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Abstract. In this paper, the problems of finite-time stability and stabilization for a class of singular time-delay systems are studied. Using

the Lyapunov-like functional (LLF) with (exponential or power) weighting function and a new estimation method for the lower bound on

LLF, some sufficient stability conditions are introduced. It is shown that the weighting function significantly reduces the conservatism of the

stability criteria in comparison to estimation of the lower bound on LLF without this function. To solve the finite-time stabilization problem,

a stabilizing linear state controller is designed by exploiting the cone complementarity linearization algorithm. Two numerical examples are

given to illustrate the effectiveness of the proposed method.

Key words: singular systems, time-delay, LMIs, finite-time stability, stabilizing controller, cone complementarity linearization algorithm.

1. Introduction

The class of singular systems has been extensively studied in

the past years due to the fact that the singular model is a nat-

ural representation of practical systems and can better describe

a large class of systems (power systems, electrical systems,

social economic systems and chemical systems) than regular

ones [1–4]. In general, the singular representation consists of

differential and algebraic equations, and hence it is a general-

ized representation of the state-space system. These systems

are also known as descriptor systems, implicit systems, gen-

eralized state-space systems, differential-algebraic systems or

semi-state systems. Analysis and design of the singular sys-

tems cannot be easily treated in the same way as that of reg-

ular systems. Namely, it is well known that singular systems

are much more complicated than regular ones, because they

cannot be regular and impulse free. Therefore, the regularity

and absence of impulses must be considered simultaneously

with other system properties (stability, robustness, controlla-

bility. . . ).

In many practical systems (chemical engineering systems,

large-scale electric network control, aircraft attitude control,

flexible arm control of robots, etc.) a time-delay often appears

[5–7]. When a time-delay is small, then it can be ignored, but

if not, it may cause instability in the system. For the sake of

infinite dimension of the singular time-delay systems, their

dynamic behaviour is more difficult to analyse in comparison

to singular non-delay systems. For this reason, over the past

decades, there has been increasing interest for the stability

analysis of singular time-delay systems and many results have

been reported [8–13].

Often, Lyapunov asymptotic stability for practical appli-

cations is not suitable enough, because there are some cases

where large values of the state are not acceptable. For exam-

ple, in a chemical process, the state variables (such as temper-

ature, humidity, pressure, and so on) are expected to be con-

trolled within certain bounds for fixed time interval. In these

cases, the stability concept on finite-time interval (finite-time

stability concept) is possible to use. In the existing literature,

there are two concepts of finite-time stability (FTS) with a

very different meaning. The first concept of FTS requires that

the state of system does not exceed a specified bound in a

given finite-time interval [14–27], while in the second con-

cept the term FTS is used to describe system whose state

approaches equilibrium point in a finite time [27, 28]. In our

paper, the first concept of FTS is considered. Further, Amato

et al. [14] have extended the definition of FTS to the defin-

ition of finite-time boundedness (FTB) to take into account

the presence of external disturbances.

A little work has been done for the finite-time stability

and stabilization of singular time-delay systems. Some results

on FTS can be found in [17–20] for singular systems and

[21–25] for singular time-delay systems. Paper [21] presents

an overview of existing results in the field of FTS and gives

new sufficient conditions. Stability conditions are derived us-

ing an approach based on Lyapunov-like functionals (LLF).

Paper [22] introduces the concepts of practical stability for

nonlinear descriptor systems with time-delays in terms of two

measurements. Based on Lyapunov functions and the compar-

ison principle, a criterion, by which the problem of a descrip-

tor system with time delay is reduced to that of a standard

state-space system without time delays, is derived. In [23]
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new stability conditions have been derived using classical and

LMI approach based on the Lyapunov-like functions and their

properties on the subspace of consistent initial conditions. The

problem of FTB and stabilization of singular time-delay sys-

tem with time-varying exogenous disturbances is defined in

[24]. By combining Lyapunov-like approach and matrix in-

equality technique, a sufficient condition of FTB and stabi-

lization is given by a set of LMIs and nonlinear constraints.

In reference [24], in the process of majoritarian of LLF an in-

tegral term with delayed states is omitted. The problem FTS

of the singular discrete-time systems is studied in [25, 26].

