

aw (t)

(16) i +a WO +BW ) +n W3()=0

With initial conditions:
17) W(O0)=4, W(0)=0

Where coefficients of Eq. (16) are presented in Appendix A (Emam, 2013).
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3. BASIC IDEA OF HE’S ENERGY BALANCE METHOD (EBM)

In He’s energy balance method (He, 2002), a variational principle for the nonlinear oscillation
is established, and then a Hamiltonian is constructed, from which the angular frequency can
be readily obtained by collocation method. The results are valid not only for weakly nonlinear
systems, but also for strongly nonlinear ones. Some examples reveal that even the lowest order
approximations trigger high accuracy (Ganji et al., 2009). In this paper, we consider a general

nonlinear oscillator in the form (He, 2002):
(18) w'+f (u(r))=0
Since u and t are generalized dimensionless displacement and time variables, respectively,

its variational principle can be easily obtained:

(19) J(u):fé(—lu'2+F(u)jdt,

2
(20) F(u):'ff (u)du.

Therefore, it can be written in the form:

@1 H:%u'zﬁ-F(u):F(A)
or
22) R(t):%u’z+F(u)—F(A):0

Oscillating systems contain two important physical parameters, i.e. the frequency w

and the amplitude of oscillation, A. So let us consider the initial conditions:

(23) u(0)=4, u'(0)=0
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And assume that its initial approximate guess can be expressed as:
(24) u(t):Acosa)t

Substituting Eq. (24) into u which term of Eq. (22), yields:

(25) R(t):%szzsinzwt+F(Acoswt)—F(A):O
If, by any chance, the exact solution had been chosen as the trial function, then it would be possible
to make R zero for all values of t by appropriate choice of w. Since (24) is only an approximation

to the exact solution, R cannot be made zero everywhere. Collocation at wt = 7T/ 4 gives:

[2(F(4)-F(4cosw1))

a):
\ A’sinfwt

(26)

3.1. ApPLYING EBM

In order to assess the advantages and the accuracy of the energy balance method; we will apply this

method to the discussed system. Its variational formulation can be easily established:

@ sy

It is Hamiltonian, therefore, it can be written in the form:

1., 1 1 1
28 H=W>+—a W +=pW>+-—nqw?*
(28) 3 5 3P 27 )

And

1., 1 1 1 1 1
A* =0
i

!
29 R =twrvlawrilpgwo i lywe loalpal
29 (=343 37 I 2 37
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We will use the trial function to determine the angular frequency o, i.e.:
(30) W(t):A cos(w 1)
If we substitute (30) into (29), it results the following residual equation:

31) R(r):%Aza)zsinl(a)f)%aA:cosl(a)r)%ﬂA’cosV‘(a)t)%t]A’cos’(mt)—%aA:—éﬂA3—gr1A4:0

If we collocate at wt = % , We obtain:

(32) Wy =4+ 473\/5

3
A +=nd?
B i

According to Eq. (32), we can obtain the following approximate solution:

(33) W(t)—Acos[ o+ 2= f 2 ]

4. BASIC IDEA OF HE’S AMPLITUDE FREQUENCY FORMULATION
(HAFF)
Let us consider the general nonlinear oscillator as follows:
34) G+N (u, i, 4, 1)=0, u(0)=4, u(0)=0
where f(u, 1,1, t) is a function with the nonlinear term.
For a generalized nonlinear oscillator in Eq. (34), we use two trial functions (He, 2008b):
(ER)) u, = A cost

(36) u,=Acoswt
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Substituting u; and u, into Eq. (27):

(37) R =i, +N (up iy, 11y, t)
and
(38) R, =iy + N (uy, 1y, 1i,, 1)

If, by chance, u; or u,, is chosen to be the exact solution, then the residuals, Eq. (37) or Eq. (38),

are vanishing completely. In order to use He’s amplitude frequency formulation, we set:

4 I
I R cos(t)dt, T,=2r

(39) R
and

T,
(40) R, :% UTR2 cos(wt)dt, T, :2;’7'

Applying He’s amplitude frequency formulation (He, 2008b), we have:

2 2
o'R,, — ;R
(,02= 1 22 27011

41

( ) Rzz_Rn
where:

(42) o=, o=0

Therefore, we can find the approximate frequency from Eq. (41) and Eq. (42). Finally, approximate

solution yields:

(43) u(t)=A cos(ar)

4.1. ApPLYING HAFF

Consider Eq. (16). According to He’s amplitude frequency formulation we choose two trial
functions u; = A cost and u, = A coswt where o is assumed to be the frequency of the nonlinear

oscillator. Substituting u; and u, into Eq. (16), we obtain, respectively, the following residuals.



170 G. ABDOLLAHZADEH, M. AHMADI

(44) R, =—A cos(t)+ad cos(t)+ BA* cos’ () + 14> cos’ (t)
and
(45) R, =—Aw" cos(axt)+aA cos(ax )+ fA° cos’ (ax ) +14°> cos’ (ax)

According to the HAFF, the above residuals can be rewritten in the forms of weighted residuals.