In this paper, we extend the existing methods of FTS

[22–24] by introducing the exponential (eγ(t−θ)) and power

(µt−θ) weighting functions in the LLF. Also, by using in-

tegral inequalities with delayed states, the estimation of the

lower bound of LLF is improved. As a result of this, less con-

servative stability results were obtained with regard to some

existing ones in the literature [23, 24]. Based on the cone com-

plementarity linearization algorithm, an efficient approach is

proposed to design state feedback controller such that the re-

sultant closed-loop singular time-delay systems is finite-time

stable. Finally, two numerical examples are provided to show

the advantage of developed results.

Throughout this article we use the following notation. Su-

perscript “T” stands for matrix transposition. ℜn denotes the

n-dimensional Euclidean space and ℜn×m is the set of all re-

al matrices of dimension n×m. X > 0 means that X is real

symmetric and positive definite, and X > Y means that the

matrix X − Y is positive definite. diag{· · · } and trace(· · · )
denote block-diagonal matrix and trace of matrix. In sym-

metric block matrices or long matrix expressions, we use an

asterisk (∗) to represent a term that is induced by symmetry.

Matrices are assumed to be compatible for algebraic opera-

tions if their dimensions are not explicitly stated.

2. Problem formulation

Consider the following singular linear continuous time-delay

system:

Ê ˙̂x(t) = Âx̂(t) + Âdx̂(t − τ) + B̂u(t) (1)

with a known compatible vector valued function of the initial

conditions

x̂(t) = φ̂(t), t ∈ [−τ, 0], (2)

where x̂(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the con-

trol input, Â ∈ ℜn×n, Âd ∈ ℜn×n and B̂ ∈ ℜn×m are

known constant matrices and τ is constant time delay. The

matrix Ê ∈ ℜn×n may be singular, and it is assumed that

rank(Ê) = r ≤ n.

Since rank(Ê) = r ≤ n, there exist invertible matrices

Mand N [8] such that

MÊN =

[
Ir 0

0 0

]
∧
= E. (3)

Then, based on the nonsingular transformation

x = N−1x̂ (4)

the system (1) can be transformed into the following form:

Eẋ(t) = Ax(t) + Adx(t − τ) + Bu(t),

x(t) = φ(t), φ(t) = N−1φ̂(t), t ∈ [−τ, 0],
(5)

where x(t) = [xT
1 (t) xT

2 (t)]T is new (temporary) state vector

(x1 ∈ ℜr, x2 ∈ ℜn−r) and

A = MÂN =

[
A11 A12

A21 A22

]
,

Ad = MÂdN =

[
Ad11 Ad12

Ad21 Ad22

]
,

B = MB̂ =

[
B1

B2

]
,

(6)

A11, Ad11 ∈ ℜr×r, A22, Ad22 ∈ ℜ(n−r)×(n−r),

A12, Ad12 ∈ ℜr×(n−r), A21, Ad21 ∈ ℜ(n−r)×r,

B1 ∈ ℜr×m, B2 ∈ ℜ(n−r)×m

The aim of this paper is to develop finite-time stability and

stabilization of the system (1). In order to do this, the follow-

ing definitions will be used in the proof of the main results.

Definition 1. [8] The matrix pair (E, A) is said to be regular

if det (sE − A) is not identically zero.

Definition 2. [8] The matrix pair (E, A) is said to be impulse

free if deg(det (sE − A)) = rank(E). Otherwise the matrix

pair is said to be impulsive.

The singular time delay system (5) with u(t) = 0 may

have an impulsive solution. However, the regularity and ab-

sence of impulses of the pair (E, A) ensure the existence and

uniqueness of an impulse free solution of the unforced system

(5) on [0,∞). The existence of the solutions is defined in the

following lemma.

Lemma 1. [8] Suppose that the matrix pair (E, A) is regular

and impulse free, then the solution of (5) with u(t) = 0 exists

and is impulse free and unique on [0,∞).
Based on the previous definitions, we introduce the next

definitions for singular time-delay system (5).

Definition 3. The singular time-delay system (5) with u(t) =
0 is said to be regular and impulse free, if the matrix pair

(E, A) is regular and impulse free.

Definition 4. Singular time-delay system (5) with u(t) ≡ 0
is said to be finite-time stable with respect to (α, β, T ),
0 < α < β, if

sup
t∈[−τ,0]

φT (t)φ(t) ≤ α ⇒ xT (t)ET Ex(t) < β,

∀t ∈ [0, T ], 0 < T < +∞.
(7)

Remark 1. Using the state transformation (4), the expression

(7) can be written in the following equivalent form:

sup
t∈[−τ,0]

φ̂T (t)N−T N−1φ̂(t) ≤ α

⇒ x̂T (t)ÊT MT MÊx̂(t) ≤ β,

∀t ∈ [0, T ]

(8)
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which is suitable for the definition of FTS of the system (1).

Thus, the connection between the FTS of the systems (1)

and (5) can be simply established.

We consider the following stabilizing controller:

u(t) = Kx(t), K ∈ ℜm×n, (9)

where K is design parameter that has to be determined such

that the closed-loop system is FTS. Substituting (9) in (5), the

resultant closed-loop system is described by:

ẋ(t) = AKx(t) + Adx(t − τ), AK = A + BK,

x(t) = φ(t), t ∈ [−τ, 0].
(10)

3. Main results

3.1. Finite-time stability analysis In this section we give

new finite-time stability criteria by introducing the exponential

(eγ(t−θ)) and power (µt−θ) weighting functions in the LLF

and two delay integral inequality that is used in the process

of majorization of LLF.

Theorem 1. The singular time-delay system (5) with u(t) = 0
is regular, impulse free and FTS with respect to (α, β, T ) if

there exist a nonnegative scalar γ, positive scalars λ1, λ2, λ3,

λ4, non-singular matrix

P =

[
P11 P12

0 P22

]
, P11 = PT

11 > 0 (11)

positive definite symmetric matrices

Q =

[
Q1 0

0 Q2

]
> 0, R =

[
P11 R12

∗ R22

]
> 0,

Q1 = QT
1 > 0, Q2 = QT

2 > 0

(12)

such that the following conditions hold

Ω =

[
AT PT + PA + Q − γPE PAd

∗ −(1 + γρ)Q

]
< 0,

(13)

λ1I < R, λ2I > P11, λ3I < Q < λ4I (14)

α [λ2 + ρλ4] e
γT − β [λ1 + ρλ3] < 0 (15)

where ρ = (eγτ − 1)/γ ≥ 0.

Proof. First of all, we show the singular system (5) is reg-

ular and impulse free under the conditions of the theorem.

Suppose a condition (13) holds. Then we have

AT PT + PA + Q − γPE < 0, Q > 0. (16)

From (16) follows:

AT PT + PA − γPE < 0. (17)

Using (11) and (17), we get:

AT PT + PA − γPE

=

[
a∗ AT

21P
T
22 + P11A12 + P12A22

∗ AT
22P

T
22 + P22A22

]
< 0.

(18)

where

a∗ = AT
11P

T
11 + AT

21P
T
12 + P11A11 + P12A21 − γP11.

From (18) we deduce:

AT
22P22 + P22A22 < 0 (19)

from which we conclude that A22 is non-singular. Otherwise,

supposing that A22 is singular, there must exist a nonzero

vector η ∈ ℜn−r, which ensures that A22η = 0. Then we

can conclude that ηT
(
AT

22P22 + P22A22

)
η = 0, which is in

contradiction with (19); so A22 is non-singular.

Using proprieties of determinant, we have

det(sE − A) = det

([
sIr − A11 −A12

−A21 −A22

])

= det(−A22) det
(
sIr − (A11 − A12A

−1
22 A21)

)
(20)

which means that det(sE −A) ≡/ 0 and deg det(zE − A) =
r = rank(E). Therefore, (E, A) is regular and impulse free

and, based on Definition 3, the unforced system (5) is regular

and impulse free.

Next, we will show the unforced (u(t) = 0) singular time-

delay system (5) is finite-time stable. Let us choose the fol-

lowing LLF with the exponential weighting function eγ(t−θ):

V (x(t)) = xT (t)PEx(t)+

t∫

t−τ

eγ(t−θ)xT (θ)Qx(θ)dθ. (21)

From (11) and (12) we have PE = ET PT ≥ 0 and

PE = ET RE. Then, we have:

V̇ (x(t)) = ẋT (t)PEx(t) + xT (t)PEẋ(t)

+
d

dt

t∫

t−τ

eγ(t−θ)xT (θ)Qx(θ)dθ

= xT (t)(AT P + PA)x(t) + 2xT (t)PAdx(t − τ)

−γxT (t)PEx(t) + γxT (t)PEx(t)

+

t∫

t−τ

d

dt

(
eγ(t−θ)xT (θ)Qx(θ)

)
dθ

+ eγ(t−θ)xT (θ)Qx(θ)
∣∣∣
θ=t

×
d

dt
t

− eγ(t−θ)xT (θ)Qx(θ)
∣∣∣
θ=t−τ

×
d

dt
(t − τ)

= xT (t)(AT P + PA − γPE)x(t)

+2xT (t)PAdx(t − τ) + γV1(x(t))

+γ

t∫

t−τ

eγ(t−θ)xT (θ)Qx(θ)dθ + xT (t)Qx(t)

−eγτxT (t − τ)Qx(t − τ) = γV (x(t))

+

[
x(t)

x(t − τ)

]T[
AT PT + PA + Q − γPE PAd

∗ −eγτQ

]

[
x(t)

x(t − τ)

]
= γV (x(t)) + ξ(t)T Ωξ(t),

(22)
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where ξ(t) =
[

x(t)T x(t − τ)T
]T

and eγτ = 1 + ργ.