A simple calculation yields:

(46) R, = z-“g(—A cos(t)+ad cos(t)+ A7 cos’(t) +nA> cos® (t))(cos(t))dt
/4 0
and
47) R, = 2—C()J”L”(—A " cos(ar ) +ad cos(ar) + fA* cos” (at ) +n4° cos’ (at))(cos(at))dt
V4 0

Therefore, the approximate frequency reads:

2
L84 3nA”

(48) w=\ja+— 2

According to Eq. (48), we obtain the following approximate solution:

(49) W)=4 Cos[,‘a+8ﬂA+3”Az‘t]
3z 4

5. DISCUSSION OF THE RESULTS

In this section, we verify the results of EBM and HAFF with a numerical solution using

Runge—Kutta method (RKM).
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(@) [——EBM = = +HAFF — = RKM] (b) [——EBM =+ - - HAFF — — RKM]
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Fig. 2. Comparison of W(t) versus time diagrams. EBM and HAFF analytical and Runge—Kutta method
solution (a): for A=0.5, 0=0.1, p=0.2, n=0.5; (b): for A=0.2, a=1, f=0.1, n=1

In Fig. 2, the W—t diagrams for two certain groups of parameter values are obtained analytically

(EBM and HAFF) and numerically (RKM). The curves are in a good agreement.

Fig. 3. Comparison of nonlinear to linear frequency ratio corresponding to various parameters

of a for f=0.5 and n=1 (Solid: EBM, Dot: HAFF)
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Fig. 4. Comparison of nonlinear to linear frequency ratio corresponding to various parameters

of B for 0=2 and n=1 (Solid: EBM, Dot: HAFF)

WNL
wy

Fig. 5. Comparison of nonlinear to linear frequency ratio corresponding to various parameters

of 1 for a=1 and f=1 (Solid: EBM, Dot: HAFF)

Figures 3-5 show the effect of various values of the parameters a, 5,7 on the ratio of nonlinear
to linear frequency versus non-dimensional amplitude ratio for different cases.
In Figure 6-8, asensitivity analysis of nonlinear to linear frequency ratio for the mentioned
parameters is done to complete the results of previous figure. For small amplitudes, the rate
of increase in nonlinear fundamental frequency is quite small. The effect of nonlinearity becomes

more obvious when the maximum amplitude increases. Results of EBM and HAFF are in good
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numerical agreement by considering the effect of different parameters on the response
of the problem. The accuracy of the EBM and HAFF results shows that these methods can be easily

applied to nonlinear analysis of shell, beam, plate and other nonlinear mechanical systems.

Wng
ol ]

Fig. 6. Sensitivity analysis of nonlinear to linear frequency ratio for =1 and n=1, (a): EBM, (b): HAFF

Fig. 7. Sensitivity analysis of nonlinear to linear frequency ratio for a=1 and n=1, (a): EBM, (b): HAFF
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(b)
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Fig. 8. Sensitivity analysis of nonlinear to linear frequency ratio for a=1 and =2, (a): EBM, (b): HAFF

CONCLUSIONS

It can be concluded that:

1. The EBM and HAFF methods have been successfully applied to obtain an accurate analytical
solution for the nonlinear vibration in the buckling of laminated composite beams.

2. It has been illustrated that the results of EBM and HAFF are in a good agreement with those
obtained by the numerical method.

3. The influences of the parameters of laminated composite beams on the vibration are as follows:
As it is shown, the amplitude of the oscillation has a great effect on the vibrations
of the composite beams in buckling. From the relationships of the parameters in Appendix A,
the axial load, stiffness, number of layers, and radius of gyration of the cross section
of the laminated composite beams in buckling also have great effects on the response of the

vibration.
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APPENDIX A

The constants and parameters of Eq. (17) for simply supported and clamped—clamped beams

in the prebuckling state:

a B n
; 202 3 1
Simply supported beams n*(n* = P) 2meA Zn4a
4 1
Clamped—clamped beams 3 m?(4m? — P) 0 3 mta

The constants and parameters of Eq. (17) for simply supported and clamped—clamped beams

in the postbuckling state:

a B n
. 4N\ 3 1
Simply supported beams 2n?(P —m? + \/—_\/P —m2) En3 [a(P — r2) an;a
a
1
Clamped—clamped beams gnz (P — 4m?) 23 [a(P — 4n?) §n4a
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ANALIZA DRGAN NIELINIOWYCH PRZED I PO WYBOCZENIU
LAMINOWANYCH BELEK KOMPOZYTOWYCH

Stowa kluczowe: drgania nieliniowe, belki kompozytowe, metody analityczne

STRESZCZENIE:

Niniejsze opracowanie podejmuje temat analizy swobodnych drgan nieliniowych wyboczenia laminowanych belek
kompozytowych. Zastosowano dwie nowe metody w celu uzyskania rozwigzania w postaci kluczowego réwnania
nieliniowego, opisujacego ten problem.

Przestudiowano wplyw roznych parametrow na stosunek czestotliwosci drgafi nieliniowych do drgan liniowych
w odniesieniu do badanych belek. Metody te umozliwity nam weryfikacj¢ otrzymanych wynikéw dla calego zakresu

amplitudy oscylacji.
Whioski z przeprowadzonych badan i analiz sg nastgpujace:

1. Metody EBM i HAFF zostaly z sukcesem zastosowane w celu otrzymania precyzyjnego rozwigzania
analitycznego problemu drgan nieliniowych w wyboczeniu laminowanych belek kompozytowych.

2. Wykazano, ze wyniki EBM i HAFF zgadzaja si¢ z wynikami otrzymanymi za pomoca metody liczbowe;.

3. Wplyw parametréw laminowanych belek kompozytowych na drgania jest nastgpujacy: Jak wykazano,
amplituda oscylacji ma ogromny wplyw na drgania belek kompozytowych w trakcie wyboczenia.
Zaleznosci pomigdzy parametrami okreslonymi w Zalaczniku A, takimi, jak obciazenie osiowe, sztywnos¢,
liczba warstw oraz promiefn bezwladnosci przekroju laminowanych belek kompozytowych ulegajacych

wyboczeniem maja roOwniez ogromny wptyw na drgania.