Based on (13) it is easy to see that

V̇ (x(t)) < γV (x(t)) (23)

Integrating (23) from 0 to t, with t ∈ [0, T ], we have:

V (x(t)) < eγtV (x(0)). (24)

Furthermore:

V (x(0)) = xT (0)PEx(0) +

0∫

−τ

e−γθxT (θ)Qx(θ)dθ

≤ λmax(P11)x
T (0)x(0) + λmax(Q)

0∫

−τ

e−γθxT (θ)x(θ)dθ

≤ λmax(P11)α + λmax(Q)α
eγτ − 1

γ

≤ α [λmax(P11) + ρλmax(Q) ].
(25)

On the other hand, the majorization of LLF at the time t gives

the following (first) delay integral inequality:

V (x(t)) = xT (t)PEx(t) +

t∫

t−τ

eγ(t−θ)xT (θ)Qx(θ)dθ

≥ xT (t)ET REx(t) +

t∫

t−τ

eγ(t−θ)xT (θ)ET QEx(θ)dθ

> λmin(R)xT (t)ET ET x(t)

+λmin(Q)

t∫

t−τ

eγ(t−θ)xT (θ)ET Ex(θ)dθ.

(26)

Combining (24)–(26) we obtain:

λmin(R)xT (t)ET ET x(t)

+λmin(Q)

t∫

t−τ

eγ(t−θ)xT (θ)ET Ex(θ)dθ

< eγtα [λmax(P11) + ρ λmax(Q)].

(27)

If the following inequality is satisfied:

eγtα [λmax(P11) + ρ λmax(Q)]

< β [λmin(R) + ρλmin(Q)] ,

∀t ∈ [0, T ]

(28)

then:
λmin(R)xT (t)ET ET x(t)

+λmin(Q)

t∫

t−τ

eγ(t−θ)xT (θ)ET Ex(θ)dθ

< β [λmin(R) + ρλmin(Q)] ,

∀t ∈ [0, T ].

(29)

From the last inequality and (28), the following condition

holds:

xT (t)ET Ex(t) < β, for all t ∈ [0, T ]. (30)

Further, from (28) follows:

α [λmax(P11) + ρλmax(Q)] eγT

< β [λmin(R) + ρλmin(Q)].
(31)

Let
0 < λ1 < λmin(R), λ2 > λmax(P11),

λ3 < λmin(Q), λ4 > λmax(Q).
(32)

Then, (14) and (15) are satisfied. This completes the proof.

Remark 2. Instead of the exponential weighting function

eγ(t−θ), it is possible, too, to use other functions in LLF (21).

For example, by using the power weighting function µt−θ in

LLF

V (x(t)) = xT (t)PEx(t) +

t∫

t−τ

µt−θxT (θ)Qx(θ)dθ (33)

the following stability criterion can be obtained.

Theorem 2. The singular time-delay system (5) with u(t) = 0
is regular, impulse free and FTS with respect to (α, β, T ) if

there exist a nonnegative scalar µ, positive scalars λ1, λ2,

λ3, λ4, non-singular matrix P and positive definite symmet-

ric matrices Q andR defined by (11) and (12), such that the

following conditions hold:

Σ =

[
AT PT +PA+Q− lnµPE PAd

∗ −(1+ρ lnµ)Q

]
< 0,

(34)

λ1I < R, λ2I > P11, λ3I < Q < λ4I, (35)

α [λ2 + ρλ4] µ
T − β [λ1 + ρλ3] < 0, (36)

where ρ = (µτ − 1)/ln µ ≥ 0.

Remark 3. The proof of this theorem can be obtained by

following the same proof procedure as given in Theorem 1.

However, the previous result can be directly obtained from

Theorem 1 by introducing the following change of variables:

γ = lnµ.

Remark 4. In the previous criteria, two innovations are in-

troduced in order to reduce the conservatism of FTS in the

existing literature [22–24]. The first innovation is application

of LLF with the exponential or the power weighting functions,

and the second one is the utilization of delay integral inequal-

ities (26) and (28) for the estimation of the lower bound of

LLF. Using the exponential weighting function in LLF (21),

the inequality V̇ (x(t)) < γV (x(t)) is obtained provided that

Ω < 0, without any approximation, which is not the case in

the existing literature. A similar conclusion can be obtained

by using the power weighting function. Further, unlike the

inequality (26), the following non-delay and non-integral in-

equality is used in the existing literature, for the estimation of

the lower bound of LLF:

V (x(t)) ≥ λmin(R)xT (t)ET ET x(t). (37)

Obviously, the previous inequality is more restrictive in the

comparison with the inequality (26). Accordingly, it should
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be expected that the Theorems 1–2 give less conservative re-

sults in regard to the existing results (see Example 1 as the

confirmation).

In the following, we will consider the individual influence

of each innovation to the conservatism of FTS. Firstly, we

use the innovation with the exponential weighting function,

without the second innovation (instead of inequality (26), we

use (37)). In this case, the following result is obtained.

Corollary 1. The singular time-delay system (5) with u(t) =
0 is regular, impulse free and FTS with respect to (α, β, T ) if

there exist a nonnegative scalar γ, positive scalars λ1, λ2, λ3,

non-singular matrix P and positive definite symmetric matri-

ces Q and R defined by (11) and (12), such that the (13) and

the following condition hold:

λ1I < R, λ2I > P11, λ3I > Q, (38)

α [λ2 + ρλ3] e
γT − βλ1 < 0. (39)

Remark 5. The previous criterion is more conservative com-

pared to Theorem 1 (see Example 1). However, it is still a

less restrictive than the criteria given in [22–24], because of

the existence of the exponential weighting function eγ(t−s) in

LLF. If the weighting function is omitted in LLK, then we

get the following simple LLF with two terms:

V (x(t)) = xT (t)PEx(t) +

t∫

t−τ

xT (θ)Qx(θ)dθ (40)

which is identical to the functional that used in [22, 23]. In

[24], an additional (third) term is inserted in LLF in order

to achieve the delay-dependent stability. However, due to the

omission of both the exponential weighting function in LLF

and inequality (26), the criteria given in [24] are also restric-

tive (see Example 1).

Next, we present a stability criterion that uses delay inte-

gral inequalities (26) and (28) and LLF (40) without weighting

function.

Corollary 2. The singular time-delay system (5) with u(t) =
0 is regular, impulse free and FTS with respect to (α, β, T )
if there exist a nonnegative scalar γ, positive scalars λ1, λ2,

λ3, λ4, non-singular matrix P and positive definite symmetric

matrices Q and R defined by (11) and (12), such that (14),

(15) and the following condition hold:

Ω =

[
AT PT + PA + Q − γPE PAd

∗ −Q

]
< 0. (41)

The last case of a stability criterion, which shall be considered,

is based on the LLF (40) without both exponential weighting

function and delay integral inequalities (26) and (28). Instead

of (26) we use (37).

Corollary 3. The singular time-delay system (5) with u(t) =
0 is regular, impulse free and FTS with respect to (α, β, T ) if

there exist a nonnegative scalar γ, positive scalars λ1, λ2, λ3,

non-singular matrix P and positive definite symmetric matri-

ces Q and R defined by (11) and (12), such that the conditions

(38), (39) and (41) hold.

Remark 6. In [22, Theorem 6], [23, Corollary 1] and [24,

Theorem 1], the similar results are obtained. Compared with

the results of Theorem 1 and Corollaries 1–2, the previous

criterion gives the most restrictive results (see Example 1).

As the references [22–24] do not use the exponential weight-

ing function and the delay integral inequalities (26) and (28),

their results are very restrictive in comparison to Theorem 1

and Corollary 1–2. (see Example 1).

Remark 7. Based on some numerical computations (see Ex-

ample 1), it can be shown that the weighting function in LLF

has a dominant influence on the restrictiveness of FTS, as op-

posed to the delay integral inequalities (26) and (28), whose

influence is lower.

3.2. Finite-time stabilization. Using Theorem 1–2 and

Corollary 1–3, we are in a position to design a state feed-

back controller (9) such that the resultant closed-loop system

(10) is regular, impulse free and finite-time stable. For prac-

tical reasons, only the problem of the stabilization based on

Theorem 1 has been addressed below.

Theorem 3. The closed-loop singular time-delay system (10)

is regular, impulse free and finite-time stable with respect to

(α, β, T ) if there exist a nonnegative scalar γ, positive scalars

λ1, λ2, λ3, λ4, non-singular matrix X

X =

[
X11 0

X21 X22

]
, X11 = XT

11 > 0 (42)

positive definite symmetric matrices Y , R

R =

[
R11 R12

∗ R22l

]
, R11 = X−1

11 (43)

and matrix Lsuch that the following conditions hold

Γ=

[
XT AT +AX+BL+LT BT +Y −γEX AdX

∗ −(1+γρ)Y

]
<0,

(44)

λ1I < R,

[
X11 I

∗ λ2I

]
> 0, (45)

[
Y XT

∗ λ−1
3 I

]
> 0,

[
Y −1 X−1

∗ λ4I

]
> 0, (46)

α [λ2 + ρλ4] e
γT − β [λ1 + ρλ3] < 0, (47)

where ρ = (eγτ − 1)/γ ≥ 0. The state feedback controller is

u(t) = Kx(t) = LX−1x(t).

Proof. By applying the congruence transformation with non-

singular matrix diag
{
P−T , P−T

}
to the matrix Ω results to

[
b∗ AdP

−T

∗ −(1 + γρ)P−1QP−T

]
< 0, (48)

where

b∗ = P−1AT + AP−T + P−1QP−T − γEP−T

Let

X
∆
= P−T > 0, Y = Y T ∆

= P−1QP−T > 0 (49)
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then
[

XT AT + AX + Y − γEX AdX

∗ −(1 + γρ)Y

]
< 0 (50)

From (11), (12), PE = ET PT ≥ 0 and PE = ET RE we

have

X = P−T =

[
P11 P12

0 P22

]−T

=

[
P−1

11 −P−1
11 P12P

−1
22

0 P−1
22

]T

=

[
P−T

11 0

−P−T
22 PT

12P
−T
11 P−T

22

]
=

[
X11 0

X21 X22

]
,

(51)

PE = X−T E = ET PT = ET X−1, (52)

X11 = P−T
11 = P−1

11 = R−1
11 , (53)

PE = X−T E = ET RE. (54)

Replacing A in (50) with A + BK yields:




XT AT + AX + XT KT BT

+BKX + Y − γEX
AdX

∗ −(1 + γρ)Y



 < 0.

(55)

If we adopt K
∧
= LX−1, then (44) is obtained.

Let

0 < λ1 < λmin(R) > 0,

λ2 > λmax(X
−1
11 ) > 0,

λ3 < λmin(X
−T Y X−1) > 0,

λ4 < λmax(X
−T Y X−1) > 0.

(56)

Then, form (14), (15), (31), (32) and (56) we get (47) and:

λ1I < R, λ2I > X−1
11 ,

λ3I < X−T Y X−1, λ4I > X−T Y X−1.
(57)

Using the Schur complement, from (57) we get (45), (46).

The proof is completed.

Remark 9. It should be pointed out that the stabilization prob-

lem in Theorem 3 is non-convex feasibility problem [29] due

to the existence of the nonlinear terms γ, λ3, R11, X and Y
in (43)–(47). Consequently, a global minimum of the stability

problem cannot be found by tools for the convex optimization.

However, by using some appropriate transformations and fix-

ing parameter γ, this non-convex feasibility problem can be

turned into a sequential optimization problem subject to LMI

constraints.

In the following, we define an algorithm for numerical so-

lution of the above nonlinear stabilization problem by using

Theorem 3. If we define

µ = λ−1
3 , U = X−1, V = Y −1 (58)

then (43), (46) and (58) can be approximately translated into
[

Y XT

X µI

]
> 0,

[
V U

UT λ4I

]
> 0,

[
R11 I

I X11

]
≥ 0,

[
X I

I U

]
≥ 0,

[
Y I

I V

]
≥ 0,

[
λ3 1

1 µ

]
≥ 0.

(59)

Using the cone complementarity algorithm [30], we formulate

the following minimization problem instead of the original

non-convex feasibility problems defined in Theorem 3.

Problem 1.

min {trace (X11R11) + trace (XU + Y V ) + λ3µ} (60)

subject to (42), (44), (45), (47) and (59).

If the solution of Problem 1 is 2n + r + 1, then the con-

ditions in Theorem 3 are solvable.

An iterative algorithm that solves the above nonlinear op-

timization problem is developed below.

Algorithm 1.

Step 1. Adopt a value of computational precision δ > 0.

Choose a sufficiently small γ > 0 such that there exists a

feasible solution to (42), (44), (45), (47) and (59).

Step 2. Find a feasible set (X0, Y 0, R0, U0, V 0, L0, λ0
1, λ

0
2, λ

0
3)

satisfying (42), (44), (45), (47) and (59). If the condition
∣∣trace

(
R0

11X
0
11

)
+ trace

(
U0X0 + V 0Y 0

)

+λ3µ − (2n + r + 1)| < δ
(61)

is satisfied, the controller gain can be given by K =
L0(X0)−1. Otherwise, set k = 0 and go to the next step.

Step 3. Solve the following LMI optimization problem for

(X, Y, R, U, V, L, λ1, λ2, λ3)

min
{
trace

(
Rk

11X11 + Xk
11R11

)
+ λk

3µ + µkλ

+trace
(
UkX + XkU + V kY + Y kV

)} (62)

subject to (42), (44), (45), (47) and (59)

and set Xk+1 = X , Y k+1 = Y , Rk+1 = R, U = Uk+1,

V k+1 = V , λk+1
3 = λ3, µk+1 = µ, Lk+1 = L.

Step 4. If the condition
∣∣trace

(
Rk+1

11 Xk+1
11

)

+trace
(
Uk+1Xk+1 + V k+1Y k+1

)

+λk+1
3 µk+1 − (2n + r + 1)

∣∣ < δ

(63)

is satisfied, then controller gain is chosen as: K =
Lk+1(Xk+1)−1. Otherwise, set k = k + 1 and go to Step 3.

If k > N , where N is the maximum number of iterations

allowed, then exit.

Remark 10. The conditions in Theorem 3 are expressed in the

form of nonlinear matrix inequalities as non-convex feasibili-

ty problem (see Remark 9) with unknown variables. Assump-

tions of the variables are obtained in the proof of Theorem 3,
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which is based on the proof of Theorem 1. By using the cone

complementarity algorithm [30], for a fixed value of the pa-

rameter γ, this non-convex feasibility problem is transformed

into a sequential optimization problem subject to linear matrix

inequalities (LMIs) (see Problem 1 and Algorithm 1). If there

exist a solution of the sequential optimization problem, then

the assumptions of Theorem 3 are satisfied and considered

system is FTS.

4. Numerical examples and simulation

Now, we present numerical examples that illustrate the per-

formance of the proposed results.

Example 1. Consider the singular time-delay system (5) with:

E =




1 0 0

0 1 0

0 0 0



 , A =




−2 1 0

0 −2 0

−1 0 −2



 ,

Ad =




1 1 1

1 1 1

1 1 1



 , B =
[

0 0 0
]T

,

τ = 1.

(64)

In order to verify the stability properties of the open-loop

system (5), the system operation is simulated under the con-

ditions φ(t) =
[

1 1 1
]T

, t ∈ [−τ, 0]. Figure 1 shows

the norm of the state vector xT (t)ET Ex(t) of the open-

loop system (5). It is observed that the open-loop system

(5) is not asymptotically stable. However, despite this fact,

we will find the conditions under which the system is FTS.

In other words, we will find the upper bound of T , Tm,

so system (5) is regular, impulse free and FTS with respect

α = 3 and β ∈ {10, 20, 50, 100, 200, 500, 1000, 10000}.

Table 1 lists the comparison of Tm for different values of the

parameter β by using various methods: Theorem 1, Corollary

1–3 and [23, Corollary 1]. Based on the system simulation, the

theoretical upper bound of the parameter T , T t
m, is estimated

from the norm of state vector and also shown in Table 1. Also,

Table 1 contains the corresponding values of the parameter γ.

Fig. 1. The norm xT (t)ET Ex(t) of the state vector of the open-loop

system (5)

Figures 2 and 3 show the dependences β(Tm) and γ(β),
respectively, using the various methods (Theorem 1, Corol-

lary 1–3 and the system simulation). Based on Fig. 2 and

the data from Table 1, it can be seen that Theorem 1 is the

least restrictive, as opposed to the Corollary 3 and [23, Corol-

lary 1].

Fig. 2. The dependence β(Tm) for different criteria

Fig. 3. The dependence γ(β) for different criteria

The basic properties of the above criteria are given in Ta-

ble 2. Obviously, the exponential weighting function eγ(t−s)

in LLF has the greatest impact in reduction of the conser-

vatism, while the influence of the inequalities (26) and (28)

with delayed states is somewhat smaller.

Table 1 and Fig. 3 show that the parameter γ is slightly

sensitive to the changes of parameter β by applying Theorem

1 and Corollary 2, but it is sensitive by using Corollary 1

and Corollary 3. Therefore, the utilization of the delay inte-

gral inequalities (26) and (28) provides the insensitivity of the

parameter γ with respect to the parameter β.
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Table 1

The upper bound Tm, the theoretical upper bound T t
m and the parameter γ for different values of the parameter β

Applied method β 10 20 50 100 200 500 1000 10000

Theorem 1
Tm 1.81 2.93 4.44 5.69 6.99 8.75 10.11 14.66

γ 0.62 0.62 0.56 0.53 0.52 0.51 0.51 0.50

Corollary 1
Tm 0.39 1.06 2.29 3.3 4.38 5.95 7.22 11.67

γ 1.23 0.79 0.7 0.65 0.60 0.55 0.53 0.50

Corollary 2
Tm 0.40 0.65 0.99 1.24 1.50 1.84 2.10 2.96

γ 2.73 2.70 2.70 2.68 2.68 2.66 2.66 2.63

Corollary 3 [23, Corollary 1]
Tm 0.04 0.16 0.41 0.63 0.87 1.20 1.46 2.32

γ 7.34 3.93 3.11 2.84 2.74 2.68 2.69 2.64

Simulation T t
m 1.98 3.44 5.35 6.80 8.25 10.16 11.67 16.43

Table 2

A summary of the basic properties of the obtained results (the presence of the exponential weighting functions eγ(t−s), the presence of the delay integral

inequalities (26) and (28) and conservatism)

Method
The presence of the exponential

weighting functions eγ(t−s)
The presence of the delay

integral inequalities (26) and (28)
Conservatism

Theorem 1 yes yes the smallest

Corollary 1 yes no smaller

Corollary 2 no yes small

Corollary 3 no no large

[23] no no large

Based on Theorem 1 for γ = 0.53 and (α, β, T ) =
(3, 100, 5.69), a feasible solution is

P =




4.70 · 102 −1.13 · 101 −9.94 · 101

−1.13 · 101 9.244 · 102 1.97 · 102

0 0 9.19 · 102



,

Q =




1.56 · 103 −3.14 · 102 0

−3.14 · 102 1.98 · 103 0

0 0 2.16 · 103



,

R =




4.70 · 102 −1.13 · 101 0

−1.13 · 101 9.24 · 102 0

0 0 1.82 · 103



,

λ1 = 4.69 · 102, λ2 = 9.25 · 102,

λ3 = 1.39 · 103, λ4 = 2.16 · 103

Accordingly, the system (5) is regular, impulse free and FTS

with respect to (α, β, T ) = (3, 100, 5.69).

Example 2. Consider the singular time-delay system (5)

where E, A, Ad and τ are defined by (64) and B = [1 1 1]T .

In order to show validity of our results for closed-loop sys-

tem, we design a state feedback controller u(t) = Kx(t) such

that the resultant closed-loop system (10) is finite-time stable.

Solving this control problem by using Theorem 3 and Al-

gorithm 1 for α = 3, β = 3.1, T = 500, γ = 10−5 and

∆ = 10−4, we find a feasible solution whit the controller

gain:

K =
[
−1.512 · 102 −1.529 · 102 −1.491 · 102

]
.

Therefore, the closed-loop system is finite-time stable with

respect to (3, 3.1, 500).
Figure 4 shows the norm xT (t)ET Ex(t) of the closed-

loop system for the initial conditions φ(t) =
[

1 1 1
]T

,

t ∈ [−τ, 0].

Fig. 4. The norm xT (t)ET Ex(t) of the state vector of the closed-

loop system (10)

5. Conclusions

In this paper, the problems of the finite-time stability and sta-

bilization have been investigated for a class of linear singular

time-delay systems. Using the Lyapunov-like functional with

exponential or power weighting function and corresponding

integral inequalities with delayed states, some sufficient con-

ditions, which guarantee that the singular time-delay system is

finite-time stabile, are derived. It has been concluded that the
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weighting function in Lyapunov-like function has a dominant

influence on the conservativeness of the obtained results, until

the integral inequalities with delayed states has a lower im-

pact. Starting from these results, a sufficient condition of the

finite-time stabilization is derived in the form of a nonlinear

feasible problem, which is solved by using a cone comple-

mentarity linearization algorithm.
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